|
|
|
@ -260,85 +260,91 @@ void EllipticKeyPoint::calcProjection( const Mat_<double>& H, EllipticKeyPoint& |
|
|
|
|
|
|
|
|
|
void calcEllipticKeyPointProjections( const vector<EllipticKeyPoint>& src, const Mat_<double>& H, vector<EllipticKeyPoint>& dst ) |
|
|
|
|
{ |
|
|
|
|
assert( !src.empty() && !H.empty() && H.cols == 3 && H.rows == 3); |
|
|
|
|
dst.resize(src.size()); |
|
|
|
|
vector<EllipticKeyPoint>::const_iterator srcIt = src.begin(); |
|
|
|
|
vector<EllipticKeyPoint>::iterator dstIt = dst.begin(); |
|
|
|
|
for( ; srcIt != src.end(); ++srcIt, ++dstIt ) |
|
|
|
|
srcIt->calcProjection(H, *dstIt); |
|
|
|
|
if( !src.empty() ) |
|
|
|
|
{ |
|
|
|
|
assert( !H.empty() && H.cols == 3 && H.rows == 3); |
|
|
|
|
dst.resize(src.size()); |
|
|
|
|
vector<EllipticKeyPoint>::const_iterator srcIt = src.begin(); |
|
|
|
|
vector<EllipticKeyPoint>::iterator dstIt = dst.begin(); |
|
|
|
|
for( ; srcIt != src.end(); ++srcIt, ++dstIt ) |
|
|
|
|
srcIt->calcProjection(H, *dstIt); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void transformToEllipticKeyPoints( const vector<KeyPoint>& src, vector<EllipticKeyPoint>& dst ) |
|
|
|
|
{ |
|
|
|
|
assert( !src.empty() ); |
|
|
|
|
dst.resize(src.size()); |
|
|
|
|
for( size_t i = 0; i < src.size(); i++ ) |
|
|
|
|
if( !src.empty() ) |
|
|
|
|
{ |
|
|
|
|
float rad = src[i].size; |
|
|
|
|
assert( rad ); |
|
|
|
|
float fac = 1.f/(rad*rad); |
|
|
|
|
dst[i] = EllipticKeyPoint( src[i].pt, Scalar(fac, 0, fac) ); |
|
|
|
|
dst.resize(src.size()); |
|
|
|
|
for( size_t i = 0; i < src.size(); i++ ) |
|
|
|
|
{ |
|
|
|
|
float rad = src[i].size; |
|
|
|
|
assert( rad ); |
|
|
|
|
float fac = 1.f/(rad*rad); |
|
|
|
|
dst[i] = EllipticKeyPoint( src[i].pt, Scalar(fac, 0, fac) ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void transformToKeyPoints( const vector<EllipticKeyPoint>& src, vector<KeyPoint>& dst ) |
|
|
|
|
{ |
|
|
|
|
assert( !src.empty() ); |
|
|
|
|
dst.resize(src.size()); |
|
|
|
|
for( size_t i = 0; i < src.size(); i++ ) |
|
|
|
|
if( !src.empty() ) |
|
|
|
|
{ |
|
|
|
|
Size_<float> axes = src[i].axes; |
|
|
|
|
float rad = sqrt(axes.height*axes.width); |
|
|
|
|
dst[i] = KeyPoint(src[i].center, rad ); |
|
|
|
|
dst.resize(src.size()); |
|
|
|
|
for( size_t i = 0; i < src.size(); i++ ) |
|
|
|
|
{ |
|
|
|
|
Size_<float> axes = src[i].axes; |
|
|
|
|
float rad = sqrt(axes.height*axes.width); |
|
|
|
|
dst[i] = KeyPoint(src[i].center, rad ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void calcKeyPointProjections( const vector<KeyPoint>& src, const Mat_<double>& H, vector<KeyPoint>& dst ) |
|
|
|
|
{ |
|
|
|
|
assert( !src.empty() && !H.empty() && H.cols == 3 && H.rows == 3); |
|
|
|
|
dst.resize(src.size()); |
|
|
|
|
vector<KeyPoint>::const_iterator srcIt = src.begin(); |
|
|
|
|
vector<KeyPoint>::iterator dstIt = dst.begin(); |
|
|
|
|
for( ; srcIt != src.end(); ++srcIt, ++dstIt ) |
|
|
|
|
if( !src.empty() ) |
|
|
|
|
{ |
|
|
|
|
Point2f dstPt = applyHomography(H, srcIt->pt); |
|
|
|
|
|
|
|
|
|
Mat_<double> Aff; linearizeHomographyAt(H, srcIt->pt, Aff); |
|
|
|
|
Mat_<double> eval; eigen(Aff, eval); |
|
|
|
|
assert( eval.type()==CV_64FC1 && eval.cols==1 && eval.rows==2 ); |
|
|
|
|
float dstSize = srcIt->size * sqrt(eval(0,0) * eval(1,0)) /*scale from linearized homography matrix*/; |
|
|
|
|
assert( dstSize ); |
|
|
|
|
assert( dstSize < 0.5 ); // TODO check for surf
|
|
|
|
|
|
|
|
|
|
// calculate new anngle
|
|
|
|
|
float srcAngleRad = srcIt->angle*CV_PI/180; |
|
|
|
|
Point2f vec1(cos(srcAngleRad), sin(srcAngleRad)), vec2; |
|
|
|
|
vec2 = applyHomography(H, vec1); |
|
|
|
|
float w = 1.f/norm(vec2); |
|
|
|
|
vec2 = vec2*w; |
|
|
|
|
float dstAngleGrad = acos(vec2.x)*180.f/CV_PI; // 0..180
|
|
|
|
|
if( asin(vec2.y) < 0 ) // -pi/2 .. pi/2
|
|
|
|
|
dstAngleGrad += 180; |
|
|
|
|
*dstIt = KeyPoint( dstPt, dstSize, dstAngleGrad, srcIt->response, srcIt->octave, srcIt->class_id ); |
|
|
|
|
assert( !H.empty() && H.cols == 3 && H.rows == 3); |
|
|
|
|
dst.resize(src.size()); |
|
|
|
|
vector<KeyPoint>::const_iterator srcIt = src.begin(); |
|
|
|
|
vector<KeyPoint>::iterator dstIt = dst.begin(); |
|
|
|
|
for( ; srcIt != src.end(); ++srcIt, ++dstIt ) |
|
|
|
|
{ |
|
|
|
|
Point2f dstPt = applyHomography(H, srcIt->pt); |
|
|
|
|
|
|
|
|
|
float srcSize2 = srcIt->size * srcIt->size; |
|
|
|
|
Mat_<double> invM; invert(EllipticKeyPoint::getSecondMomentsMatrix( Scalar(1./srcSize2, 0., 1./srcSize2)), invM); |
|
|
|
|
Mat_<double> Aff; linearizeHomographyAt(H, srcIt->pt, Aff); |
|
|
|
|
Mat_<double> dstM; invert(Aff*invM*Aff.t(), dstM); |
|
|
|
|
Mat_<double> eval; eigen( dstM, eval ); |
|
|
|
|
assert( eval(0,0) && eval(1,0) ); |
|
|
|
|
float dstSize = pow(1./(eval(0,0)*eval(1,0)), 0.25); |
|
|
|
|
|
|
|
|
|
// TODO: check angle projection
|
|
|
|
|
float srcAngleRad = srcIt->angle*CV_PI/180; |
|
|
|
|
Point2f vec1(cos(srcAngleRad), sin(srcAngleRad)), vec2; |
|
|
|
|
vec2.x = Aff(0,0)*vec1.x + Aff(0,1)*vec1.y; |
|
|
|
|
vec2.y = Aff(1,0)*vec1.x + Aff(0,1)*vec1.y; |
|
|
|
|
float dstAngleGrad = fastAtan2(vec2.y, vec2.x); |
|
|
|
|
|
|
|
|
|
*dstIt = KeyPoint( dstPt, dstSize, dstAngleGrad, srcIt->response, srcIt->octave, srcIt->class_id ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void filterKeyPointsByImageSize( vector<KeyPoint>& keypoints, const Size& imgSize, vector<int>& origIdxs ) |
|
|
|
|
void filterKeyPointsByImageSize( vector<KeyPoint>& keypoints, const Size& imgSize ) |
|
|
|
|
{ |
|
|
|
|
vector<KeyPoint> filtered; |
|
|
|
|
filtered.reserve(keypoints.size()); |
|
|
|
|
Rect r(0, 0, imgSize.width, imgSize.height); |
|
|
|
|
origIdxs.clear(); |
|
|
|
|
vector<KeyPoint>::const_iterator it = keypoints.begin(); |
|
|
|
|
for( int i = 0; it != keypoints.end(); ++it, i++ ) |
|
|
|
|
if( !keypoints.empty() ) |
|
|
|
|
{ |
|
|
|
|
if( r.contains(it->pt) ) |
|
|
|
|
{ |
|
|
|
|
filtered.push_back(*it); |
|
|
|
|
origIdxs.push_back(i); |
|
|
|
|
} |
|
|
|
|
vector<KeyPoint> filtered; |
|
|
|
|
filtered.reserve(keypoints.size()); |
|
|
|
|
Rect r(0, 0, imgSize.width, imgSize.height); |
|
|
|
|
vector<KeyPoint>::const_iterator it = keypoints.begin(); |
|
|
|
|
for( int i = 0; it != keypoints.end(); ++it, i++ ) |
|
|
|
|
if( r.contains(it->pt) ) |
|
|
|
|
filtered.push_back(*it); |
|
|
|
|
keypoints.assign(filtered.begin(), filtered.end()); |
|
|
|
|
} |
|
|
|
|
keypoints.assign(filtered.begin(), filtered.end()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
@ -347,7 +353,10 @@ void filterKeyPointsByImageSize( vector<KeyPoint>& keypoints, const Size& imgSiz |
|
|
|
|
void overlap( const vector<EllipticKeyPoint>& keypoints1, const vector<EllipticKeyPoint>& keypoints2t, bool commonPart, |
|
|
|
|
SparseMat_<float>& overlaps ) |
|
|
|
|
{ |
|
|
|
|
assert( !keypoints1.empty() && !keypoints2t.empty() ); |
|
|
|
|
overlaps.clear(); |
|
|
|
|
if( keypoints1.empty() || keypoints2t.empty() ) |
|
|
|
|
return; |
|
|
|
|
|
|
|
|
|
int size[] = { keypoints1.size(), keypoints2t.size() }; |
|
|
|
|
overlaps.create( 2, size ); |
|
|
|
|
|
|
|
|
@ -409,27 +418,27 @@ void overlap( const vector<EllipticKeyPoint>& keypoints1, const vector<EllipticK |
|
|
|
|
|
|
|
|
|
void filterEllipticKeyPointsByImageSize( vector<EllipticKeyPoint>& keypoints, const Size& imgSize ) |
|
|
|
|
{ |
|
|
|
|
vector<EllipticKeyPoint> filtered; |
|
|
|
|
filtered.reserve(keypoints.size()); |
|
|
|
|
vector<EllipticKeyPoint>::const_iterator it = keypoints.begin(); |
|
|
|
|
for( int i = 0; it != keypoints.end(); ++it, i++ ) |
|
|
|
|
if( !keypoints.empty() ) |
|
|
|
|
{ |
|
|
|
|
if( it->center.x + it->boundingBox.width < imgSize.width && |
|
|
|
|
it->center.x - it->boundingBox.width > 0 && |
|
|
|
|
it->center.y + it->boundingBox.height < imgSize.height && |
|
|
|
|
it->center.y - it->boundingBox.height > 0 ) |
|
|
|
|
filtered.push_back(*it); |
|
|
|
|
vector<EllipticKeyPoint> filtered; |
|
|
|
|
filtered.reserve(keypoints.size()); |
|
|
|
|
vector<EllipticKeyPoint>::const_iterator it = keypoints.begin(); |
|
|
|
|
for( int i = 0; it != keypoints.end(); ++it, i++ ) |
|
|
|
|
{ |
|
|
|
|
if( it->center.x + it->boundingBox.width < imgSize.width && |
|
|
|
|
it->center.x - it->boundingBox.width > 0 && |
|
|
|
|
it->center.y + it->boundingBox.height < imgSize.height && |
|
|
|
|
it->center.y - it->boundingBox.height > 0 ) |
|
|
|
|
filtered.push_back(*it); |
|
|
|
|
} |
|
|
|
|
keypoints.assign(filtered.begin(), filtered.end()); |
|
|
|
|
} |
|
|
|
|
keypoints.assign(filtered.begin(), filtered.end()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void getEllipticKeyPointsInCommonPart( vector<EllipticKeyPoint>& keypoints1, vector<EllipticKeyPoint>& keypoints2, |
|
|
|
|
vector<EllipticKeyPoint>& keypoints1t, vector<EllipticKeyPoint>& keypoints2t, |
|
|
|
|
Size& imgSize1, const Size& imgSize2 ) |
|
|
|
|
{ |
|
|
|
|
assert( !keypoints1.empty() && !keypoints2.empty() ); |
|
|
|
|
assert( keypoints1t.size() == keypoints1.size() && keypoints2t.size() == keypoints2.size() ); |
|
|
|
|
|
|
|
|
|
filterEllipticKeyPointsByImageSize( keypoints1, imgSize1 ); |
|
|
|
|
filterEllipticKeyPointsByImageSize( keypoints1t, imgSize2 ); |
|
|
|
|
filterEllipticKeyPointsByImageSize( keypoints2, imgSize2 ); |
|
|
|
@ -502,7 +511,7 @@ void calculateRepeatability( const vector<EllipticKeyPoint>& _keypoints1, const |
|
|
|
|
currOverlaps.erase(maxIdx[0], i2); |
|
|
|
|
correspondencesCount++; |
|
|
|
|
} |
|
|
|
|
repeatability = minCount ? (float)(correspondencesCount*100)/minCount : 0; |
|
|
|
|
repeatability = minCount ? (float)(correspondencesCount*100)/minCount : -1; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
@ -531,12 +540,12 @@ void evaluateDetectors( const vector<EllipticKeyPoint>& keypoints1, const vector |
|
|
|
|
|
|
|
|
|
inline float recall( int correctMatchCount, int correspondenceCount ) |
|
|
|
|
{ |
|
|
|
|
return correspondenceCount ? (float)correctMatchCount / (float)correspondenceCount : 0; |
|
|
|
|
return correspondenceCount ? (float)correctMatchCount / (float)correspondenceCount : -1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
inline float precision( int correctMatchCount, int falseMatchCount ) |
|
|
|
|
{ |
|
|
|
|
return correctMatchCount + falseMatchCount ? (float)correctMatchCount / (float)(correctMatchCount + falseMatchCount) : 0; |
|
|
|
|
return correctMatchCount + falseMatchCount ? (float)correctMatchCount / (float)(correctMatchCount + falseMatchCount) : -1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void evaluateDescriptors( const vector<EllipticKeyPoint>& keypoints1, const vector<EllipticKeyPoint>& keypoints2, |
|
|
|
@ -816,6 +825,7 @@ public: |
|
|
|
|
{ |
|
|
|
|
validQuality.resize(DATASETS_COUNT); |
|
|
|
|
calcQuality.resize(DATASETS_COUNT); |
|
|
|
|
isSaveKeypoints.resize(DATASETS_COUNT); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
protected: |
|
|
|
@ -834,9 +844,9 @@ protected: |
|
|
|
|
virtual void readResults( FileNode& fn, int datasetIdx, int caseIdx ); |
|
|
|
|
virtual void writeResults( FileStorage& fs, int datasetIdx, int caseIdx ) const; |
|
|
|
|
|
|
|
|
|
virtual void readDatasetRunParams( FileNode& fn, int datasetIdx ) = 0; |
|
|
|
|
virtual void writeDatasetRunParams( FileStorage& fs, int datasetIdx ) const = 0; |
|
|
|
|
virtual void setDefaultDatasetRunParams( int datasetIdx ) = 0; |
|
|
|
|
virtual void readDatasetRunParams( FileNode& fn, int datasetIdx ); |
|
|
|
|
virtual void writeDatasetRunParams( FileStorage& fs, int datasetIdx ) const; |
|
|
|
|
virtual void setDefaultDatasetRunParams( int datasetIdx ); |
|
|
|
|
|
|
|
|
|
virtual FeatureDetector* createDetector( int datasetIdx ) = 0; |
|
|
|
|
void openToWriteKeypointsFile( FileStorage& fs, int datasetIdx ); |
|
|
|
@ -858,6 +868,7 @@ protected: |
|
|
|
|
}; |
|
|
|
|
vector<vector<Quality> > validQuality; |
|
|
|
|
vector<vector<Quality> > calcQuality; |
|
|
|
|
vector<bool> isSaveKeypoints; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
string DetectorQualityTest::getRunParamsFilename() const |
|
|
|
@ -916,22 +927,30 @@ void DetectorQualityTest::writeResults( FileStorage& fs, int datasetIdx, int cas |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void DetectorQualityTest::readDatasetRunParams( FileNode& fn, int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
isSaveKeypoints[datasetIdx] = (int)fn["isSaveKeypoints"] != 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void DetectorQualityTest::writeDatasetRunParams( FileStorage& fs, int datasetIdx ) const |
|
|
|
|
{ |
|
|
|
|
fs << "isSaveKeypoints" << isSaveKeypoints[datasetIdx]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void DetectorQualityTest::setDefaultDatasetRunParams( int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
isSaveKeypoints[datasetIdx] = false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void DetectorQualityTest::openToWriteKeypointsFile( FileStorage& fs, int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
string filename = string(ts->get_data_path()) + KEYPOINTS_DIR + algName + "_"+ |
|
|
|
|
DATASET_NAMES[datasetIdx] + ".xml" ; |
|
|
|
|
DATASET_NAMES[datasetIdx] + ".xml.gz" ; |
|
|
|
|
|
|
|
|
|
// open file to write keypoints if there is not yet
|
|
|
|
|
fs.open(filename, FileStorage::READ); |
|
|
|
|
if( fs.isOpened() ) |
|
|
|
|
fs.release(); |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
fs.open(filename, FileStorage::WRITE); |
|
|
|
|
if( !fs.isOpened() ) |
|
|
|
|
ts->printf( CvTS::LOG, "keypoints can not be written in file %s because this file can not be opened\n", |
|
|
|
|
filename.c_str()); |
|
|
|
|
} |
|
|
|
|
fs.open(filename, FileStorage::WRITE); |
|
|
|
|
if( !fs.isOpened() ) |
|
|
|
|
ts->printf( CvTS::LOG, "keypoints can not be written in file %s because this file can not be opened\n", |
|
|
|
|
filename.c_str()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
inline void writeKeypoints( FileStorage& fs, const vector<KeyPoint>& keypoints, int imgIdx ) |
|
|
|
@ -960,7 +979,8 @@ void DetectorQualityTest::run( int ) |
|
|
|
|
for(int di = 0; di < DATASETS_COUNT; di++ ) |
|
|
|
|
{
|
|
|
|
|
FileStorage keypontsFS; |
|
|
|
|
openToWriteKeypointsFile( keypontsFS, di ); |
|
|
|
|
if( isSaveKeypoints[di] ) |
|
|
|
|
openToWriteKeypointsFile( keypontsFS, di ); |
|
|
|
|
|
|
|
|
|
vector<Mat> imgs, Hs; |
|
|
|
|
if( !readDataset( DATASET_NAMES[di], Hs, imgs ) ) |
|
|
|
@ -1062,7 +1082,7 @@ int DetectorQualityTest::processResults( int datasetIdx, int caseIdx ) |
|
|
|
|
class FastDetectorQualityTest : public DetectorQualityTest |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
FastDetectorQualityTest() : DetectorQualityTest( "fast", "quality-fast-detector" ) |
|
|
|
|
FastDetectorQualityTest() : DetectorQualityTest( "fast", "quality-detector-fast" ) |
|
|
|
|
{ runParams.resize(DATASETS_COUNT); } |
|
|
|
|
|
|
|
|
|
protected: |
|
|
|
@ -1086,17 +1106,21 @@ FeatureDetector* FastDetectorQualityTest::createDetector( int datasetIdx ) |
|
|
|
|
|
|
|
|
|
void FastDetectorQualityTest::readDatasetRunParams( FileNode& fn, int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::readDatasetRunParams(fn, datasetIdx); |
|
|
|
|
runParams[datasetIdx].threshold = fn["threshold"]; |
|
|
|
|
runParams[datasetIdx].nonmaxSuppression = (int)fn["nonmaxSuppression"] ? true : false;} |
|
|
|
|
runParams[datasetIdx].nonmaxSuppression = (int)fn["nonmaxSuppression"] ? true : false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void FastDetectorQualityTest::writeDatasetRunParams( FileStorage& fs, int datasetIdx ) const |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::writeDatasetRunParams(fs, datasetIdx); |
|
|
|
|
fs << "threshold" << runParams[datasetIdx].threshold; |
|
|
|
|
fs << "nonmaxSuppression" << runParams[datasetIdx].nonmaxSuppression; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void FastDetectorQualityTest::setDefaultDatasetRunParams( int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::setDefaultDatasetRunParams(datasetIdx); |
|
|
|
|
runParams[datasetIdx].threshold = 1; |
|
|
|
|
runParams[datasetIdx].nonmaxSuppression = true; |
|
|
|
|
} |
|
|
|
@ -1144,6 +1168,7 @@ FeatureDetector* BaseGfttDetectorQualityTest::createDetector( int datasetIdx ) |
|
|
|
|
|
|
|
|
|
void BaseGfttDetectorQualityTest::readDatasetRunParams( FileNode& fn, int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::readDatasetRunParams(fn, datasetIdx); |
|
|
|
|
runParams[datasetIdx].maxCorners = fn["maxCorners"]; |
|
|
|
|
runParams[datasetIdx].qualityLevel = fn["qualityLevel"]; |
|
|
|
|
runParams[datasetIdx].minDistance = fn["minDistance"]; |
|
|
|
@ -1153,6 +1178,7 @@ void BaseGfttDetectorQualityTest::readDatasetRunParams( FileNode& fn, int datase |
|
|
|
|
|
|
|
|
|
void BaseGfttDetectorQualityTest::writeDatasetRunParams( FileStorage& fs, int datasetIdx ) const |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::writeDatasetRunParams(fs, datasetIdx); |
|
|
|
|
fs << "maxCorners" << runParams[datasetIdx].maxCorners; |
|
|
|
|
fs << "qualityLevel" << runParams[datasetIdx].qualityLevel; |
|
|
|
|
fs << "minDistance" << runParams[datasetIdx].minDistance; |
|
|
|
@ -1162,6 +1188,7 @@ void BaseGfttDetectorQualityTest::writeDatasetRunParams( FileStorage& fs, int da |
|
|
|
|
|
|
|
|
|
void BaseGfttDetectorQualityTest::setDefaultDatasetRunParams( int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::setDefaultDatasetRunParams(datasetIdx); |
|
|
|
|
runParams[datasetIdx].maxCorners = 1500; |
|
|
|
|
runParams[datasetIdx].qualityLevel = 0.01; |
|
|
|
|
runParams[datasetIdx].minDistance = 2.0; |
|
|
|
@ -1172,7 +1199,7 @@ void BaseGfttDetectorQualityTest::setDefaultDatasetRunParams( int datasetIdx ) |
|
|
|
|
class GfttDetectorQualityTest : public BaseGfttDetectorQualityTest |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
GfttDetectorQualityTest() : BaseGfttDetectorQualityTest( "gftt", "quality-gftt-detector" ) {} |
|
|
|
|
GfttDetectorQualityTest() : BaseGfttDetectorQualityTest( "gftt", "quality-detector-gftt" ) {} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
GfttDetectorQualityTest gfttDetectorQuality; |
|
|
|
@ -1180,7 +1207,7 @@ GfttDetectorQualityTest gfttDetectorQuality; |
|
|
|
|
class HarrisDetectorQualityTest : public BaseGfttDetectorQualityTest |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
HarrisDetectorQualityTest() : BaseGfttDetectorQualityTest( "harris", "quality-harris-detector" ) |
|
|
|
|
HarrisDetectorQualityTest() : BaseGfttDetectorQualityTest( "harris", "quality-detector-harris" ) |
|
|
|
|
{ useHarrisDetector = true; } |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
@ -1190,7 +1217,7 @@ HarrisDetectorQualityTest harrisDetectorQuality; |
|
|
|
|
class MserDetectorQualityTest : public DetectorQualityTest |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
MserDetectorQualityTest() : DetectorQualityTest( "mser", "quality-mser-detector" ) |
|
|
|
|
MserDetectorQualityTest() : DetectorQualityTest( "mser", "quality-detector-mser" ) |
|
|
|
|
{ runParams.resize(DATASETS_COUNT); } |
|
|
|
|
|
|
|
|
|
protected: |
|
|
|
@ -1199,18 +1226,7 @@ protected: |
|
|
|
|
virtual void writeDatasetRunParams( FileStorage& fs, int datasetIdx ) const; |
|
|
|
|
virtual void setDefaultDatasetRunParams( int datasetIdx ); |
|
|
|
|
|
|
|
|
|
struct RunParams |
|
|
|
|
{ |
|
|
|
|
int delta; |
|
|
|
|
int minArea; |
|
|
|
|
int maxArea; |
|
|
|
|
float maxVariation; |
|
|
|
|
float minDiversity; |
|
|
|
|
int maxEvolution; |
|
|
|
|
double areaThreshold; |
|
|
|
|
double minMargin; |
|
|
|
|
int edgeBlurSize; |
|
|
|
|
}; |
|
|
|
|
typedef CvMSERParams RunParams; |
|
|
|
|
vector<RunParams> runParams; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
@ -1229,6 +1245,7 @@ FeatureDetector* MserDetectorQualityTest::createDetector( int datasetIdx ) |
|
|
|
|
|
|
|
|
|
void MserDetectorQualityTest::readDatasetRunParams( FileNode& fn, int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::readDatasetRunParams(fn, datasetIdx); |
|
|
|
|
runParams[datasetIdx].delta = fn["delta"]; |
|
|
|
|
runParams[datasetIdx].minArea = fn["minArea"]; |
|
|
|
|
runParams[datasetIdx].maxArea = fn["maxArea"]; |
|
|
|
@ -1242,6 +1259,7 @@ void MserDetectorQualityTest::readDatasetRunParams( FileNode& fn, int datasetIdx |
|
|
|
|
|
|
|
|
|
void MserDetectorQualityTest::writeDatasetRunParams( FileStorage& fs, int datasetIdx ) const |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::writeDatasetRunParams(fs, datasetIdx); |
|
|
|
|
fs << "delta" << runParams[datasetIdx].delta; |
|
|
|
|
fs << "minArea" << runParams[datasetIdx].minArea; |
|
|
|
|
fs << "maxArea" << runParams[datasetIdx].maxArea; |
|
|
|
@ -1255,6 +1273,7 @@ void MserDetectorQualityTest::writeDatasetRunParams( FileStorage& fs, int datase |
|
|
|
|
|
|
|
|
|
void MserDetectorQualityTest::setDefaultDatasetRunParams( int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::setDefaultDatasetRunParams(datasetIdx); |
|
|
|
|
runParams[datasetIdx].delta = 5; |
|
|
|
|
runParams[datasetIdx].minArea = 60; |
|
|
|
|
runParams[datasetIdx].maxArea = 14400; |
|
|
|
@ -1272,7 +1291,7 @@ MserDetectorQualityTest mserDetectorQuality; |
|
|
|
|
class StarDetectorQualityTest : public DetectorQualityTest |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
StarDetectorQualityTest() : DetectorQualityTest( "star", "quality-star-detector" ) |
|
|
|
|
StarDetectorQualityTest() : DetectorQualityTest( "star", "quality-detector-star" ) |
|
|
|
|
{ runParams.resize(DATASETS_COUNT); } |
|
|
|
|
|
|
|
|
|
protected: |
|
|
|
@ -1303,6 +1322,7 @@ FeatureDetector* StarDetectorQualityTest::createDetector( int datasetIdx ) |
|
|
|
|
|
|
|
|
|
void StarDetectorQualityTest::readDatasetRunParams( FileNode& fn, int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::readDatasetRunParams(fn, datasetIdx); |
|
|
|
|
runParams[datasetIdx].maxSize = fn["maxSize"]; |
|
|
|
|
runParams[datasetIdx].responseThreshold = fn["responseThreshold"]; |
|
|
|
|
runParams[datasetIdx].lineThresholdProjected = fn["lineThresholdProjected"]; |
|
|
|
@ -1312,6 +1332,7 @@ void StarDetectorQualityTest::readDatasetRunParams( FileNode& fn, int datasetIdx |
|
|
|
|
|
|
|
|
|
void StarDetectorQualityTest::writeDatasetRunParams( FileStorage& fs, int datasetIdx ) const |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::writeDatasetRunParams(fs, datasetIdx); |
|
|
|
|
fs << "maxSize" << runParams[datasetIdx].maxSize; |
|
|
|
|
fs << "responseThreshold" << runParams[datasetIdx].responseThreshold; |
|
|
|
|
fs << "lineThresholdProjected" << runParams[datasetIdx].lineThresholdProjected; |
|
|
|
@ -1321,6 +1342,7 @@ void StarDetectorQualityTest::writeDatasetRunParams( FileStorage& fs, int datase |
|
|
|
|
|
|
|
|
|
void StarDetectorQualityTest::setDefaultDatasetRunParams( int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::setDefaultDatasetRunParams(datasetIdx); |
|
|
|
|
runParams[datasetIdx].maxSize = 16; |
|
|
|
|
runParams[datasetIdx].responseThreshold = 30; |
|
|
|
|
runParams[datasetIdx].lineThresholdProjected = 10; |
|
|
|
@ -1334,7 +1356,7 @@ StarDetectorQualityTest starDetectorQuality; |
|
|
|
|
class SiftDetectorQualityTest : public DetectorQualityTest |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
SiftDetectorQualityTest() : DetectorQualityTest( "sift", "quality-sift-detector" ) |
|
|
|
|
SiftDetectorQualityTest() : DetectorQualityTest( "sift", "quality-detector-sift" ) |
|
|
|
|
{ runParams.resize(DATASETS_COUNT); } |
|
|
|
|
|
|
|
|
|
protected: |
|
|
|
@ -1356,34 +1378,37 @@ FeatureDetector* SiftDetectorQualityTest::createDetector( int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
return new SiftFeatureDetector( runParams[datasetIdx].detect.threshold, |
|
|
|
|
runParams[datasetIdx].detect.edgeThreshold, |
|
|
|
|
runParams[datasetIdx].detect.angleMode, |
|
|
|
|
runParams[datasetIdx].comm.nOctaves, |
|
|
|
|
runParams[datasetIdx].comm.nOctaveLayers, |
|
|
|
|
runParams[datasetIdx].comm.firstOctave ); |
|
|
|
|
runParams[datasetIdx].comm.firstOctave, |
|
|
|
|
runParams[datasetIdx].comm.angleMode ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void SiftDetectorQualityTest::readDatasetRunParams( FileNode& fn, int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::readDatasetRunParams(fn, datasetIdx); |
|
|
|
|
runParams[datasetIdx].detect.threshold = fn["threshold"]; |
|
|
|
|
runParams[datasetIdx].detect.edgeThreshold = fn["edgeThreshold"]; |
|
|
|
|
runParams[datasetIdx].detect.angleMode = fn["angleMode"]; |
|
|
|
|
runParams[datasetIdx].comm.nOctaves = fn["nOctaves"]; |
|
|
|
|
runParams[datasetIdx].comm.nOctaveLayers = fn["nOctaveLayers"]; |
|
|
|
|
runParams[datasetIdx].comm.firstOctave = fn["firstOctave"]; |
|
|
|
|
runParams[datasetIdx].comm.angleMode = fn["angleMode"]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void SiftDetectorQualityTest::writeDatasetRunParams( FileStorage& fs, int datasetIdx ) const |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::writeDatasetRunParams(fs, datasetIdx); |
|
|
|
|
fs << "threshold" << runParams[datasetIdx].detect.threshold; |
|
|
|
|
fs << "edgeThreshold" << runParams[datasetIdx].detect.edgeThreshold; |
|
|
|
|
fs << "angleMode" << runParams[datasetIdx].detect.angleMode; |
|
|
|
|
fs << "nOctaves" << runParams[datasetIdx].comm.nOctaves; |
|
|
|
|
fs << "nOctaveLayers" << runParams[datasetIdx].comm.nOctaveLayers; |
|
|
|
|
fs << "firstOctave" << runParams[datasetIdx].comm.firstOctave; |
|
|
|
|
fs << "angleMode" << runParams[datasetIdx].comm.angleMode; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void SiftDetectorQualityTest::setDefaultDatasetRunParams( int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::setDefaultDatasetRunParams(datasetIdx); |
|
|
|
|
runParams[datasetIdx].detect = SIFT::DetectorParams(); |
|
|
|
|
runParams[datasetIdx].comm = SIFT::CommonParams(); |
|
|
|
|
} |
|
|
|
@ -1394,7 +1419,7 @@ SiftDetectorQualityTest siftDetectorQuality; |
|
|
|
|
class SurfDetectorQualityTest : public DetectorQualityTest |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
SurfDetectorQualityTest() : DetectorQualityTest( "surf", "quality-surf-detector" ) |
|
|
|
|
SurfDetectorQualityTest() : DetectorQualityTest( "surf", "quality-detector-surf" ) |
|
|
|
|
{ runParams.resize(DATASETS_COUNT); } |
|
|
|
|
|
|
|
|
|
protected: |
|
|
|
@ -1421,6 +1446,7 @@ FeatureDetector* SurfDetectorQualityTest::createDetector( int datasetIdx ) |
|
|
|
|
|
|
|
|
|
void SurfDetectorQualityTest::readDatasetRunParams( FileNode& fn, int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::readDatasetRunParams(fn, datasetIdx); |
|
|
|
|
runParams[datasetIdx].hessianThreshold = fn["hessianThreshold"]; |
|
|
|
|
runParams[datasetIdx].octaves = fn["octaves"]; |
|
|
|
|
runParams[datasetIdx].octaveLayers = fn["octaveLayers"]; |
|
|
|
@ -1428,6 +1454,7 @@ void SurfDetectorQualityTest::readDatasetRunParams( FileNode& fn, int datasetIdx |
|
|
|
|
|
|
|
|
|
void SurfDetectorQualityTest::writeDatasetRunParams( FileStorage& fs, int datasetIdx ) const |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::writeDatasetRunParams(fs, datasetIdx); |
|
|
|
|
fs << "hessianThreshold" << runParams[datasetIdx].hessianThreshold; |
|
|
|
|
fs << "octaves" << runParams[datasetIdx].octaves; |
|
|
|
|
fs << "octaveLayers" << runParams[datasetIdx].octaveLayers; |
|
|
|
@ -1435,6 +1462,7 @@ void SurfDetectorQualityTest::writeDatasetRunParams( FileStorage& fs, int datase |
|
|
|
|
|
|
|
|
|
void SurfDetectorQualityTest::setDefaultDatasetRunParams( int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
DetectorQualityTest::setDefaultDatasetRunParams(datasetIdx); |
|
|
|
|
runParams[datasetIdx].hessianThreshold = 400.; |
|
|
|
|
runParams[datasetIdx].octaves = 3; |
|
|
|
|
runParams[datasetIdx].octaveLayers = 4; |
|
|
|
@ -1564,33 +1592,11 @@ void DescriptorQualityTest::writeDatasetRunParams( FileStorage& fs, int datasetI |
|
|
|
|
|
|
|
|
|
void DescriptorQualityTest::setDefaultDatasetRunParams( int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
commRunParams[datasetIdx].keypontsFilename = "surf_" + DATASET_NAMES[datasetIdx] + ".xml"; |
|
|
|
|
commRunParams[datasetIdx].projectKeypointsFrom1Image = false; |
|
|
|
|
commRunParams[datasetIdx].keypontsFilename = "surf_" + DATASET_NAMES[datasetIdx] + ".xml.gz"; |
|
|
|
|
commRunParams[datasetIdx].projectKeypointsFrom1Image = true; |
|
|
|
|
commRunParams[datasetIdx].matchFilter = NO_MATCH_FILTER; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// if keyponts from first image are projected on second image using homography matrix
|
|
|
|
|
void evaluateDescriptors( const vector<int>& origIdxs2, |
|
|
|
|
const vector<int>& matches1to2, |
|
|
|
|
int& correctMatchCount, int& falseMatchCount, int& correspondenceCount ) |
|
|
|
|
{ |
|
|
|
|
assert( !origIdxs2.empty() > 0 && !matches1to2.empty() ); |
|
|
|
|
correspondenceCount = origIdxs2.size(); |
|
|
|
|
correctMatchCount = falseMatchCount = 0; |
|
|
|
|
for( size_t i1 = 0; i1 < matches1to2.size(); i1++ ) |
|
|
|
|
{ |
|
|
|
|
size_t i2 = matches1to2[i1]; |
|
|
|
|
if( i2 > 0 ) |
|
|
|
|
{ |
|
|
|
|
if( origIdxs2[i2] == (int)i1 ) |
|
|
|
|
correctMatchCount++; |
|
|
|
|
else |
|
|
|
|
falseMatchCount++; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void DescriptorQualityTest::run( int ) |
|
|
|
|
{ |
|
|
|
|
readAllDatasetsRunParams(); |
|
|
|
@ -1617,42 +1623,32 @@ void DescriptorQualityTest::run( int ) |
|
|
|
|
|
|
|
|
|
vector<KeyPoint> keypoints1; vector<EllipticKeyPoint> ekeypoints1; |
|
|
|
|
readKeypoints( keypontsFS, keypoints1, 0); |
|
|
|
|
if( !commRunParams[di].projectKeypointsFrom1Image ) |
|
|
|
|
transformToEllipticKeyPoints( keypoints1, ekeypoints1 ); |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
assert(0); |
|
|
|
|
// TODO debug!
|
|
|
|
|
} |
|
|
|
|
transformToEllipticKeyPoints( keypoints1, ekeypoints1 ); |
|
|
|
|
for( int ci = 0; ci < TEST_CASE_COUNT; ci++ ) |
|
|
|
|
{ |
|
|
|
|
progress = update_progress( progress, di*TEST_CASE_COUNT + ci, progressCount, 0 ); |
|
|
|
|
|
|
|
|
|
vector<KeyPoint> keypoints2; vector<EllipticKeyPoint> ekeypoints2; |
|
|
|
|
vector<int> origIdxs2; |
|
|
|
|
vector<KeyPoint> keypoints2; |
|
|
|
|
vector<EllipticKeyPoint> ekeypoints2; |
|
|
|
|
if( commRunParams[di].projectKeypointsFrom1Image ) |
|
|
|
|
{ |
|
|
|
|
// TODO need to test function calcKeyPointProjections
|
|
|
|
|
calcKeyPointProjections( keypoints1, Hs[ci], keypoints2 ); |
|
|
|
|
filterKeyPointsByImageSize( keypoints2, imgs[ci+1].size(), origIdxs2 ); |
|
|
|
|
filterKeyPointsByImageSize( keypoints2, imgs[ci+1].size() ); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
readKeypoints( keypontsFS, keypoints2, ci+1 ); |
|
|
|
|
transformToEllipticKeyPoints( keypoints2, ekeypoints2 ); |
|
|
|
|
} |
|
|
|
|
transformToEllipticKeyPoints( keypoints2, ekeypoints2 ); |
|
|
|
|
|
|
|
|
|
Ptr<GenericDescriptorMatch> descMatch = createDescriptorMatch(di); |
|
|
|
|
descMatch->add( imgs[ci+1], keypoints2 ); |
|
|
|
|
vector<int> matches1to2; |
|
|
|
|
descMatch->match( imgs[0], keypoints1, matches1to2 ); |
|
|
|
|
|
|
|
|
|
// TODO if( commRunParams[di].matchFilter )
|
|
|
|
|
|
|
|
|
|
int correctMatchCount, falseMatchCount, correspCount; |
|
|
|
|
if( commRunParams[di].projectKeypointsFrom1Image ) |
|
|
|
|
evaluateDescriptors( origIdxs2, matches1to2, correctMatchCount, falseMatchCount, correspCount ); |
|
|
|
|
else |
|
|
|
|
evaluateDescriptors( ekeypoints1, ekeypoints2, matches1to2, imgs[0], imgs[ci+1], Hs[ci], |
|
|
|
|
correctMatchCount, falseMatchCount, correspCount ); |
|
|
|
|
evaluateDescriptors( ekeypoints1, ekeypoints2, matches1to2, imgs[0], imgs[ci+1], Hs[ci], |
|
|
|
|
correctMatchCount, falseMatchCount, correspCount ); |
|
|
|
|
calcQuality[di][ci].recall = recall( correctMatchCount, correspCount ); |
|
|
|
|
calcQuality[di][ci].precision = precision( correctMatchCount, falseMatchCount ); |
|
|
|
|
} |
|
|
|
@ -1691,7 +1687,7 @@ int DescriptorQualityTest::processResults( int datasetIdx, int caseIdx ) |
|
|
|
|
class SiftDescriptorQualityTest : public DescriptorQualityTest |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
SiftDescriptorQualityTest() : DescriptorQualityTest( "sift", "quality-sift-descriptor" ) |
|
|
|
|
SiftDescriptorQualityTest() : DescriptorQualityTest( "sift", "quality-descriptor-sift" ) |
|
|
|
|
{ runParams.resize(DATASETS_COUNT); } |
|
|
|
|
|
|
|
|
|
protected: |
|
|
|
@ -1702,22 +1698,21 @@ protected: |
|
|
|
|
|
|
|
|
|
struct RunParams |
|
|
|
|
{ |
|
|
|
|
double magnification; |
|
|
|
|
bool isNormalize; |
|
|
|
|
int nOctaves; |
|
|
|
|
int nOctaveLayers; |
|
|
|
|
int firstOctave; |
|
|
|
|
SIFT::CommonParams comm; |
|
|
|
|
SIFT::DescriptorParams desc; |
|
|
|
|
}; |
|
|
|
|
vector<RunParams> runParams; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
GenericDescriptorMatch* SiftDescriptorQualityTest::createDescriptorMatch( int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
SiftDescriptorExtractor extractor( runParams[datasetIdx].magnification, |
|
|
|
|
runParams[datasetIdx].isNormalize, |
|
|
|
|
runParams[datasetIdx].nOctaves, |
|
|
|
|
runParams[datasetIdx].nOctaveLayers, |
|
|
|
|
runParams[datasetIdx].firstOctave ); |
|
|
|
|
SiftDescriptorExtractor extractor( runParams[datasetIdx].desc.magnification, |
|
|
|
|
runParams[datasetIdx].desc.isNormalize, |
|
|
|
|
runParams[datasetIdx].desc.recalculateAngles, |
|
|
|
|
runParams[datasetIdx].comm.nOctaves, |
|
|
|
|
runParams[datasetIdx].comm.nOctaveLayers, |
|
|
|
|
runParams[datasetIdx].comm.firstOctave, |
|
|
|
|
runParams[datasetIdx].comm.angleMode ); |
|
|
|
|
BruteForceMatcher<L2<float> > matcher; |
|
|
|
|
return new VectorDescriptorMatch<SiftDescriptorExtractor, BruteForceMatcher<L2<float> > >(extractor, matcher); |
|
|
|
|
} |
|
|
|
@ -1725,31 +1720,32 @@ GenericDescriptorMatch* SiftDescriptorQualityTest::createDescriptorMatch( int da |
|
|
|
|
void SiftDescriptorQualityTest::readDatasetRunParams( FileNode& fn, int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
DescriptorQualityTest::readDatasetRunParams( fn, datasetIdx); |
|
|
|
|
runParams[datasetIdx].magnification = fn["magnification"]; |
|
|
|
|
runParams[datasetIdx].isNormalize = (int)fn["isNormalize"] != 0; |
|
|
|
|
runParams[datasetIdx].nOctaves = fn["nOctaves"]; |
|
|
|
|
runParams[datasetIdx].nOctaveLayers = fn["nOctaveLayers"]; |
|
|
|
|
runParams[datasetIdx].firstOctave = fn["firstOctave"]; |
|
|
|
|
runParams[datasetIdx].desc.magnification = fn["magnification"]; |
|
|
|
|
runParams[datasetIdx].desc.isNormalize = (int)fn["isNormalize"] != 0; |
|
|
|
|
runParams[datasetIdx].desc.recalculateAngles = (int)fn["recalculateAngles"] != 0; |
|
|
|
|
runParams[datasetIdx].comm.nOctaves = fn["nOctaves"]; |
|
|
|
|
runParams[datasetIdx].comm.nOctaveLayers = fn["nOctaveLayers"]; |
|
|
|
|
runParams[datasetIdx].comm.firstOctave = fn["firstOctave"]; |
|
|
|
|
runParams[datasetIdx].comm.angleMode = fn["angleMode"]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void SiftDescriptorQualityTest::writeDatasetRunParams( FileStorage& fs, int datasetIdx ) const |
|
|
|
|
{ |
|
|
|
|
DescriptorQualityTest::writeDatasetRunParams( fs, datasetIdx ); |
|
|
|
|
fs << "magnification" << runParams[datasetIdx].magnification; |
|
|
|
|
fs << "isNormalize" << runParams[datasetIdx].isNormalize; |
|
|
|
|
fs << "nOctaves" << runParams[datasetIdx].nOctaves; |
|
|
|
|
fs << "nOctaveLayers" << runParams[datasetIdx].nOctaveLayers; |
|
|
|
|
fs << "firstOctave" << runParams[datasetIdx].firstOctave; |
|
|
|
|
fs << "magnification" << runParams[datasetIdx].desc.magnification; |
|
|
|
|
fs << "isNormalize" << runParams[datasetIdx].desc.isNormalize; |
|
|
|
|
fs << "recalculateAngles" << runParams[datasetIdx].desc.recalculateAngles; |
|
|
|
|
fs << "nOctaves" << runParams[datasetIdx].comm.nOctaves; |
|
|
|
|
fs << "nOctaveLayers" << runParams[datasetIdx].comm.nOctaveLayers; |
|
|
|
|
fs << "firstOctave" << runParams[datasetIdx].comm.firstOctave; |
|
|
|
|
fs << "angleMode" << runParams[datasetIdx].comm.angleMode; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void SiftDescriptorQualityTest::setDefaultDatasetRunParams( int datasetIdx ) |
|
|
|
|
{ |
|
|
|
|
DescriptorQualityTest::setDefaultDatasetRunParams( datasetIdx ); |
|
|
|
|
runParams[datasetIdx].magnification = SIFT::DescriptorParams::GET_DEFAULT_MAGNIFICATION(); |
|
|
|
|
runParams[datasetIdx].isNormalize = SIFT::DescriptorParams::DEFAULT_IS_NORMALIZE; |
|
|
|
|
runParams[datasetIdx].nOctaves = SIFT::CommonParams::DEFAULT_NOCTAVES; |
|
|
|
|
runParams[datasetIdx].nOctaveLayers = SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS; |
|
|
|
|
runParams[datasetIdx].firstOctave = SIFT::CommonParams::DEFAULT_FIRST_OCTAVE; |
|
|
|
|
runParams[datasetIdx].desc = SIFT::DescriptorParams(); |
|
|
|
|
runParams[datasetIdx].comm = SIFT::CommonParams(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
SiftDescriptorQualityTest siftDescriptorQuality; |
|
|
|
@ -1758,7 +1754,7 @@ SiftDescriptorQualityTest siftDescriptorQuality; |
|
|
|
|
class SurfDescriptorQualityTest : public DescriptorQualityTest |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
SurfDescriptorQualityTest() : DescriptorQualityTest( "surf", "quality-surf-descriptor" ) |
|
|
|
|
SurfDescriptorQualityTest() : DescriptorQualityTest( "surf", "quality-descriptor-surf" ) |
|
|
|
|
{ runParams.resize(DATASETS_COUNT); } |
|
|
|
|
|
|
|
|
|
protected: |
|
|
|
|