mirror of https://github.com/opencv/opencv.git
Merge pull request #18783 from sl-sergei:fix_conv1d
Add support for Conv1D on OpenCV backend * Add support for Conv1D on OpenCV backend * disable tests on other targets/backends * Fix formatting * Restore comment * Remove unnecessary flag and fix test logic * Fix perf test * fix braces * Fix indentation, assert check and remove unnecessary condition * Remove unnecessary changes * Add test cases for variable weights and bias * dnn(conv): fallback on OpenCV+CPU instead of failures * coding stylepull/18800/head^2
parent
d23435baac
commit
61144f935e
7 changed files with 404 additions and 70 deletions
@ -0,0 +1,163 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
#include <opencv2/dnn/shape_utils.hpp> |
||||
|
||||
namespace opencv_test { |
||||
|
||||
struct Conv1DParam_t { |
||||
int kernel; |
||||
struct BlobShape { int dims[3]; } shapeIn; |
||||
int outCN; |
||||
int groups; |
||||
int stride; |
||||
int dilation; |
||||
int pad[2]; |
||||
const char* padMode; |
||||
bool hasBias; |
||||
double declared_flops; |
||||
}; |
||||
// Details: #12142
|
||||
static const Conv1DParam_t testConvolution1DConfigs[] = { |
||||
{3, {{1, 6, 10}}, 6, 1, 1, 1, {0, 0}, "VALID", true, 1776.}, |
||||
{3, {{1, 2, 19}}, 2, 2, 2, 1, {1, 1}, "", true, 260.}, |
||||
{3, {{1, 2, 25}}, 2, 2, 1, 1, {2, 2}, "SAME", false, 650.}, |
||||
}; |
||||
|
||||
struct Conv1DParamID |
||||
{ |
||||
enum { |
||||
CONV_0 = 0, |
||||
CONV_LAST = sizeof(testConvolution1DConfigs) / sizeof(testConvolution1DConfigs[0]) |
||||
}; |
||||
int val_; |
||||
Conv1DParamID(int val = 0) : val_(val) {} |
||||
operator int() const { return val_; } |
||||
static ::testing::internal::ParamGenerator<Conv1DParamID> all() |
||||
{ |
||||
enum { NUM = (int)CONV_LAST }; |
||||
Conv1DParamID v_[NUM]; for (int i = 0; i < NUM; ++i) { v_[i] = Conv1DParamID(i); } // reduce generated code size
|
||||
return ::testing::ValuesIn(v_, v_ + NUM); |
||||
} |
||||
}; |
||||
static inline void PrintTo(const Conv1DParamID& v, std::ostream* os) |
||||
{ |
||||
CV_Assert((int)v >= 0); CV_Assert((int)v < Conv1DParamID::CONV_LAST); |
||||
const Conv1DParam_t& p = testConvolution1DConfigs[(int)v]; |
||||
|
||||
*os << "GFLOPS=" << cv::format("%.3f", p.declared_flops * 1e-9) |
||||
<< ", K=[" << p.kernel << "]" |
||||
<< ", IN={" << p.shapeIn.dims[0] << ", " << p.shapeIn.dims[1] << ", " << p.shapeIn.dims[2] << "}" |
||||
<< ", OCN=" << p.outCN; |
||||
if (p.groups > 1) |
||||
*os << ", G=" << p.groups; |
||||
if (p.stride != 1) |
||||
*os << ", S=" << p.stride; |
||||
if (p.dilation != 1) |
||||
*os << ", D=" << p.dilation; |
||||
if (p.pad[0] != 0 && p.pad[1] != 0 ) |
||||
*os << ", P=(" << p.pad[0] << ", " << p.pad[1] << ")"; |
||||
if (!((std::string)p.padMode).empty()) |
||||
*os << ", PM=" << ((std::string)p.padMode); |
||||
if (p.hasBias) |
||||
*os << ", BIAS"; |
||||
} |
||||
|
||||
|
||||
typedef tuple<Conv1DParamID, tuple<Backend, Target> > Conv1DTestParam_t; |
||||
typedef TestBaseWithParam<Conv1DTestParam_t> Conv1D; |
||||
|
||||
PERF_TEST_P_(Conv1D, conv1d) |
||||
{ |
||||
int test_id = (int)get<0>(GetParam()); |
||||
ASSERT_GE(test_id, 0); ASSERT_LT(test_id, Conv1DParamID::CONV_LAST); |
||||
const Conv1DParam_t& params = testConvolution1DConfigs[test_id]; |
||||
double declared_flops = params.declared_flops; |
||||
|
||||
DictValue kernel = DictValue::arrayInt(¶ms.kernel, 1); |
||||
DictValue stride = DictValue::arrayInt(¶ms.stride, 1); |
||||
DictValue pad = DictValue::arrayInt(¶ms.pad[0], 2); |
||||
DictValue dilation = DictValue::arrayInt(¶ms.dilation, 1); |
||||
|
||||
MatShape inputShape = MatShape(params.shapeIn.dims, params.shapeIn.dims + 3); |
||||
int outChannels = params.outCN; |
||||
int groups = params.groups; |
||||
std::string padMode(params.padMode); |
||||
|
||||
bool hasBias = params.hasBias; |
||||
Backend backendId = get<0>(get<1>(GetParam())); |
||||
Target targetId = get<1>(get<1>(GetParam())); |
||||
|
||||
if (targetId != DNN_TARGET_CPU) |
||||
throw SkipTestException("Only CPU is supported"); |
||||
|
||||
int inChannels = inputShape[1]; |
||||
|
||||
int sz[] = {outChannels, inChannels / groups, params.kernel}; |
||||
Mat weights(3, &sz[0], CV_32F); |
||||
randu(weights, -1.0f, 1.0f); |
||||
|
||||
LayerParams lp; |
||||
lp.set("kernel_size", kernel); |
||||
lp.set("pad", pad); |
||||
if (!padMode.empty()) |
||||
lp.set("pad_mode", padMode); |
||||
|
||||
lp.set("stride", stride); |
||||
lp.set("dilation", dilation); |
||||
lp.set("num_output", outChannels); |
||||
lp.set("group", groups); |
||||
lp.set("bias_term", hasBias); |
||||
lp.type = "Convolution"; |
||||
lp.name = "testLayer"; |
||||
lp.blobs.push_back(weights); |
||||
|
||||
if (hasBias) |
||||
{ |
||||
Mat bias(1, outChannels, CV_32F); |
||||
randu(bias, -1.0f, 1.0f); |
||||
lp.blobs.push_back(bias); |
||||
} |
||||
|
||||
int inpSz[] = {1, inChannels, inputShape[2]}; |
||||
Mat input(3, &inpSz[0], CV_32F); |
||||
randu(input, -1.0f, 1.0f); |
||||
|
||||
Net net; |
||||
net.addLayerToPrev(lp.name, lp.type, lp); |
||||
|
||||
net.setInput(input); |
||||
net.setPreferableBackend(backendId); |
||||
net.setPreferableTarget(targetId); |
||||
|
||||
// warmup
|
||||
Mat output = net.forward(); |
||||
|
||||
MatShape netInputShape = shape(input); |
||||
size_t weightsMemory = 0, blobsMemory = 0; |
||||
net.getMemoryConsumption(netInputShape, weightsMemory, blobsMemory); |
||||
int64 flops = net.getFLOPS(netInputShape); |
||||
CV_Assert(flops > 0); |
||||
|
||||
std::cout |
||||
<< "IN=" << divUp(input.total() * input.elemSize(), 1u<<10) << " Kb " << netInputShape |
||||
<< " OUT=" << divUp(output.total() * output.elemSize(), 1u<<10) << " Kb " << shape(output) |
||||
<< " Weights(parameters): " << divUp(weightsMemory, 1u<<10) << " Kb" |
||||
<< " MFLOPS=" << flops * 1e-6 << std::endl; |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
Mat res = net.forward(); |
||||
} |
||||
EXPECT_NEAR(flops, declared_flops, declared_flops * 1e-6); |
||||
SANITY_CHECK_NOTHING(); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Conv1D, Combine( |
||||
Conv1DParamID::all(), |
||||
dnnBackendsAndTargets(false, false) // defined in ../test/test_common.hpp
|
||||
)); |
||||
|
||||
} // namespace
|
Loading…
Reference in new issue