mirror of https://github.com/opencv/opencv.git
parent
c49b23d4dd
commit
6169b1dc90
14 changed files with 1714 additions and 0 deletions
@ -0,0 +1,8 @@ |
||||
A demo of the Java wrapper for OpenCV with two examples: 1) feature detection and matching and 2) face detection. The examples are coded in Scala and Java. Anyone familiar with Java should be able to read the Scala examples. Please feel free to contribute code examples in Scala or Java, or any JVM language. |
||||
|
||||
To run the examples: |
||||
1) Install OpenCV and copy the OpenCV jar to lib/. This jar must match the native libraries installed in your system. If this isn't the case, you may get a java.lang.UnsatisfiedLinkError at runtime. |
||||
|
||||
3) Go to the root directory and type "sbt/sbt run". This should generate images in your current directory. |
||||
|
||||
MIT License |
@ -0,0 +1,22 @@ |
||||
import sbt._ |
||||
import Keys._ |
||||
|
||||
object OpenCVJavaDemoBuild extends Build { |
||||
def scalaSettings = Seq( |
||||
scalaVersion := "2.10.0", |
||||
scalacOptions ++= Seq( |
||||
"-optimize", |
||||
"-unchecked", |
||||
"-deprecation" |
||||
) |
||||
) |
||||
|
||||
def buildSettings = |
||||
Project.defaultSettings ++ |
||||
scalaSettings |
||||
|
||||
lazy val root = { |
||||
val settings = buildSettings ++ Seq(name := "OpenCVJavaDemo") |
||||
Project(id = "OpenCVJavaDemo", base = file("."), settings = settings) |
||||
} |
||||
} |
@ -0,0 +1,2 @@ |
||||
addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "2.1.0") |
||||
|
@ -0,0 +1 @@ |
||||
java -Xms512M -Xmx1536M -Xss1M -XX:+CMSClassUnloadingEnabled -XX:MaxPermSize=384M -jar `dirname $0`/sbt-launch.jar "$@" |
Binary file not shown.
@ -0,0 +1,44 @@ |
||||
import org.opencv.core.Core; |
||||
import org.opencv.core.Mat; |
||||
import org.opencv.core.MatOfRect; |
||||
import org.opencv.core.Point; |
||||
import org.opencv.core.Rect; |
||||
import org.opencv.core.Scalar; |
||||
import org.opencv.highgui.Highgui; |
||||
import org.opencv.objdetect.CascadeClassifier; |
||||
|
||||
/* |
||||
* Detects faces in an image, draws boxes around them, and writes the results |
||||
* to "faceDetection.png". |
||||
*/ |
||||
public class DetectFaceDemo { |
||||
public void run() { |
||||
System.out.println("\nRunning DetectFaceDemo"); |
||||
|
||||
// Create a face detector from the cascade file in the resources
|
||||
// directory.
|
||||
CascadeClassifier faceDetector = new CascadeClassifier(getClass() |
||||
.getResource("/lbpcascade_frontalface.xml").getPath()); |
||||
Mat image = Highgui.imread(getClass().getResource( |
||||
"/AverageMaleFace.jpg").getPath()); |
||||
|
||||
// Detect faces in the image.
|
||||
// MatOfRect is a special container class for Rect.
|
||||
MatOfRect faceDetections = new MatOfRect(); |
||||
faceDetector.detectMultiScale(image, faceDetections); |
||||
|
||||
System.out.println(String.format("Detected %s faces", |
||||
faceDetections.toArray().length)); |
||||
|
||||
// Draw a bounding box around each face.
|
||||
for (Rect rect : faceDetections.toArray()) { |
||||
Core.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x |
||||
+ rect.width, rect.y + rect.height), new Scalar(0, 255, 0)); |
||||
} |
||||
|
||||
// Save the visualized detection.
|
||||
String filename = "faceDetection.png"; |
||||
System.out.println(String.format("Writing %s", filename)); |
||||
Highgui.imwrite(filename, image); |
||||
} |
||||
} |
After Width: | Height: | Size: 15 KiB |
After Width: | Height: | Size: 1.5 MiB |
After Width: | Height: | Size: 1.5 MiB |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,20 @@ |
||||
/* |
||||
* The main runner for the Java demos. |
||||
* Demos whose name begins with "Scala" are written in the Scala language, |
||||
* demonstrating the generic nature of the interface. |
||||
* The other demos are in Java. |
||||
* Currently, all demos are run, sequentially. |
||||
* |
||||
* You're invited to submit your own examples, in any JVM language of |
||||
* your choosing so long as you can get them to build. |
||||
*/ |
||||
object Main extends App { |
||||
// We must load the native library before using any OpenCV functions. |
||||
// You must load this library _exactly once_ per Java invocation. |
||||
// If you load it more than once, you will get a java.lang.UnsatisfiedLinkError. |
||||
System.loadLibrary("opencv_java") |
||||
|
||||
ScalaCorrespondenceMatchingDemo.run() |
||||
ScalaDetectFaceDemo.run() |
||||
new DetectFaceDemo().run() |
||||
} |
@ -0,0 +1,69 @@ |
||||
import org.opencv.highgui.Highgui |
||||
import org.opencv.features2d.DescriptorExtractor |
||||
import org.opencv.features2d.Features2d |
||||
import org.opencv.core.MatOfKeyPoint |
||||
import org.opencv.core.Mat |
||||
import org.opencv.features2d.FeatureDetector |
||||
import org.opencv.features2d.DescriptorMatcher |
||||
import org.opencv.core.MatOfDMatch |
||||
import reflect._ |
||||
|
||||
/* |
||||
* Finds corresponding points between a pair of images using local descriptors. |
||||
* The correspondences are visualized in the image "scalaCorrespondences.png", |
||||
* which is written to disk. |
||||
*/ |
||||
object ScalaCorrespondenceMatchingDemo { |
||||
def run() { |
||||
println(s"\nRunning ${classTag[this.type].toString.replace("$", "")}") |
||||
|
||||
// Detects keypoints and extracts descriptors in a given image of type Mat. |
||||
def detectAndExtract(mat: Mat) = { |
||||
// A special container class for KeyPoint. |
||||
val keyPoints = new MatOfKeyPoint |
||||
// We're using the SURF detector. |
||||
val detector = FeatureDetector.create(FeatureDetector.SURF) |
||||
detector.detect(mat, keyPoints) |
||||
|
||||
println(s"There were ${keyPoints.toArray.size} KeyPoints detected") |
||||
|
||||
// Let's just use the best KeyPoints. |
||||
val sorted = keyPoints.toArray.sortBy(_.response).reverse.take(50) |
||||
// There isn't a constructor that takes Array[KeyPoint], so we unpack |
||||
// the array and use the constructor that can take any number of |
||||
// arguments. |
||||
val bestKeyPoints: MatOfKeyPoint = new MatOfKeyPoint(sorted: _*) |
||||
|
||||
// We're using the SURF descriptor. |
||||
val extractor = DescriptorExtractor.create(DescriptorExtractor.SURF) |
||||
val descriptors = new Mat |
||||
extractor.compute(mat, bestKeyPoints, descriptors) |
||||
|
||||
println(s"${descriptors.rows} descriptors were extracted, each with dimension ${descriptors.cols}") |
||||
|
||||
(bestKeyPoints, descriptors) |
||||
} |
||||
|
||||
// Load the images from the |resources| directory. |
||||
val leftImage = Highgui.imread(getClass.getResource("/img1.bmp").getPath) |
||||
val rightImage = Highgui.imread(getClass.getResource("/img2.bmp").getPath) |
||||
|
||||
// Detect KeyPoints and extract descriptors. |
||||
val (leftKeyPoints, leftDescriptors) = detectAndExtract(leftImage) |
||||
val (rightKeyPoints, rightDescriptors) = detectAndExtract(rightImage) |
||||
|
||||
// Match the descriptors. |
||||
val matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE) |
||||
// A special container class for DMatch. |
||||
val dmatches = new MatOfDMatch |
||||
// The backticks are because "match" is a keyword in Scala. |
||||
matcher.`match`(leftDescriptors, rightDescriptors, dmatches) |
||||
|
||||
// Visualize the matches and save the visualization. |
||||
val correspondenceImage = new Mat |
||||
Features2d.drawMatches(leftImage, leftKeyPoints, rightImage, rightKeyPoints, dmatches, correspondenceImage) |
||||
val filename = "scalaCorrespondences.png" |
||||
println(s"Writing ${filename}") |
||||
assert(Highgui.imwrite(filename, correspondenceImage)) |
||||
} |
||||
} |
@ -0,0 +1,43 @@ |
||||
import org.opencv.core.Core |
||||
import org.opencv.core.MatOfRect |
||||
import org.opencv.core.Point |
||||
import org.opencv.core.Scalar |
||||
import org.opencv.highgui.Highgui |
||||
import org.opencv.objdetect.CascadeClassifier |
||||
import reflect._ |
||||
|
||||
/* |
||||
* Detects faces in an image, draws boxes around them, and writes the results |
||||
* to "scalaFaceDetection.png". |
||||
*/ |
||||
object ScalaDetectFaceDemo { |
||||
def run() { |
||||
println(s"\nRunning ${classTag[this.type].toString.replace("$", "")}") |
||||
|
||||
// Create a face detector from the cascade file in the resources directory. |
||||
val faceDetector = new CascadeClassifier(getClass.getResource("/lbpcascade_frontalface.xml").getPath) |
||||
val image = Highgui.imread(getClass.getResource("/AverageMaleFace.jpg").getPath) |
||||
|
||||
// Detect faces in the image. |
||||
// MatOfRect is a special container class for Rect. |
||||
val faceDetections = new MatOfRect |
||||
faceDetector.detectMultiScale(image, faceDetections) |
||||
|
||||
println(s"Detected ${faceDetections.toArray.size} faces") |
||||
|
||||
// Draw a bounding box around each face. |
||||
for (rect <- faceDetections.toArray) { |
||||
Core.rectangle( |
||||
image, |
||||
new Point(rect.x, rect.y), |
||||
new Point(rect.x + rect.width, |
||||
rect.y + rect.height), |
||||
new Scalar(0, 255, 0)) |
||||
} |
||||
|
||||
// Save the visualized detection. |
||||
val filename = "scalaFaceDetection.png" |
||||
println(s"Writing ${filename}") |
||||
assert(Highgui.imwrite(filename, image)) |
||||
} |
||||
} |
Loading…
Reference in new issue