Merge pull request #10306 from dkurt:faster_rcnn

pull/10320/head
Vadim Pisarevsky 7 years ago
commit 62359f70ff
  1. 8
      modules/dnn/include/opencv2/dnn/all_layers.hpp
  2. 1656
      modules/dnn/misc/caffe/opencv-caffe.pb.cc
  3. 569
      modules/dnn/misc/caffe/opencv-caffe.pb.h
  4. 15
      modules/dnn/src/caffe/opencv-caffe.proto
  5. 1
      modules/dnn/src/init.cpp
  6. 20
      modules/dnn/src/layers/blank_layer.cpp
  7. 135
      modules/dnn/src/layers/detection_output_layer.cpp
  8. 59
      modules/dnn/src/layers/pooling_layer.cpp
  9. 38
      modules/dnn/src/layers/prior_box_layer.cpp
  10. 245
      modules/dnn/src/layers/proposal_layer.cpp
  11. 23
      modules/dnn/test/test_layers.cpp
  12. 148
      samples/dnn/faster_rcnn.cpp

@ -74,7 +74,7 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
class CV_EXPORTS BlankLayer : public Layer
{
public:
static Ptr<BlankLayer> create(const LayerParams &params);
static Ptr<Layer> create(const LayerParams &params);
};
//! LSTM recurrent layer
@ -567,6 +567,12 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
static Ptr<ResizeNearestNeighborLayer> create(const LayerParams& params);
};
class CV_EXPORTS ProposalLayer : public Layer
{
public:
static Ptr<ProposalLayer> create(const LayerParams& params);
};
//! @}
//! @}
CV__DNN_EXPERIMENTAL_NS_END

File diff suppressed because it is too large Load Diff

@ -86,6 +86,7 @@ class PermuteParameter;
class PoolingParameter;
class PowerParameter;
class PriorBoxParameter;
class ProposalParameter;
class PythonParameter;
class ROIPoolingParameter;
class ReLUParameter;
@ -4138,6 +4139,15 @@ class LayerParameter : public ::google::protobuf::Message /* @@protoc_insertion_
::opencv_caffe::PriorBoxParameter* release_prior_box_param();
void set_allocated_prior_box_param(::opencv_caffe::PriorBoxParameter* prior_box_param);
// optional .opencv_caffe.ProposalParameter proposal_param = 201;
bool has_proposal_param() const;
void clear_proposal_param();
static const int kProposalParamFieldNumber = 201;
const ::opencv_caffe::ProposalParameter& proposal_param() const;
::opencv_caffe::ProposalParameter* mutable_proposal_param();
::opencv_caffe::ProposalParameter* release_proposal_param();
void set_allocated_proposal_param(::opencv_caffe::ProposalParameter* proposal_param);
// optional .opencv_caffe.PythonParameter python_param = 130;
bool has_python_param() const;
void clear_python_param();
@ -4355,6 +4365,8 @@ class LayerParameter : public ::google::protobuf::Message /* @@protoc_insertion_
inline void clear_has_prelu_param();
inline void set_has_prior_box_param();
inline void clear_has_prior_box_param();
inline void set_has_proposal_param();
inline void clear_has_proposal_param();
inline void set_has_python_param();
inline void clear_has_python_param();
inline void set_has_recurrent_param();
@ -4435,6 +4447,7 @@ class LayerParameter : public ::google::protobuf::Message /* @@protoc_insertion_
::opencv_caffe::PowerParameter* power_param_;
::opencv_caffe::PReLUParameter* prelu_param_;
::opencv_caffe::PriorBoxParameter* prior_box_param_;
::opencv_caffe::ProposalParameter* proposal_param_;
::opencv_caffe::PythonParameter* python_param_;
::opencv_caffe::RecurrentParameter* recurrent_param_;
::opencv_caffe::ReductionParameter* reduction_param_;
@ -6483,15 +6496,25 @@ class DropoutParameter : public ::google::protobuf::Message /* @@protoc_insertio
float dropout_ratio() const;
void set_dropout_ratio(float value);
// optional bool scale_train = 2 [default = true];
bool has_scale_train() const;
void clear_scale_train();
static const int kScaleTrainFieldNumber = 2;
bool scale_train() const;
void set_scale_train(bool value);
// @@protoc_insertion_point(class_scope:opencv_caffe.DropoutParameter)
private:
inline void set_has_dropout_ratio();
inline void clear_has_dropout_ratio();
inline void set_has_scale_train();
inline void clear_has_scale_train();
::google::protobuf::internal::InternalMetadataWithArena _internal_metadata_;
::google::protobuf::internal::HasBits<1> _has_bits_;
mutable int _cached_size_;
float dropout_ratio_;
bool scale_train_;
friend void protobuf_InitDefaults_opencv_2dcaffe_2eproto_impl();
friend void protobuf_AddDesc_opencv_2dcaffe_2eproto_impl();
friend void protobuf_AssignDesc_opencv_2dcaffe_2eproto();
@ -12914,6 +12937,180 @@ class ROIPoolingParameter : public ::google::protobuf::Message /* @@protoc_inser
};
extern ::google::protobuf::internal::ExplicitlyConstructed<ROIPoolingParameter> ROIPoolingParameter_default_instance_;
// -------------------------------------------------------------------
class ProposalParameter : public ::google::protobuf::Message /* @@protoc_insertion_point(class_definition:opencv_caffe.ProposalParameter) */ {
public:
ProposalParameter();
virtual ~ProposalParameter();
ProposalParameter(const ProposalParameter& from);
inline ProposalParameter& operator=(const ProposalParameter& from) {
CopyFrom(from);
return *this;
}
inline const ::google::protobuf::UnknownFieldSet& unknown_fields() const {
return _internal_metadata_.unknown_fields();
}
inline ::google::protobuf::UnknownFieldSet* mutable_unknown_fields() {
return _internal_metadata_.mutable_unknown_fields();
}
static const ::google::protobuf::Descriptor* descriptor();
static const ProposalParameter& default_instance();
static const ProposalParameter* internal_default_instance();
void Swap(ProposalParameter* other);
// implements Message ----------------------------------------------
inline ProposalParameter* New() const { return New(NULL); }
ProposalParameter* New(::google::protobuf::Arena* arena) const;
void CopyFrom(const ::google::protobuf::Message& from);
void MergeFrom(const ::google::protobuf::Message& from);
void CopyFrom(const ProposalParameter& from);
void MergeFrom(const ProposalParameter& from);
void Clear();
bool IsInitialized() const;
size_t ByteSizeLong() const;
bool MergePartialFromCodedStream(
::google::protobuf::io::CodedInputStream* input);
void SerializeWithCachedSizes(
::google::protobuf::io::CodedOutputStream* output) const;
::google::protobuf::uint8* InternalSerializeWithCachedSizesToArray(
bool deterministic, ::google::protobuf::uint8* output) const;
::google::protobuf::uint8* SerializeWithCachedSizesToArray(::google::protobuf::uint8* output) const {
return InternalSerializeWithCachedSizesToArray(false, output);
}
int GetCachedSize() const { return _cached_size_; }
private:
void SharedCtor();
void SharedDtor();
void SetCachedSize(int size) const;
void InternalSwap(ProposalParameter* other);
void UnsafeMergeFrom(const ProposalParameter& from);
private:
inline ::google::protobuf::Arena* GetArenaNoVirtual() const {
return _internal_metadata_.arena();
}
inline void* MaybeArenaPtr() const {
return _internal_metadata_.raw_arena_ptr();
}
public:
::google::protobuf::Metadata GetMetadata() const;
// nested types ----------------------------------------------------
// accessors -------------------------------------------------------
// optional uint32 feat_stride = 1 [default = 16];
bool has_feat_stride() const;
void clear_feat_stride();
static const int kFeatStrideFieldNumber = 1;
::google::protobuf::uint32 feat_stride() const;
void set_feat_stride(::google::protobuf::uint32 value);
// optional uint32 base_size = 2 [default = 16];
bool has_base_size() const;
void clear_base_size();
static const int kBaseSizeFieldNumber = 2;
::google::protobuf::uint32 base_size() const;
void set_base_size(::google::protobuf::uint32 value);
// optional uint32 min_size = 3 [default = 16];
bool has_min_size() const;
void clear_min_size();
static const int kMinSizeFieldNumber = 3;
::google::protobuf::uint32 min_size() const;
void set_min_size(::google::protobuf::uint32 value);
// repeated float ratio = 4;
int ratio_size() const;
void clear_ratio();
static const int kRatioFieldNumber = 4;
float ratio(int index) const;
void set_ratio(int index, float value);
void add_ratio(float value);
const ::google::protobuf::RepeatedField< float >&
ratio() const;
::google::protobuf::RepeatedField< float >*
mutable_ratio();
// repeated float scale = 5;
int scale_size() const;
void clear_scale();
static const int kScaleFieldNumber = 5;
float scale(int index) const;
void set_scale(int index, float value);
void add_scale(float value);
const ::google::protobuf::RepeatedField< float >&
scale() const;
::google::protobuf::RepeatedField< float >*
mutable_scale();
// optional uint32 pre_nms_topn = 6 [default = 6000];
bool has_pre_nms_topn() const;
void clear_pre_nms_topn();
static const int kPreNmsTopnFieldNumber = 6;
::google::protobuf::uint32 pre_nms_topn() const;
void set_pre_nms_topn(::google::protobuf::uint32 value);
// optional uint32 post_nms_topn = 7 [default = 300];
bool has_post_nms_topn() const;
void clear_post_nms_topn();
static const int kPostNmsTopnFieldNumber = 7;
::google::protobuf::uint32 post_nms_topn() const;
void set_post_nms_topn(::google::protobuf::uint32 value);
// optional float nms_thresh = 8 [default = 0.7];
bool has_nms_thresh() const;
void clear_nms_thresh();
static const int kNmsThreshFieldNumber = 8;
float nms_thresh() const;
void set_nms_thresh(float value);
// @@protoc_insertion_point(class_scope:opencv_caffe.ProposalParameter)
private:
inline void set_has_feat_stride();
inline void clear_has_feat_stride();
inline void set_has_base_size();
inline void clear_has_base_size();
inline void set_has_min_size();
inline void clear_has_min_size();
inline void set_has_pre_nms_topn();
inline void clear_has_pre_nms_topn();
inline void set_has_post_nms_topn();
inline void clear_has_post_nms_topn();
inline void set_has_nms_thresh();
inline void clear_has_nms_thresh();
::google::protobuf::internal::InternalMetadataWithArena _internal_metadata_;
::google::protobuf::internal::HasBits<1> _has_bits_;
mutable int _cached_size_;
::google::protobuf::RepeatedField< float > ratio_;
::google::protobuf::RepeatedField< float > scale_;
::google::protobuf::uint32 feat_stride_;
::google::protobuf::uint32 base_size_;
::google::protobuf::uint32 min_size_;
::google::protobuf::uint32 pre_nms_topn_;
::google::protobuf::uint32 post_nms_topn_;
float nms_thresh_;
friend void protobuf_InitDefaults_opencv_2dcaffe_2eproto_impl();
friend void protobuf_AddDesc_opencv_2dcaffe_2eproto_impl();
friend void protobuf_AssignDesc_opencv_2dcaffe_2eproto();
friend void protobuf_ShutdownFile_opencv_2dcaffe_2eproto();
void InitAsDefaultInstance();
};
extern ::google::protobuf::internal::ExplicitlyConstructed<ProposalParameter> ProposalParameter_default_instance_;
// ===================================================================
@ -18921,15 +19118,60 @@ inline void LayerParameter::set_allocated_prior_box_param(::opencv_caffe::PriorB
// @@protoc_insertion_point(field_set_allocated:opencv_caffe.LayerParameter.prior_box_param)
}
// optional .opencv_caffe.ProposalParameter proposal_param = 201;
inline bool LayerParameter::has_proposal_param() const {
return (_has_bits_[1] & 0x00010000u) != 0;
}
inline void LayerParameter::set_has_proposal_param() {
_has_bits_[1] |= 0x00010000u;
}
inline void LayerParameter::clear_has_proposal_param() {
_has_bits_[1] &= ~0x00010000u;
}
inline void LayerParameter::clear_proposal_param() {
if (proposal_param_ != NULL) proposal_param_->::opencv_caffe::ProposalParameter::Clear();
clear_has_proposal_param();
}
inline const ::opencv_caffe::ProposalParameter& LayerParameter::proposal_param() const {
// @@protoc_insertion_point(field_get:opencv_caffe.LayerParameter.proposal_param)
return proposal_param_ != NULL ? *proposal_param_
: *::opencv_caffe::ProposalParameter::internal_default_instance();
}
inline ::opencv_caffe::ProposalParameter* LayerParameter::mutable_proposal_param() {
set_has_proposal_param();
if (proposal_param_ == NULL) {
proposal_param_ = new ::opencv_caffe::ProposalParameter;
}
// @@protoc_insertion_point(field_mutable:opencv_caffe.LayerParameter.proposal_param)
return proposal_param_;
}
inline ::opencv_caffe::ProposalParameter* LayerParameter::release_proposal_param() {
// @@protoc_insertion_point(field_release:opencv_caffe.LayerParameter.proposal_param)
clear_has_proposal_param();
::opencv_caffe::ProposalParameter* temp = proposal_param_;
proposal_param_ = NULL;
return temp;
}
inline void LayerParameter::set_allocated_proposal_param(::opencv_caffe::ProposalParameter* proposal_param) {
delete proposal_param_;
proposal_param_ = proposal_param;
if (proposal_param) {
set_has_proposal_param();
} else {
clear_has_proposal_param();
}
// @@protoc_insertion_point(field_set_allocated:opencv_caffe.LayerParameter.proposal_param)
}
// optional .opencv_caffe.PythonParameter python_param = 130;
inline bool LayerParameter::has_python_param() const {
return (_has_bits_[1] & 0x00010000u) != 0;
return (_has_bits_[1] & 0x00020000u) != 0;
}
inline void LayerParameter::set_has_python_param() {
_has_bits_[1] |= 0x00010000u;
_has_bits_[1] |= 0x00020000u;
}
inline void LayerParameter::clear_has_python_param() {
_has_bits_[1] &= ~0x00010000u;
_has_bits_[1] &= ~0x00020000u;
}
inline void LayerParameter::clear_python_param() {
if (python_param_ != NULL) python_param_->::opencv_caffe::PythonParameter::Clear();
@ -18968,13 +19210,13 @@ inline void LayerParameter::set_allocated_python_param(::opencv_caffe::PythonPar
// optional .opencv_caffe.RecurrentParameter recurrent_param = 146;
inline bool LayerParameter::has_recurrent_param() const {
return (_has_bits_[1] & 0x00020000u) != 0;
return (_has_bits_[1] & 0x00040000u) != 0;
}
inline void LayerParameter::set_has_recurrent_param() {
_has_bits_[1] |= 0x00020000u;
_has_bits_[1] |= 0x00040000u;
}
inline void LayerParameter::clear_has_recurrent_param() {
_has_bits_[1] &= ~0x00020000u;
_has_bits_[1] &= ~0x00040000u;
}
inline void LayerParameter::clear_recurrent_param() {
if (recurrent_param_ != NULL) recurrent_param_->::opencv_caffe::RecurrentParameter::Clear();
@ -19013,13 +19255,13 @@ inline void LayerParameter::set_allocated_recurrent_param(::opencv_caffe::Recurr
// optional .opencv_caffe.ReductionParameter reduction_param = 136;
inline bool LayerParameter::has_reduction_param() const {
return (_has_bits_[1] & 0x00040000u) != 0;
return (_has_bits_[1] & 0x00080000u) != 0;
}
inline void LayerParameter::set_has_reduction_param() {
_has_bits_[1] |= 0x00040000u;
_has_bits_[1] |= 0x00080000u;
}
inline void LayerParameter::clear_has_reduction_param() {
_has_bits_[1] &= ~0x00040000u;
_has_bits_[1] &= ~0x00080000u;
}
inline void LayerParameter::clear_reduction_param() {
if (reduction_param_ != NULL) reduction_param_->::opencv_caffe::ReductionParameter::Clear();
@ -19058,13 +19300,13 @@ inline void LayerParameter::set_allocated_reduction_param(::opencv_caffe::Reduct
// optional .opencv_caffe.ReLUParameter relu_param = 123;
inline bool LayerParameter::has_relu_param() const {
return (_has_bits_[1] & 0x00080000u) != 0;
return (_has_bits_[1] & 0x00100000u) != 0;
}
inline void LayerParameter::set_has_relu_param() {
_has_bits_[1] |= 0x00080000u;
_has_bits_[1] |= 0x00100000u;
}
inline void LayerParameter::clear_has_relu_param() {
_has_bits_[1] &= ~0x00080000u;
_has_bits_[1] &= ~0x00100000u;
}
inline void LayerParameter::clear_relu_param() {
if (relu_param_ != NULL) relu_param_->::opencv_caffe::ReLUParameter::Clear();
@ -19103,13 +19345,13 @@ inline void LayerParameter::set_allocated_relu_param(::opencv_caffe::ReLUParamet
// optional .opencv_caffe.ReshapeParameter reshape_param = 133;
inline bool LayerParameter::has_reshape_param() const {
return (_has_bits_[1] & 0x00100000u) != 0;
return (_has_bits_[1] & 0x00200000u) != 0;
}
inline void LayerParameter::set_has_reshape_param() {
_has_bits_[1] |= 0x00100000u;
_has_bits_[1] |= 0x00200000u;
}
inline void LayerParameter::clear_has_reshape_param() {
_has_bits_[1] &= ~0x00100000u;
_has_bits_[1] &= ~0x00200000u;
}
inline void LayerParameter::clear_reshape_param() {
if (reshape_param_ != NULL) reshape_param_->::opencv_caffe::ReshapeParameter::Clear();
@ -19148,13 +19390,13 @@ inline void LayerParameter::set_allocated_reshape_param(::opencv_caffe::ReshapeP
// optional .opencv_caffe.ROIPoolingParameter roi_pooling_param = 8266711;
inline bool LayerParameter::has_roi_pooling_param() const {
return (_has_bits_[1] & 0x00200000u) != 0;
return (_has_bits_[1] & 0x00400000u) != 0;
}
inline void LayerParameter::set_has_roi_pooling_param() {
_has_bits_[1] |= 0x00200000u;
_has_bits_[1] |= 0x00400000u;
}
inline void LayerParameter::clear_has_roi_pooling_param() {
_has_bits_[1] &= ~0x00200000u;
_has_bits_[1] &= ~0x00400000u;
}
inline void LayerParameter::clear_roi_pooling_param() {
if (roi_pooling_param_ != NULL) roi_pooling_param_->::opencv_caffe::ROIPoolingParameter::Clear();
@ -19193,13 +19435,13 @@ inline void LayerParameter::set_allocated_roi_pooling_param(::opencv_caffe::ROIP
// optional .opencv_caffe.ScaleParameter scale_param = 142;
inline bool LayerParameter::has_scale_param() const {
return (_has_bits_[1] & 0x00400000u) != 0;
return (_has_bits_[1] & 0x00800000u) != 0;
}
inline void LayerParameter::set_has_scale_param() {
_has_bits_[1] |= 0x00400000u;
_has_bits_[1] |= 0x00800000u;
}
inline void LayerParameter::clear_has_scale_param() {
_has_bits_[1] &= ~0x00400000u;
_has_bits_[1] &= ~0x00800000u;
}
inline void LayerParameter::clear_scale_param() {
if (scale_param_ != NULL) scale_param_->::opencv_caffe::ScaleParameter::Clear();
@ -19238,13 +19480,13 @@ inline void LayerParameter::set_allocated_scale_param(::opencv_caffe::ScaleParam
// optional .opencv_caffe.SigmoidParameter sigmoid_param = 124;
inline bool LayerParameter::has_sigmoid_param() const {
return (_has_bits_[1] & 0x00800000u) != 0;
return (_has_bits_[1] & 0x01000000u) != 0;
}
inline void LayerParameter::set_has_sigmoid_param() {
_has_bits_[1] |= 0x00800000u;
_has_bits_[1] |= 0x01000000u;
}
inline void LayerParameter::clear_has_sigmoid_param() {
_has_bits_[1] &= ~0x00800000u;
_has_bits_[1] &= ~0x01000000u;
}
inline void LayerParameter::clear_sigmoid_param() {
if (sigmoid_param_ != NULL) sigmoid_param_->::opencv_caffe::SigmoidParameter::Clear();
@ -19283,13 +19525,13 @@ inline void LayerParameter::set_allocated_sigmoid_param(::opencv_caffe::SigmoidP
// optional .opencv_caffe.SoftmaxParameter softmax_param = 125;
inline bool LayerParameter::has_softmax_param() const {
return (_has_bits_[1] & 0x01000000u) != 0;
return (_has_bits_[1] & 0x02000000u) != 0;
}
inline void LayerParameter::set_has_softmax_param() {
_has_bits_[1] |= 0x01000000u;
_has_bits_[1] |= 0x02000000u;
}
inline void LayerParameter::clear_has_softmax_param() {
_has_bits_[1] &= ~0x01000000u;
_has_bits_[1] &= ~0x02000000u;
}
inline void LayerParameter::clear_softmax_param() {
if (softmax_param_ != NULL) softmax_param_->::opencv_caffe::SoftmaxParameter::Clear();
@ -19328,13 +19570,13 @@ inline void LayerParameter::set_allocated_softmax_param(::opencv_caffe::SoftmaxP
// optional .opencv_caffe.SPPParameter spp_param = 132;
inline bool LayerParameter::has_spp_param() const {
return (_has_bits_[1] & 0x02000000u) != 0;
return (_has_bits_[1] & 0x04000000u) != 0;
}
inline void LayerParameter::set_has_spp_param() {
_has_bits_[1] |= 0x02000000u;
_has_bits_[1] |= 0x04000000u;
}
inline void LayerParameter::clear_has_spp_param() {
_has_bits_[1] &= ~0x02000000u;
_has_bits_[1] &= ~0x04000000u;
}
inline void LayerParameter::clear_spp_param() {
if (spp_param_ != NULL) spp_param_->::opencv_caffe::SPPParameter::Clear();
@ -19373,13 +19615,13 @@ inline void LayerParameter::set_allocated_spp_param(::opencv_caffe::SPPParameter
// optional .opencv_caffe.SliceParameter slice_param = 126;
inline bool LayerParameter::has_slice_param() const {
return (_has_bits_[1] & 0x04000000u) != 0;
return (_has_bits_[1] & 0x08000000u) != 0;
}
inline void LayerParameter::set_has_slice_param() {
_has_bits_[1] |= 0x04000000u;
_has_bits_[1] |= 0x08000000u;
}
inline void LayerParameter::clear_has_slice_param() {
_has_bits_[1] &= ~0x04000000u;
_has_bits_[1] &= ~0x08000000u;
}
inline void LayerParameter::clear_slice_param() {
if (slice_param_ != NULL) slice_param_->::opencv_caffe::SliceParameter::Clear();
@ -19418,13 +19660,13 @@ inline void LayerParameter::set_allocated_slice_param(::opencv_caffe::SliceParam
// optional .opencv_caffe.TanHParameter tanh_param = 127;
inline bool LayerParameter::has_tanh_param() const {
return (_has_bits_[1] & 0x08000000u) != 0;
return (_has_bits_[1] & 0x10000000u) != 0;
}
inline void LayerParameter::set_has_tanh_param() {
_has_bits_[1] |= 0x08000000u;
_has_bits_[1] |= 0x10000000u;
}
inline void LayerParameter::clear_has_tanh_param() {
_has_bits_[1] &= ~0x08000000u;
_has_bits_[1] &= ~0x10000000u;
}
inline void LayerParameter::clear_tanh_param() {
if (tanh_param_ != NULL) tanh_param_->::opencv_caffe::TanHParameter::Clear();
@ -19463,13 +19705,13 @@ inline void LayerParameter::set_allocated_tanh_param(::opencv_caffe::TanHParamet
// optional .opencv_caffe.ThresholdParameter threshold_param = 128;
inline bool LayerParameter::has_threshold_param() const {
return (_has_bits_[1] & 0x10000000u) != 0;
return (_has_bits_[1] & 0x20000000u) != 0;
}
inline void LayerParameter::set_has_threshold_param() {
_has_bits_[1] |= 0x10000000u;
_has_bits_[1] |= 0x20000000u;
}
inline void LayerParameter::clear_has_threshold_param() {
_has_bits_[1] &= ~0x10000000u;
_has_bits_[1] &= ~0x20000000u;
}
inline void LayerParameter::clear_threshold_param() {
if (threshold_param_ != NULL) threshold_param_->::opencv_caffe::ThresholdParameter::Clear();
@ -19508,13 +19750,13 @@ inline void LayerParameter::set_allocated_threshold_param(::opencv_caffe::Thresh
// optional .opencv_caffe.TileParameter tile_param = 138;
inline bool LayerParameter::has_tile_param() const {
return (_has_bits_[1] & 0x20000000u) != 0;
return (_has_bits_[1] & 0x40000000u) != 0;
}
inline void LayerParameter::set_has_tile_param() {
_has_bits_[1] |= 0x20000000u;
_has_bits_[1] |= 0x40000000u;
}
inline void LayerParameter::clear_has_tile_param() {
_has_bits_[1] &= ~0x20000000u;
_has_bits_[1] &= ~0x40000000u;
}
inline void LayerParameter::clear_tile_param() {
if (tile_param_ != NULL) tile_param_->::opencv_caffe::TileParameter::Clear();
@ -19553,13 +19795,13 @@ inline void LayerParameter::set_allocated_tile_param(::opencv_caffe::TileParamet
// optional .opencv_caffe.WindowDataParameter window_data_param = 129;
inline bool LayerParameter::has_window_data_param() const {
return (_has_bits_[1] & 0x40000000u) != 0;
return (_has_bits_[1] & 0x80000000u) != 0;
}
inline void LayerParameter::set_has_window_data_param() {
_has_bits_[1] |= 0x40000000u;
_has_bits_[1] |= 0x80000000u;
}
inline void LayerParameter::clear_has_window_data_param() {
_has_bits_[1] &= ~0x40000000u;
_has_bits_[1] &= ~0x80000000u;
}
inline void LayerParameter::clear_window_data_param() {
if (window_data_param_ != NULL) window_data_param_->::opencv_caffe::WindowDataParameter::Clear();
@ -21620,6 +21862,30 @@ inline void DropoutParameter::set_dropout_ratio(float value) {
// @@protoc_insertion_point(field_set:opencv_caffe.DropoutParameter.dropout_ratio)
}
// optional bool scale_train = 2 [default = true];
inline bool DropoutParameter::has_scale_train() const {
return (_has_bits_[0] & 0x00000002u) != 0;
}
inline void DropoutParameter::set_has_scale_train() {
_has_bits_[0] |= 0x00000002u;
}
inline void DropoutParameter::clear_has_scale_train() {
_has_bits_[0] &= ~0x00000002u;
}
inline void DropoutParameter::clear_scale_train() {
scale_train_ = true;
clear_has_scale_train();
}
inline bool DropoutParameter::scale_train() const {
// @@protoc_insertion_point(field_get:opencv_caffe.DropoutParameter.scale_train)
return scale_train_;
}
inline void DropoutParameter::set_scale_train(bool value) {
set_has_scale_train();
scale_train_ = value;
// @@protoc_insertion_point(field_set:opencv_caffe.DropoutParameter.scale_train)
}
inline const DropoutParameter* DropoutParameter::internal_default_instance() {
return &DropoutParameter_default_instance_.get();
}
@ -28915,6 +29181,217 @@ inline void ROIPoolingParameter::set_spatial_scale(float value) {
inline const ROIPoolingParameter* ROIPoolingParameter::internal_default_instance() {
return &ROIPoolingParameter_default_instance_.get();
}
// -------------------------------------------------------------------
// ProposalParameter
// optional uint32 feat_stride = 1 [default = 16];
inline bool ProposalParameter::has_feat_stride() const {
return (_has_bits_[0] & 0x00000001u) != 0;
}
inline void ProposalParameter::set_has_feat_stride() {
_has_bits_[0] |= 0x00000001u;
}
inline void ProposalParameter::clear_has_feat_stride() {
_has_bits_[0] &= ~0x00000001u;
}
inline void ProposalParameter::clear_feat_stride() {
feat_stride_ = 16u;
clear_has_feat_stride();
}
inline ::google::protobuf::uint32 ProposalParameter::feat_stride() const {
// @@protoc_insertion_point(field_get:opencv_caffe.ProposalParameter.feat_stride)
return feat_stride_;
}
inline void ProposalParameter::set_feat_stride(::google::protobuf::uint32 value) {
set_has_feat_stride();
feat_stride_ = value;
// @@protoc_insertion_point(field_set:opencv_caffe.ProposalParameter.feat_stride)
}
// optional uint32 base_size = 2 [default = 16];
inline bool ProposalParameter::has_base_size() const {
return (_has_bits_[0] & 0x00000002u) != 0;
}
inline void ProposalParameter::set_has_base_size() {
_has_bits_[0] |= 0x00000002u;
}
inline void ProposalParameter::clear_has_base_size() {
_has_bits_[0] &= ~0x00000002u;
}
inline void ProposalParameter::clear_base_size() {
base_size_ = 16u;
clear_has_base_size();
}
inline ::google::protobuf::uint32 ProposalParameter::base_size() const {
// @@protoc_insertion_point(field_get:opencv_caffe.ProposalParameter.base_size)
return base_size_;
}
inline void ProposalParameter::set_base_size(::google::protobuf::uint32 value) {
set_has_base_size();
base_size_ = value;
// @@protoc_insertion_point(field_set:opencv_caffe.ProposalParameter.base_size)
}
// optional uint32 min_size = 3 [default = 16];
inline bool ProposalParameter::has_min_size() const {
return (_has_bits_[0] & 0x00000004u) != 0;
}
inline void ProposalParameter::set_has_min_size() {
_has_bits_[0] |= 0x00000004u;
}
inline void ProposalParameter::clear_has_min_size() {
_has_bits_[0] &= ~0x00000004u;
}
inline void ProposalParameter::clear_min_size() {
min_size_ = 16u;
clear_has_min_size();
}
inline ::google::protobuf::uint32 ProposalParameter::min_size() const {
// @@protoc_insertion_point(field_get:opencv_caffe.ProposalParameter.min_size)
return min_size_;
}
inline void ProposalParameter::set_min_size(::google::protobuf::uint32 value) {
set_has_min_size();
min_size_ = value;
// @@protoc_insertion_point(field_set:opencv_caffe.ProposalParameter.min_size)
}
// repeated float ratio = 4;
inline int ProposalParameter::ratio_size() const {
return ratio_.size();
}
inline void ProposalParameter::clear_ratio() {
ratio_.Clear();
}
inline float ProposalParameter::ratio(int index) const {
// @@protoc_insertion_point(field_get:opencv_caffe.ProposalParameter.ratio)
return ratio_.Get(index);
}
inline void ProposalParameter::set_ratio(int index, float value) {
ratio_.Set(index, value);
// @@protoc_insertion_point(field_set:opencv_caffe.ProposalParameter.ratio)
}
inline void ProposalParameter::add_ratio(float value) {
ratio_.Add(value);
// @@protoc_insertion_point(field_add:opencv_caffe.ProposalParameter.ratio)
}
inline const ::google::protobuf::RepeatedField< float >&
ProposalParameter::ratio() const {
// @@protoc_insertion_point(field_list:opencv_caffe.ProposalParameter.ratio)
return ratio_;
}
inline ::google::protobuf::RepeatedField< float >*
ProposalParameter::mutable_ratio() {
// @@protoc_insertion_point(field_mutable_list:opencv_caffe.ProposalParameter.ratio)
return &ratio_;
}
// repeated float scale = 5;
inline int ProposalParameter::scale_size() const {
return scale_.size();
}
inline void ProposalParameter::clear_scale() {
scale_.Clear();
}
inline float ProposalParameter::scale(int index) const {
// @@protoc_insertion_point(field_get:opencv_caffe.ProposalParameter.scale)
return scale_.Get(index);
}
inline void ProposalParameter::set_scale(int index, float value) {
scale_.Set(index, value);
// @@protoc_insertion_point(field_set:opencv_caffe.ProposalParameter.scale)
}
inline void ProposalParameter::add_scale(float value) {
scale_.Add(value);
// @@protoc_insertion_point(field_add:opencv_caffe.ProposalParameter.scale)
}
inline const ::google::protobuf::RepeatedField< float >&
ProposalParameter::scale() const {
// @@protoc_insertion_point(field_list:opencv_caffe.ProposalParameter.scale)
return scale_;
}
inline ::google::protobuf::RepeatedField< float >*
ProposalParameter::mutable_scale() {
// @@protoc_insertion_point(field_mutable_list:opencv_caffe.ProposalParameter.scale)
return &scale_;
}
// optional uint32 pre_nms_topn = 6 [default = 6000];
inline bool ProposalParameter::has_pre_nms_topn() const {
return (_has_bits_[0] & 0x00000020u) != 0;
}
inline void ProposalParameter::set_has_pre_nms_topn() {
_has_bits_[0] |= 0x00000020u;
}
inline void ProposalParameter::clear_has_pre_nms_topn() {
_has_bits_[0] &= ~0x00000020u;
}
inline void ProposalParameter::clear_pre_nms_topn() {
pre_nms_topn_ = 6000u;
clear_has_pre_nms_topn();
}
inline ::google::protobuf::uint32 ProposalParameter::pre_nms_topn() const {
// @@protoc_insertion_point(field_get:opencv_caffe.ProposalParameter.pre_nms_topn)
return pre_nms_topn_;
}
inline void ProposalParameter::set_pre_nms_topn(::google::protobuf::uint32 value) {
set_has_pre_nms_topn();
pre_nms_topn_ = value;
// @@protoc_insertion_point(field_set:opencv_caffe.ProposalParameter.pre_nms_topn)
}
// optional uint32 post_nms_topn = 7 [default = 300];
inline bool ProposalParameter::has_post_nms_topn() const {
return (_has_bits_[0] & 0x00000040u) != 0;
}
inline void ProposalParameter::set_has_post_nms_topn() {
_has_bits_[0] |= 0x00000040u;
}
inline void ProposalParameter::clear_has_post_nms_topn() {
_has_bits_[0] &= ~0x00000040u;
}
inline void ProposalParameter::clear_post_nms_topn() {
post_nms_topn_ = 300u;
clear_has_post_nms_topn();
}
inline ::google::protobuf::uint32 ProposalParameter::post_nms_topn() const {
// @@protoc_insertion_point(field_get:opencv_caffe.ProposalParameter.post_nms_topn)
return post_nms_topn_;
}
inline void ProposalParameter::set_post_nms_topn(::google::protobuf::uint32 value) {
set_has_post_nms_topn();
post_nms_topn_ = value;
// @@protoc_insertion_point(field_set:opencv_caffe.ProposalParameter.post_nms_topn)
}
// optional float nms_thresh = 8 [default = 0.7];
inline bool ProposalParameter::has_nms_thresh() const {
return (_has_bits_[0] & 0x00000080u) != 0;
}
inline void ProposalParameter::set_has_nms_thresh() {
_has_bits_[0] |= 0x00000080u;
}
inline void ProposalParameter::clear_has_nms_thresh() {
_has_bits_[0] &= ~0x00000080u;
}
inline void ProposalParameter::clear_nms_thresh() {
nms_thresh_ = 0.7f;
clear_has_nms_thresh();
}
inline float ProposalParameter::nms_thresh() const {
// @@protoc_insertion_point(field_get:opencv_caffe.ProposalParameter.nms_thresh)
return nms_thresh_;
}
inline void ProposalParameter::set_nms_thresh(float value) {
set_has_nms_thresh();
nms_thresh_ = value;
// @@protoc_insertion_point(field_set:opencv_caffe.ProposalParameter.nms_thresh)
}
inline const ProposalParameter* ProposalParameter::internal_default_instance() {
return &ProposalParameter_default_instance_.get();
}
#endif // !PROTOBUF_INLINE_NOT_IN_HEADERS
// -------------------------------------------------------------------
@ -29052,6 +29529,8 @@ inline const ROIPoolingParameter* ROIPoolingParameter::internal_default_instance
// -------------------------------------------------------------------
// -------------------------------------------------------------------
// @@protoc_insertion_point(namespace_scope)

@ -547,6 +547,7 @@ message LayerParameter {
optional PowerParameter power_param = 122;
optional PReLUParameter prelu_param = 131;
optional PriorBoxParameter prior_box_param = 150;
optional ProposalParameter proposal_param = 201;
optional PythonParameter python_param = 130;
optional RecurrentParameter recurrent_param = 146;
optional ReductionParameter reduction_param = 136;
@ -854,6 +855,9 @@ message SaveOutputParameter {
message DropoutParameter {
optional float dropout_ratio = 1 [default = 0.5]; // dropout ratio
// Faster-RCNN framework's parameter.
// source: https://github.com/rbgirshick/caffe-fast-rcnn/tree/faster-rcnn
optional bool scale_train = 2 [default = true]; // scale train or test phase
}
// DummyDataLayer fills any number of arbitrarily shaped blobs with random
@ -1618,3 +1622,14 @@ message ROIPoolingParameter {
// input scale to the scale used when pooling
optional float spatial_scale = 3 [default = 1];
}
message ProposalParameter {
optional uint32 feat_stride = 1 [default = 16];
optional uint32 base_size = 2 [default = 16];
optional uint32 min_size = 3 [default = 16];
repeated float ratio = 4;
repeated float scale = 5;
optional uint32 pre_nms_topn = 6 [default = 6000];
optional uint32 post_nms_topn = 7 [default = 300];
optional float nms_thresh = 8 [default = 0.7];
}

@ -122,6 +122,7 @@ void initializeLayerFactory()
CV_DNN_REGISTER_LAYER_CLASS(Normalize, NormalizeBBoxLayer);
CV_DNN_REGISTER_LAYER_CLASS(Shift, ShiftLayer);
CV_DNN_REGISTER_LAYER_CLASS(Padding, PaddingLayer);
CV_DNN_REGISTER_LAYER_CLASS(Proposal, ProposalLayer);
CV_DNN_REGISTER_LAYER_CLASS(Scale, ScaleLayer);
CV_DNN_REGISTER_LAYER_CLASS(LSTM, LSTMLayer);

@ -92,9 +92,25 @@ public:
}
};
Ptr<BlankLayer> BlankLayer::create(const LayerParams& params)
Ptr<Layer> BlankLayer::create(const LayerParams& params)
{
return Ptr<BlankLayer>(new BlankLayerImpl(params));
// In case of Caffe's Dropout layer from Faster-RCNN framework,
// https://github.com/rbgirshick/caffe-fast-rcnn/tree/faster-rcnn
// return Power layer.
if (!params.get<bool>("scale_train", true))
{
float scale = 1 - params.get<float>("dropout_ratio", 0.5f);
CV_Assert(scale > 0);
LayerParams powerParams;
powerParams.name = params.name;
powerParams.type = "Power";
powerParams.set("scale", scale);
return PowerLayer::create(powerParams);
}
else
return Ptr<BlankLayer>(new BlankLayerImpl(params));
}
}

@ -85,6 +85,8 @@ static inline bool SortScorePairDescend(const std::pair<float, T>& pair1,
static inline float caffe_box_overlap(const util::NormalizedBBox& a, const util::NormalizedBBox& b);
static inline float caffe_norm_box_overlap(const util::NormalizedBBox& a, const util::NormalizedBBox& b);
} // namespace
class DetectionOutputLayerImpl : public DetectionOutputLayer
@ -106,6 +108,9 @@ public:
int _topK;
// Whenever predicted bounding boxes are respresented in YXHW instead of XYWH layout.
bool _locPredTransposed;
// It's true whenever predicted bounding boxes and proposals are normalized to [0, 1].
bool _bboxesNormalized;
bool _clip;
enum { _numAxes = 4 };
static const std::string _layerName;
@ -172,6 +177,8 @@ public:
_confidenceThreshold = getParameter<float>(params, "confidence_threshold", 0, false, -FLT_MAX);
_topK = getParameter<int>(params, "top_k", 0, false, -1);
_locPredTransposed = getParameter<bool>(params, "loc_pred_transposed", 0, false, false);
_bboxesNormalized = getParameter<bool>(params, "normalized_bbox", 0, false, true);
_clip = getParameter<bool>(params, "clip", 0, false, false);
getCodeType(params);
@ -182,20 +189,12 @@ public:
setParamsFrom(params);
}
void checkInputs(const std::vector<Mat*> &inputs)
{
for (size_t i = 1; i < inputs.size(); i++)
{
CV_Assert(inputs[i]->size == inputs[0]->size);
}
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
CV_Assert(inputs.size() > 0);
CV_Assert(inputs.size() >= 3);
CV_Assert(inputs[0][0] == inputs[1][0]);
int numPriors = inputs[2][2] / 4;
@ -398,12 +397,28 @@ public:
// Retrieve all prior bboxes
std::vector<util::NormalizedBBox> priorBBoxes;
std::vector<std::vector<float> > priorVariances;
GetPriorBBoxes(priorData, numPriors, priorBBoxes, priorVariances);
GetPriorBBoxes(priorData, numPriors, _bboxesNormalized, priorBBoxes, priorVariances);
// Decode all loc predictions to bboxes
util::NormalizedBBox clipBounds;
if (_clip)
{
CV_Assert(_bboxesNormalized || inputs.size() >= 4);
clipBounds.xmin = clipBounds.ymin = 0.0f;
if (_bboxesNormalized)
clipBounds.xmax = clipBounds.ymax = 1.0f;
else
{
// Input image sizes;
CV_Assert(inputs[3]->dims == 4);
clipBounds.xmax = inputs[3]->size[3] - 1;
clipBounds.ymax = inputs[3]->size[2] - 1;
}
}
DecodeBBoxesAll(allLocationPredictions, priorBBoxes, priorVariances, num,
_shareLocation, _numLocClasses, _backgroundLabelId,
_codeType, _varianceEncodedInTarget, false, allDecodedBBoxes);
_codeType, _varianceEncodedInTarget, _clip, clipBounds,
_bboxesNormalized, allDecodedBBoxes);
}
size_t numKept = 0;
@ -489,8 +504,12 @@ public:
LabelBBox::const_iterator label_bboxes = decodeBBoxes.find(label);
if (label_bboxes == decodeBBoxes.end())
CV_ErrorNoReturn_(cv::Error::StsError, ("Could not find location predictions for label %d", label));
NMSFast_(label_bboxes->second, scores, _confidenceThreshold, _nmsThreshold, 1.0, _topK,
indices[c], util::caffe_box_overlap);
if (_bboxesNormalized)
NMSFast_(label_bboxes->second, scores, _confidenceThreshold, _nmsThreshold, 1.0, _topK,
indices[c], util::caffe_norm_box_overlap);
else
NMSFast_(label_bboxes->second, scores, _confidenceThreshold, _nmsThreshold, 1.0, _topK,
indices[c], util::caffe_box_overlap);
numDetections += indices[c].size();
}
if (_keepTopK > -1 && numDetections > (size_t)_keepTopK)
@ -539,8 +558,7 @@ public:
// **************************************************************
// Compute bbox size
template<bool normalized>
static float BBoxSize(const util::NormalizedBBox& bbox)
static float BBoxSize(const util::NormalizedBBox& bbox, bool normalized)
{
if (bbox.xmax < bbox.xmin || bbox.ymax < bbox.ymin)
{
@ -575,7 +593,8 @@ public:
static void DecodeBBox(
const util::NormalizedBBox& prior_bbox, const std::vector<float>& prior_variance,
const cv::String& code_type,
const bool clip_bbox, const util::NormalizedBBox& bbox,
const bool clip_bbox, const util::NormalizedBBox& clip_bounds,
const bool normalized_bbox, const util::NormalizedBBox& bbox,
util::NormalizedBBox& decode_bbox)
{
float bbox_xmin = variance_encoded_in_target ? bbox.xmin : prior_variance[0] * bbox.xmin;
@ -592,11 +611,16 @@ public:
else if (code_type == "CENTER_SIZE")
{
float prior_width = prior_bbox.xmax - prior_bbox.xmin;
CV_Assert(prior_width > 0);
float prior_height = prior_bbox.ymax - prior_bbox.ymin;
if (!normalized_bbox)
{
prior_width += 1.0f;
prior_height += 1.0f;
}
CV_Assert(prior_width > 0);
CV_Assert(prior_height > 0);
float prior_center_x = (prior_bbox.xmin + prior_bbox.xmax) * .5;
float prior_center_y = (prior_bbox.ymin + prior_bbox.ymax) * .5;
float prior_center_x = prior_bbox.xmin + prior_width * .5;
float prior_center_y = prior_bbox.ymin + prior_height * .5;
float decode_bbox_center_x, decode_bbox_center_y;
float decode_bbox_width, decode_bbox_height;
@ -614,14 +638,14 @@ public:
if (clip_bbox)
{
// Clip the util::NormalizedBBox such that the range for each corner is [0, 1]
decode_bbox.xmin = std::max(std::min(decode_bbox.xmin, 1.f), 0.f);
decode_bbox.ymin = std::max(std::min(decode_bbox.ymin, 1.f), 0.f);
decode_bbox.xmax = std::max(std::min(decode_bbox.xmax, 1.f), 0.f);
decode_bbox.ymax = std::max(std::min(decode_bbox.ymax, 1.f), 0.f);
// Clip the util::NormalizedBBox.
decode_bbox.xmin = std::max(std::min(decode_bbox.xmin, clip_bounds.xmax), clip_bounds.xmin);
decode_bbox.ymin = std::max(std::min(decode_bbox.ymin, clip_bounds.ymax), clip_bounds.ymin);
decode_bbox.xmax = std::max(std::min(decode_bbox.xmax, clip_bounds.xmax), clip_bounds.xmin);
decode_bbox.ymax = std::max(std::min(decode_bbox.ymax, clip_bounds.ymax), clip_bounds.ymin);
}
decode_bbox.clear_size();
decode_bbox.set_size(BBoxSize<true>(decode_bbox));
decode_bbox.set_size(BBoxSize(decode_bbox, normalized_bbox));
}
// Decode a set of bboxes according to a set of prior bboxes
@ -629,7 +653,8 @@ public:
const std::vector<util::NormalizedBBox>& prior_bboxes,
const std::vector<std::vector<float> >& prior_variances,
const cv::String& code_type, const bool variance_encoded_in_target,
const bool clip_bbox, const std::vector<util::NormalizedBBox>& bboxes,
const bool clip_bbox, const util::NormalizedBBox& clip_bounds,
const bool normalized_bbox, const std::vector<util::NormalizedBBox>& bboxes,
std::vector<util::NormalizedBBox>& decode_bboxes)
{
CV_Assert(prior_bboxes.size() == prior_variances.size());
@ -641,13 +666,15 @@ public:
{
for (int i = 0; i < num_bboxes; ++i)
DecodeBBox<true>(prior_bboxes[i], prior_variances[i], code_type,
clip_bbox, bboxes[i], decode_bboxes[i]);
clip_bbox, clip_bounds, normalized_bbox,
bboxes[i], decode_bboxes[i]);
}
else
{
for (int i = 0; i < num_bboxes; ++i)
DecodeBBox<false>(prior_bboxes[i], prior_variances[i], code_type,
clip_bbox, bboxes[i], decode_bboxes[i]);
clip_bbox, clip_bounds, normalized_bbox,
bboxes[i], decode_bboxes[i]);
}
}
@ -658,7 +685,8 @@ public:
const int num, const bool share_location,
const int num_loc_classes, const int background_label_id,
const cv::String& code_type, const bool variance_encoded_in_target,
const bool clip, std::vector<LabelBBox>& all_decode_bboxes)
const bool clip, const util::NormalizedBBox& clip_bounds,
const bool normalized_bbox, std::vector<LabelBBox>& all_decode_bboxes)
{
CV_Assert(all_loc_preds.size() == num);
all_decode_bboxes.clear();
@ -677,8 +705,8 @@ public:
if (label_loc_preds == loc_preds.end())
CV_ErrorNoReturn_(cv::Error::StsError, ("Could not find location predictions for label %d", label));
DecodeBBoxes(prior_bboxes, prior_variances,
code_type, variance_encoded_in_target, clip,
label_loc_preds->second, decode_bboxes[label]);
code_type, variance_encoded_in_target, clip, clip_bounds,
normalized_bbox, label_loc_preds->second, decode_bboxes[label]);
}
}
}
@ -689,7 +717,7 @@ public:
// prior_bboxes: stores all the prior bboxes in the format of util::NormalizedBBox.
// prior_variances: stores all the variances needed by prior bboxes.
static void GetPriorBBoxes(const float* priorData, const int& numPriors,
std::vector<util::NormalizedBBox>& priorBBoxes,
bool normalized_bbox, std::vector<util::NormalizedBBox>& priorBBoxes,
std::vector<std::vector<float> >& priorVariances)
{
priorBBoxes.clear(); priorBBoxes.resize(numPriors);
@ -702,7 +730,7 @@ public:
bbox.ymin = priorData[startIdx + 1];
bbox.xmax = priorData[startIdx + 2];
bbox.ymax = priorData[startIdx + 3];
bbox.set_size(BBoxSize<true>(bbox));
bbox.set_size(BBoxSize(bbox, normalized_bbox));
}
for (int i = 0; i < numPriors; ++i)
@ -805,36 +833,16 @@ public:
const util::NormalizedBBox& bbox2)
{
util::NormalizedBBox intersect_bbox;
if (bbox2.xmin > bbox1.xmax || bbox2.xmax < bbox1.xmin ||
bbox2.ymin > bbox1.ymax || bbox2.ymax < bbox1.ymin)
{
// Return [0, 0, 0, 0] if there is no intersection.
intersect_bbox.xmin = 0;
intersect_bbox.ymin = 0;
intersect_bbox.xmax = 0;
intersect_bbox.ymax = 0;
}
else
{
intersect_bbox.xmin = std::max(bbox1.xmin, bbox2.xmin);
intersect_bbox.ymin = std::max(bbox1.ymin, bbox2.ymin);
intersect_bbox.xmax = std::min(bbox1.xmax, bbox2.xmax);
intersect_bbox.ymax = std::min(bbox1.ymax, bbox2.ymax);
}
intersect_bbox.xmin = std::max(bbox1.xmin, bbox2.xmin);
intersect_bbox.ymin = std::max(bbox1.ymin, bbox2.ymin);
intersect_bbox.xmax = std::min(bbox1.xmax, bbox2.xmax);
intersect_bbox.ymax = std::min(bbox1.ymax, bbox2.ymax);
float intersect_width, intersect_height;
intersect_width = intersect_bbox.xmax - intersect_bbox.xmin;
intersect_height = intersect_bbox.ymax - intersect_bbox.ymin;
if (intersect_width > 0 && intersect_height > 0)
float intersect_size = BBoxSize(intersect_bbox, normalized);
if (intersect_size > 0)
{
if (!normalized)
{
intersect_width++;
intersect_height++;
}
float intersect_size = intersect_width * intersect_height;
float bbox1_size = BBoxSize<true>(bbox1);
float bbox2_size = BBoxSize<true>(bbox2);
float bbox1_size = BBoxSize(bbox1, normalized);
float bbox2_size = BBoxSize(bbox2, normalized);
return intersect_size / (bbox1_size + bbox2_size - intersect_size);
}
else
@ -845,6 +853,11 @@ public:
};
float util::caffe_box_overlap(const util::NormalizedBBox& a, const util::NormalizedBBox& b)
{
return DetectionOutputLayerImpl::JaccardOverlap<false>(a, b);
}
float util::caffe_norm_box_overlap(const util::NormalizedBBox& a, const util::NormalizedBBox& b)
{
return DetectionOutputLayerImpl::JaccardOverlap<true>(a, b);
}

@ -88,6 +88,7 @@ public:
else if (params.has("pooled_w") || params.has("pooled_h") || params.has("spatial_scale"))
{
type = ROI;
computeMaxIdx = false;
}
setParamsFrom(params);
ceilMode = params.get<bool>("ceil_mode", true);
@ -294,24 +295,17 @@ public:
int ystart, yend;
const float *srcData;
int xstartROI = 0;
float roiRatio = 0;
if (poolingType == ROI)
{
const float *roisData = rois->ptr<float>(n);
int ystartROI = scaleAndRoundRoi(roisData[2], spatialScale);
int yendROI = scaleAndRoundRoi(roisData[4], spatialScale);
int roiHeight = std::max(yendROI - ystartROI + 1, 1);
roiRatio = (float)roiHeight / height;
float roiRatio = (float)roiHeight / height;
ystart = ystartROI + y0 * roiRatio;
yend = ystartROI + std::ceil((y0 + 1) * roiRatio);
xstartROI = scaleAndRoundRoi(roisData[1], spatialScale);
int xendROI = scaleAndRoundRoi(roisData[3], spatialScale);
int roiWidth = std::max(xendROI - xstartROI + 1, 1);
roiRatio = (float)roiWidth / width;
CV_Assert(roisData[0] < src->size[0]);
srcData = src->ptr<float>(roisData[0], c);
}
@ -331,22 +325,12 @@ public:
ofs0 += delta;
int x1 = x0 + delta;
if( poolingType == MAX || poolingType == ROI)
if( poolingType == MAX)
for( ; x0 < x1; x0++ )
{
int xstart, xend;
if (poolingType == ROI)
{
xstart = xstartROI + x0 * roiRatio;
xend = xstartROI + std::ceil((x0 + 1) * roiRatio);
}
else
{
xstart = x0 * stride_w - pad_w;
xend = xstart + kernel_w;
}
int xstart = x0 * stride_w - pad_w;
int xend = min(xstart + kernel_w, inp_width);
xstart = max(xstart, 0);
xend = min(xend, inp_width);
if (xstart >= xend || ystart >= yend)
{
dstData[x0] = 0;
@ -493,7 +477,7 @@ public:
}
}
}
else
else if (poolingType == AVE)
{
for( ; x0 < x1; x0++ )
{
@ -543,6 +527,37 @@ public:
}
}
}
else // ROI
{
const float *roisData = rois->ptr<float>(n);
int xstartROI = scaleAndRoundRoi(roisData[1], spatialScale);
int xendROI = scaleAndRoundRoi(roisData[3], spatialScale);
int roiWidth = std::max(xendROI - xstartROI + 1, 1);
float roiRatio = (float)roiWidth / width;
for( ; x0 < x1; x0++ )
{
int xstart = xstartROI + x0 * roiRatio;
int xend = xstartROI + std::ceil((x0 + 1) * roiRatio);
xstart = max(xstart, 0);
xend = min(xend, inp_width);
if (xstart >= xend || ystart >= yend)
{
dstData[x0] = 0;
if (compMaxIdx && dstMaskData)
dstMaskData[x0] = -1;
continue;
}
float max_val = -FLT_MAX;
for (int y = ystart; y < yend; ++y)
for (int x = xstart; x < xend; ++x)
{
const int index = y * inp_width + x;
float val = srcData[index];
max_val = std::max(max_val, val);
}
dstData[x0] = max_val;
}
}
}
}
};

@ -183,6 +183,7 @@ public:
_minSize = getParameter<float>(params, "min_size", 0, false, 0);
_flip = getParameter<bool>(params, "flip", 0, false, true);
_clip = getParameter<bool>(params, "clip", 0, false, true);
_bboxesNormalized = getParameter<bool>(params, "normalized_bbox", 0, false, true);
_scales.clear();
_aspectRatios.clear();
@ -251,7 +252,7 @@ public:
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
CV_Assert(inputs.size() == 2);
CV_Assert(!inputs.empty());
int layerHeight = inputs[0][2];
int layerWidth = inputs[0][3];
@ -282,6 +283,8 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_Assert(inputs.size() == 2);
size_t real_numPriors = _numPriors / pow(2, _offsetsX.size() - 1);
if (_scales.empty())
_scales.resize(real_numPriors, 1.0f);
@ -323,7 +326,8 @@ public:
{
float center_x = (w + _offsetsX[i]) * stepX;
float center_y = (h + _offsetsY[i]) * stepY;
outputPtr = addPrior(center_x, center_y, _boxWidth, _boxHeight, _imageWidth, _imageHeight, outputPtr);
outputPtr = addPrior(center_x, center_y, _boxWidth, _boxHeight, _imageWidth,
_imageHeight, _bboxesNormalized, outputPtr);
}
if (_maxSize > 0)
{
@ -333,7 +337,8 @@ public:
{
float center_x = (w + _offsetsX[i]) * stepX;
float center_y = (h + _offsetsY[i]) * stepY;
outputPtr = addPrior(center_x, center_y, _boxWidth, _boxHeight, _imageWidth, _imageHeight, outputPtr);
outputPtr = addPrior(center_x, center_y, _boxWidth, _boxHeight, _imageWidth,
_imageHeight, _bboxesNormalized, outputPtr);
}
}
@ -349,7 +354,8 @@ public:
{
float center_x = (w + _offsetsX[i]) * stepX;
float center_y = (h + _offsetsY[i]) * stepY;
outputPtr = addPrior(center_x, center_y, _boxWidth, _boxHeight, _imageWidth, _imageHeight, outputPtr);
outputPtr = addPrior(center_x, center_y, _boxWidth, _boxHeight, _imageWidth,
_imageHeight, _bboxesNormalized, outputPtr);
}
}
@ -363,7 +369,8 @@ public:
{
float center_x = (w + _offsetsX[j]) * stepX;
float center_y = (h + _offsetsY[j]) * stepY;
outputPtr = addPrior(center_x, center_y, _boxWidth, _boxHeight, _imageWidth, _imageHeight, outputPtr);
outputPtr = addPrior(center_x, center_y, _boxWidth, _boxHeight, _imageWidth,
_imageHeight, _bboxesNormalized, outputPtr);
}
}
}
@ -437,6 +444,7 @@ private:
bool _flip;
bool _clip;
bool _explicitSizes;
bool _bboxesNormalized;
size_t _numPriors;
@ -444,12 +452,22 @@ private:
static const std::string _layerName;
static float* addPrior(float center_x, float center_y, float width, float height,
float imgWidth, float imgHeight, float* dst)
float imgWidth, float imgHeight, bool normalized, float* dst)
{
dst[0] = (center_x - width * 0.5f) / imgWidth; // xmin
dst[1] = (center_y - height * 0.5f) / imgHeight; // ymin
dst[2] = (center_x + width * 0.5f) / imgWidth; // xmax
dst[3] = (center_y + height * 0.5f) / imgHeight; // ymax
if (normalized)
{
dst[0] = (center_x - width * 0.5f) / imgWidth; // xmin
dst[1] = (center_y - height * 0.5f) / imgHeight; // ymin
dst[2] = (center_x + width * 0.5f) / imgWidth; // xmax
dst[3] = (center_y + height * 0.5f) / imgHeight; // ymax
}
else
{
dst[0] = center_x - width * 0.5f; // xmin
dst[1] = center_y - height * 0.5f; // ymin
dst[2] = center_x + width * 0.5f - 1.0f; // xmax
dst[3] = center_y + height * 0.5f - 1.0f; // ymax
}
return dst + 4;
}
};

@ -0,0 +1,245 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "../precomp.hpp"
#include "layers_common.hpp"
namespace cv { namespace dnn {
class ProposalLayerImpl : public ProposalLayer
{
public:
ProposalLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
uint32_t featStride = params.get<uint32_t>("feat_stride", 16);
uint32_t baseSize = params.get<uint32_t>("base_size", 16);
// uint32_t minSize = params.get<uint32_t>("min_size", 16);
uint32_t keepTopBeforeNMS = params.get<uint32_t>("pre_nms_topn", 6000);
keepTopAfterNMS = params.get<uint32_t>("post_nms_topn", 300);
float nmsThreshold = params.get<float>("nms_thresh", 0.7);
DictValue ratios = params.get("ratio");
DictValue scales = params.get("scale");
{
LayerParams lp;
lp.set("step", featStride);
lp.set("flip", false);
lp.set("clip", false);
lp.set("normalized_bbox", false);
// Unused values.
float variance[] = {0.1f, 0.1f, 0.2f, 0.2f};
lp.set("variance", DictValue::arrayReal<float*>(&variance[0], 4));
// Compute widths and heights explicitly.
std::vector<float> widths, heights;
widths.reserve(ratios.size() * scales.size());
heights.reserve(ratios.size() * scales.size());
for (int i = 0; i < ratios.size(); ++i)
{
float ratio = ratios.get<float>(i);
for (int j = 0; j < scales.size(); ++j)
{
float scale = scales.get<float>(j);
float width = std::floor(baseSize / sqrt(ratio) + 0.5f);
float height = std::floor(width * ratio + 0.5f);
widths.push_back(scale * width);
heights.push_back(scale * height);
}
}
lp.set("width", DictValue::arrayReal<float*>(&widths[0], widths.size()));
lp.set("height", DictValue::arrayReal<float*>(&heights[0], heights.size()));
priorBoxLayer = PriorBoxLayer::create(lp);
}
{
int order[] = {0, 2, 3, 1};
LayerParams lp;
lp.set("order", DictValue::arrayInt<int*>(&order[0], 4));
deltasPermute = PermuteLayer::create(lp);
scoresPermute = PermuteLayer::create(lp);
}
{
LayerParams lp;
lp.set("code_type", "CENTER_SIZE");
lp.set("num_classes", 1);
lp.set("share_location", true);
lp.set("background_label_id", 1); // We won't pass background scores so set it out of range [0, num_classes)
lp.set("variance_encoded_in_target", true);
lp.set("keep_top_k", keepTopAfterNMS);
lp.set("top_k", keepTopBeforeNMS);
lp.set("nms_threshold", nmsThreshold);
lp.set("normalized_bbox", false);
lp.set("clip", true);
detectionOutputLayer = DetectionOutputLayer::create(lp);
}
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
// We need to allocate the following blobs:
// - output priors from PriorBoxLayer
// - permuted priors
// - permuted scores
CV_Assert(inputs.size() == 3);
const MatShape& scores = inputs[0];
const MatShape& bboxDeltas = inputs[1];
std::vector<MatShape> layerInputs, layerOutputs, layerInternals;
// Prior boxes layer.
layerInputs.assign(1, scores);
priorBoxLayer->getMemoryShapes(layerInputs, 1, layerOutputs, layerInternals);
CV_Assert(layerOutputs.size() == 1);
CV_Assert(layerInternals.empty());
internals.push_back(layerOutputs[0]);
// Scores permute layer.
CV_Assert(scores.size() == 4);
MatShape objectScores = scores;
CV_Assert((scores[1] & 1) == 0); // Number of channels is even.
objectScores[1] /= 2;
layerInputs.assign(1, objectScores);
scoresPermute->getMemoryShapes(layerInputs, 1, layerOutputs, layerInternals);
CV_Assert(layerOutputs.size() == 1);
CV_Assert(layerInternals.empty());
internals.push_back(layerOutputs[0]);
// BBox predictions permute layer.
layerInputs.assign(1, bboxDeltas);
deltasPermute->getMemoryShapes(layerInputs, 1, layerOutputs, layerInternals);
CV_Assert(layerOutputs.size() == 1);
CV_Assert(layerInternals.empty());
internals.push_back(layerOutputs[0]);
outputs.resize(1, shape(keepTopAfterNMS, 5));
return false;
}
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs)
{
std::vector<Mat*> layerInputs;
std::vector<Mat> layerOutputs;
// Scores permute layer.
Mat scores = getObjectScores(*inputs[0]);
layerInputs.assign(1, &scores);
layerOutputs.assign(1, Mat(shape(scores.size[0], scores.size[2],
scores.size[3], scores.size[1]), CV_32FC1));
scoresPermute->finalize(layerInputs, layerOutputs);
// BBox predictions permute layer.
Mat* bboxDeltas = inputs[1];
CV_Assert(bboxDeltas->dims == 4);
layerInputs.assign(1, bboxDeltas);
layerOutputs.assign(1, Mat(shape(bboxDeltas->size[0], bboxDeltas->size[2],
bboxDeltas->size[3], bboxDeltas->size[1]), CV_32FC1));
deltasPermute->finalize(layerInputs, layerOutputs);
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_Assert(inputs.size() == 3);
CV_Assert(internals.size() == 3);
const Mat& scores = *inputs[0];
const Mat& bboxDeltas = *inputs[1];
const Mat& imInfo = *inputs[2];
Mat& priorBoxes = internals[0];
Mat& permuttedScores = internals[1];
Mat& permuttedDeltas = internals[2];
CV_Assert(imInfo.total() >= 2);
// We've chosen the smallest data type because we need just a shape from it.
fakeImageBlob.create(shape(1, 1, imInfo.at<float>(0), imInfo.at<float>(1)), CV_8UC1);
// Generate prior boxes.
std::vector<Mat> layerInputs(2), layerOutputs(1, priorBoxes);
layerInputs[0] = scores;
layerInputs[1] = fakeImageBlob;
priorBoxLayer->forward(layerInputs, layerOutputs, internals);
// Permute scores.
layerInputs.assign(1, getObjectScores(scores));
layerOutputs.assign(1, permuttedScores);
scoresPermute->forward(layerInputs, layerOutputs, internals);
// Permute deltas.
layerInputs.assign(1, bboxDeltas);
layerOutputs.assign(1, permuttedDeltas);
deltasPermute->forward(layerInputs, layerOutputs, internals);
// Sort predictions by scores and apply NMS. DetectionOutputLayer allocates
// output internally because of different number of objects after NMS.
layerInputs.resize(4);
layerInputs[0] = permuttedDeltas;
layerInputs[1] = permuttedScores;
layerInputs[2] = priorBoxes;
layerInputs[3] = fakeImageBlob;
layerOutputs[0] = Mat();
detectionOutputLayer->forward(layerInputs, layerOutputs, internals);
// DetectionOutputLayer produces 1x1xNx7 output where N might be less or
// equal to keepTopAfterNMS. We fill the rest by zeros.
const int numDets = layerOutputs[0].total() / 7;
CV_Assert(numDets <= keepTopAfterNMS);
Mat src = layerOutputs[0].reshape(1, numDets).colRange(3, 7);
Mat dst = outputs[0].rowRange(0, numDets);
src.copyTo(dst.colRange(1, 5));
dst.col(0).setTo(0); // First column are batch ids. Keep it zeros too.
if (numDets < keepTopAfterNMS)
outputs[0].rowRange(numDets, keepTopAfterNMS).setTo(0);
}
private:
// A first half of channels are background scores. We need only a second one.
static Mat getObjectScores(const Mat& m)
{
CV_Assert(m.dims == 4);
CV_Assert(m.size[0] == 1);
int channels = m.size[1];
CV_Assert((channels & 1) == 0);
return slice(m, Range::all(), Range(channels / 2, channels));
}
Ptr<PriorBoxLayer> priorBoxLayer;
Ptr<DetectionOutputLayer> detectionOutputLayer;
Ptr<PermuteLayer> deltasPermute;
Ptr<PermuteLayer> scoresPermute;
uint32_t keepTopAfterNMS;
Mat fakeImageBlob;
};
Ptr<ProposalLayer> ProposalLayer::create(const LayerParams& params)
{
return Ptr<ProposalLayer>(new ProposalLayerImpl(params));
}
} // namespace dnn
} // namespace cv

@ -576,4 +576,27 @@ TEST(Layer_Test_ROIPooling, Accuracy)
normAssert(out, ref);
}
TEST(Layer_Test_FasterRCNN_Proposal, Accuracy)
{
Net net = readNetFromCaffe(_tf("net_faster_rcnn_proposal.prototxt"));
Mat scores = blobFromNPY(_tf("net_faster_rcnn_proposal.scores.npy"));
Mat deltas = blobFromNPY(_tf("net_faster_rcnn_proposal.deltas.npy"));
Mat imInfo = (Mat_<float>(1, 3) << 600, 800, 1.6f);
Mat ref = blobFromNPY(_tf("net_faster_rcnn_proposal.npy"));
net.setInput(scores, "rpn_cls_prob_reshape");
net.setInput(deltas, "rpn_bbox_pred");
net.setInput(imInfo, "im_info");
Mat out = net.forward();
const int numDets = ref.size[0];
EXPECT_LE(numDets, out.size[0]);
normAssert(out.rowRange(0, numDets), ref);
if (numDets < out.size[0])
EXPECT_EQ(countNonZero(out.rowRange(numDets, out.size[0])), 0);
}
}

@ -0,0 +1,148 @@
// Faster-RCNN models use custom layer called 'Proposal' written in Python. To
// map it into OpenCV's layer replace a layer node with [type: 'Python'] to the
// following definition:
// layer {
// name: 'proposal'
// type: 'Proposal'
// bottom: 'rpn_cls_prob_reshape'
// bottom: 'rpn_bbox_pred'
// bottom: 'im_info'
// top: 'rois'
// proposal_param {
// ratio: 0.5
// ratio: 1.0
// ratio: 2.0
// scale: 8
// scale: 16
// scale: 32
// }
// }
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/dnn/all_layers.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
using namespace dnn;
const char* about = "This sample is used to run Faster-RCNN object detection "
"models from https://github.com/rbgirshick/py-faster-rcnn with OpenCV.";
const char* keys =
"{ help h | | print help message }"
"{ proto p | | path to .prototxt }"
"{ model m | | path to .caffemodel }"
"{ image i | | path to input image }"
"{ conf c | 0.8 | minimal confidence }";
const char* classNames[] = {
"__background__",
"aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair",
"cow", "diningtable", "dog", "horse",
"motorbike", "person", "pottedplant",
"sheep", "sofa", "train", "tvmonitor"
};
static const int kInpWidth = 800;
static const int kInpHeight = 600;
int main(int argc, char** argv)
{
// Parse command line arguments.
CommandLineParser parser(argc, argv, keys);
if (argc == 1 || parser.has("help"))
{
std::cout << about << std::endl;
return 0;
}
String protoPath = parser.get<String>("proto");
String modelPath = parser.get<String>("model");
String imagePath = parser.get<String>("image");
float confThreshold = parser.get<float>("conf");
CV_Assert(!protoPath.empty(), !modelPath.empty(), !imagePath.empty());
// Load a model.
Net net = readNetFromCaffe(protoPath, modelPath);
// Create a preprocessing layer that does final bounding boxes applying predicted
// deltas to objects locations proposals and doing non-maximum suppression over it.
LayerParams lp;
lp.set("code_type", "CENTER_SIZE"); // An every bounding box is [xmin, ymin, xmax, ymax]
lp.set("num_classes", 21);
lp.set("share_location", (int)false); // Separate predictions for different classes.
lp.set("background_label_id", 0);
lp.set("variance_encoded_in_target", (int)true);
lp.set("keep_top_k", 100);
lp.set("nms_threshold", 0.3);
lp.set("normalized_bbox", (int)false);
Ptr<Layer> detectionOutputLayer = DetectionOutputLayer::create(lp);
Mat img = imread(imagePath);
resize(img, img, Size(kInpWidth, kInpHeight));
Mat blob = blobFromImage(img, 1.0, Size(), Scalar(102.9801, 115.9465, 122.7717), false, false);
Mat imInfo = (Mat_<float>(1, 3) << img.rows, img.cols, 1.6f);
net.setInput(blob, "data");
net.setInput(imInfo, "im_info");
std::vector<Mat> outs;
std::vector<String> outNames(3);
outNames[0] = "proposal";
outNames[1] = "bbox_pred";
outNames[2] = "cls_prob";
net.forward(outs, outNames);
Mat proposals = outs[0].colRange(1, 5).clone(); // Only last 4 columns.
Mat& deltas = outs[1];
Mat& scores = outs[2];
// Reshape proposals from Nx4 to 1x1xN*4
std::vector<int> shape(3, 1);
shape[2] = (int)proposals.total();
proposals = proposals.reshape(1, shape);
// Run postprocessing layer.
std::vector<Mat> layerInputs(3), layerOutputs(1), layerInternals;
layerInputs[0] = deltas.reshape(1, 1);
layerInputs[1] = scores.reshape(1, 1);
layerInputs[2] = proposals;
detectionOutputLayer->forward(layerInputs, layerOutputs, layerInternals);
// Draw detections.
Mat detections = layerOutputs[0];
const float* data = (float*)detections.data;
for (size_t i = 0; i < detections.total(); i += 7)
{
// An every detection is a vector [id, classId, confidence, left, top, right, bottom]
float confidence = data[i + 2];
if (confidence > confThreshold)
{
int classId = (int)data[i + 1];
int left = max(0, min((int)data[i + 3], img.cols - 1));
int top = max(0, min((int)data[i + 4], img.rows - 1));
int right = max(0, min((int)data[i + 5], img.cols - 1));
int bottom = max(0, min((int)data[i + 6], img.rows - 1));
// Draw a bounding box.
rectangle(img, Point(left, top), Point(right, bottom), Scalar(0, 255, 0));
// Put a label with a class name and confidence.
String label = cv::format("%s, %.3f", classNames[classId], confidence);
int baseLine;
Size labelSize = cv::getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = max(top, labelSize.height);
rectangle(img, Point(left, top - labelSize.height),
Point(left + labelSize.width, top + baseLine),
Scalar(255, 255, 255), FILLED);
putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0));
}
}
imshow("frame", img);
waitKey();
return 0;
}
Loading…
Cancel
Save