kepler specific version

pull/158/head
marina.kolpakova 12 years ago
parent 0314e0e5d7
commit 612a258506
  1. 130
      modules/gpu/src/cuda/isf-sc.cu

@ -91,9 +91,9 @@ namespace icf {
float relScale = level.relScale;
float farea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
dprintf("feature %d box %d %d %d %d\n", (node.threshold >> 28), scaledRect.x, scaledRect.y,
dprintf("%d: feature %d box %d %d %d %d\n",threadIdx.x, (node.threshold >> 28), scaledRect.x, scaledRect.y,
scaledRect.z, scaledRect.w);
dprintf("rescale: %f [%f %f] selected %f\n",level.relScale, level.scaling[0], level.scaling[1],
dprintf("%d: rescale: %f [%f %f] selected %f\n",threadIdx.x, level.relScale, level.scaling[0], level.scaling[1],
level.scaling[(node.threshold >> 28) > 6]);
// rescale
@ -107,13 +107,13 @@ namespace icf {
const float expected_new_area = farea * relScale * relScale;
float approx = sarea / expected_new_area;
dprintf("new rect: %d box %d %d %d %d rel areas %f %f\n", (node.threshold >> 28),
dprintf("%d: new rect: %d box %d %d %d %d rel areas %f %f\n",threadIdx.x, (node.threshold >> 28),
scaledRect.x, scaledRect.y, scaledRect.z, scaledRect.w, farea * relScale * relScale, sarea);
float rootThreshold = (node.threshold & 0x0FFFFFFFU) * approx;
rootThreshold *= level.scaling[(node.threshold >> 28) > 6];
dprintf("approximation %f %d -> %f %f\n", approx, (node.threshold & 0x0FFFFFFFU), rootThreshold,
dprintf("%d: approximation %f %d -> %f %f\n",threadIdx.x, approx, (node.threshold & 0x0FFFFFFFU), rootThreshold,
level.scaling[(node.threshold >> 28) > 6]);
return rootThreshold;
@ -122,73 +122,137 @@ namespace icf {
__device__ __forceinline__ int get(const int x, int y, uchar4 area)
{
dprintf("feature box %d %d %d %d ", area.x, area.y, area.z, area.w);
dprintf("extract feature for: [%d %d] [%d %d] [%d %d] [%d %d]\n",
dprintf("%d: feature box %d %d %d %d\n",threadIdx.x, area.x, area.y, area.z, area.w);
dprintf("%d: extract feature for: [%d %d] [%d %d] [%d %d] [%d %d]\n",threadIdx.x,
x + area.x, y + area.y, x + area.z, y + area.y, x + area.z,y + area.w,
x + area.x, y + area.w);
dprintf("at point %d %d with offset %d\n", x, y, 0);
dprintf("%d: at point %d %d with offset %d\n", x, y, 0);
int a = tex2D(thogluv, x + area.x, y + area.y);
int b = tex2D(thogluv, x + area.z, y + area.y);
int c = tex2D(thogluv, x + area.z, y + area.w);
int d = tex2D(thogluv, x + area.x, y + area.w);
dprintf(" retruved integral values: %d %d %d %d\n", a, b, c, d);
dprintf("%d retruved integral values: %d %d %d %d\n",threadIdx.x, a, b, c, d);
return (a - b + c - d);
}
__global__ void test_kernel(const Level* levels, const Octave* octaves, const float* stages,
// __global__ void test_kernel(const Level* levels, const Octave* octaves, const float* stages,
// const Node* nodes, const float* leaves, Detection* objects, const uint ndetections, uint* ctr)
// {
// const int y = blockIdx.y * blockDim.y + threadIdx.y;
// const int x = blockIdx.x * blockDim.x + threadIdx.x;
// Level level = levels[blockIdx.z];
// // if (blockIdx.z != 31) return;
// if(x >= level.workRect.x || y >= level.workRect.y) return;
// Octave octave = octaves[level.octave];
// int st = octave.index * octave.stages;
// const int stEnd = st + 1000;//octave.stages;
// float confidence = 0.f;
// // #pragma unroll 2
// for(; st < stEnd; ++st)
// {
// dprintf("\n\nstage: %d\n", st);
// const int nId = st * 3;
// Node node = nodes[nId];
// dprintf("Node: [%d %d %d %d] %d %d\n", node.rect.x, node.rect.y, node.rect.z, node.rect.w,
// node.threshold >> 28, node.threshold & 0x0FFFFFFFU);
// float threshold = rescale(level, node.rect, node);
// int sum = get(x, y + (node.threshold >> 28) * 121, node.rect);
// dprintf("Node: [%d %d %d %d] %f\n", node.rect.x, node.rect.y, node.rect.z,
// node.rect.w, threshold);
// int next = 1 + (int)(sum >= threshold);
// dprintf("go: %d (%d >= %f)\n\n" ,next, sum, threshold);
// node = nodes[nId + next];
// threshold = rescale(level, node.rect, node);
// sum = get(x, y + (node.threshold >> 28) * 121, node.rect);
// const int lShift = (next - 1) * 2 + (int)(sum >= threshold);
// float impact = leaves[st * 4 + lShift];
// confidence += impact;
// if (confidence <= stages[st]) st = stEnd + 10;
// dprintf("decided: %d (%d >= %f) %d %f\n\n" ,next, sum, threshold, lShift, impact);
// dprintf("extracted stage: %f\n", stages[st]);
// dprintf("computed score: %f\n\n", confidence);
// }
// if(st == stEnd)
// {
// int idx = atomicInc(ctr, ndetections);
// // store detection
// objects[idx] = Detection(__float2int_rn(x * octave.shrinkage),
// __float2int_rn(y * octave.shrinkage), level.objSize.x, level.objSize.y, confidence);
// }
// }
__global__ void test_kernel_warp(const Level* levels, const Octave* octaves, const float* stages,
const Node* nodes, const float* leaves, Detection* objects, const uint ndetections, uint* ctr)
{
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int x = blockIdx.x;
Level level = levels[blockIdx.z];
// if (blockIdx.z != 31) return;
if(x >= level.workRect.x || y >= level.workRect.y) return;
Octave octave = octaves[level.octave];
int st = octave.index * octave.stages;
const int stEnd = st + 1000;//octave.stages;
const int stEnd = st + 1024;
float confidence = 0.f;
// #pragma unroll 2
for(; st < stEnd; ++st)
for(; st < stEnd; st += 32)
{
dprintf("\n\nstage: %d\n", st);
const int nId = st * 3;
Node node = nodes[nId];
dprintf("Node: [%d %d %d %d] %d %d\n", node.rect.x, node.rect.y, node.rect.z, node.rect.w,
node.threshold >> 28, node.threshold & 0x0FFFFFFFU);
const int nId = (st + threadIdx.x) * 3;
dprintf("\n\n%d: stage: %d %d\n",threadIdx.x, st, nId);
Node node = nodes[nId];
float threshold = rescale(level, node.rect, node);
int sum = get(x, y + (node.threshold >> 28) * 121, node.rect);
dprintf("Node: [%d %d %d %d] %f\n", node.rect.x, node.rect.y, node.rect.z,
node.rect.w, threshold);
int next = 1 + (int)(sum >= threshold);
dprintf("go: %d (%d >= %f)\n\n" ,next, sum, threshold);
dprintf("%d: go: %d (%d >= %f)\n\n" ,threadIdx.x, next, sum, threshold);
node = nodes[nId + next];
threshold = rescale(level, node.rect, node);
sum = get(x, y + (node.threshold >> 28) * 121, node.rect);
const int lShift = (next - 1) * 2 + (int)(sum >= threshold);
float impact = leaves[st * 4 + lShift];
confidence += impact;
float impact = leaves[(st + threadIdx.x) * 4 + lShift];
dprintf("%d: decided: %d (%d >= %f) %d %f\n\n" ,threadIdx.x, next, sum, threshold, lShift, impact);
dprintf("%d: extracted stage: %f\n",threadIdx.x, stages[(st + threadIdx.x)]);
dprintf("%d: computed score: %f\n",threadIdx.x, impact);
// scan on shuffl functions
for (int i = 1; i < 32; i *= 2)
{
const float n = __shfl_up(impact, i, 32);
if (confidence <= stages[st]) st = stEnd + 10;
dprintf("decided: %d (%d >= %f) %d %f\n\n" ,next, sum, threshold, lShift, impact);
dprintf("extracted stage: %f\n", stages[st]);
dprintf("computed score: %f\n\n", confidence);
if (threadIdx.x >= i)
impact += n;
}
dprintf("%d: impact scaned %f\n" ,threadIdx.x, impact);
confidence += impact;
if(__any((confidence <= stages[(st + threadIdx.x)]))) break;
}
if(st == stEnd)
if(st == stEnd && !threadIdx.x)
{
int idx = atomicInc(ctr, ndetections);
// store detection
@ -205,7 +269,7 @@ namespace icf {
int fh = 120;
dim3 block(32, 8);
dim3 grid(fw / 32, fh / 8, 47);
dim3 grid(fw, fh / 8, 47);
const Level* l = (const Level*)levels.ptr();
const Octave* oct = ((const Octave*)octaves.ptr());
@ -219,7 +283,7 @@ namespace icf {
cudaChannelFormatDesc desc = cudaCreateChannelDesc<int>();
cudaSafeCall( cudaBindTexture2D(0, thogluv, hogluv.data, desc, hogluv.cols, hogluv.rows, hogluv.step));
test_kernel<<<grid, block>>>(l, oct, st, nd, lf, det, max_det, ctr);
test_kernel_warp<<<grid, block>>>(l, oct, st, nd, lf, det, max_det, ctr);
cudaSafeCall( cudaGetLastError());
cudaSafeCall( cudaDeviceSynchronize());

Loading…
Cancel
Save