|
|
|
@ -8,99 +8,63 @@ void focalsFromHomography(const Mat& H, double &f0, double &f1, bool &f0_ok, boo |
|
|
|
|
{ |
|
|
|
|
CV_Assert(H.type() == CV_64F && H.size() == Size(3, 3)); |
|
|
|
|
|
|
|
|
|
const double h[9] = |
|
|
|
|
{ |
|
|
|
|
H.at<double>(0, 0), H.at<double>(0, 1), H.at<double>(0, 2), |
|
|
|
|
H.at<double>(1, 0), H.at<double>(1, 1), H.at<double>(1, 2), |
|
|
|
|
H.at<double>(2, 0), H.at<double>(2, 1), H.at<double>(2, 2) |
|
|
|
|
}; |
|
|
|
|
const double* h = reinterpret_cast<const double*>(H.data); |
|
|
|
|
|
|
|
|
|
double d1, d2; // Denominators
|
|
|
|
|
double v1, v2; // Focal squares value candidates
|
|
|
|
|
|
|
|
|
|
f1_ok = true; |
|
|
|
|
double denom1 = h[6] * h[7]; |
|
|
|
|
double denom2 = (h[7] - h[6]) * (h[7] + h[6]); |
|
|
|
|
if (max(abs(denom1), abs(denom2)) < 1e-5) |
|
|
|
|
f1_ok = false; |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
double val1 = -(h[0] * h[1] + h[3] * h[4]) / denom1; |
|
|
|
|
double val2 = (h[0] * h[0] + h[3] * h[3] - h[1] * h[1] - h[4] * h[4]) / denom2; |
|
|
|
|
if (val1 < val2) |
|
|
|
|
swap(val1, val2); |
|
|
|
|
if (val1 > 0 && val2 > 0) |
|
|
|
|
f1 = sqrt(abs(denom1) > abs(denom2) ? val1 : val2); |
|
|
|
|
else if (val1 > 0) |
|
|
|
|
f1 = sqrt(val1); |
|
|
|
|
else |
|
|
|
|
f1_ok = false; |
|
|
|
|
} |
|
|
|
|
d1 = h[6] * h[7]; |
|
|
|
|
d2 = (h[7] - h[6]) * (h[7] + h[6]); |
|
|
|
|
v1 = -(h[0] * h[1] + h[3] * h[4]) / d1; |
|
|
|
|
v2 = (h[0] * h[0] + h[3] * h[3] - h[1] * h[1] - h[4] * h[4]) / d2; |
|
|
|
|
if (v1 < v2) swap(v1, v2); |
|
|
|
|
if (v1 > 0 && v2 > 0) f1 = sqrt(abs(d1) > abs(d2) ? v1 : v2); |
|
|
|
|
else if (v1 > 0) f1 = sqrt(v1); |
|
|
|
|
else f1_ok = false; |
|
|
|
|
|
|
|
|
|
f0_ok = true; |
|
|
|
|
denom1 = h[0] * h[3] + h[1] * h[4]; |
|
|
|
|
denom2 = h[0] * h[0] + h[1] * h[1] - h[3] * h[3] - h[4] * h[4]; |
|
|
|
|
if (max(abs(denom1), abs(denom2)) < 1e-5) |
|
|
|
|
f0_ok = false; |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
double val1 = -h[2] * h[5] / denom1; |
|
|
|
|
double val2 = (h[5] * h[5] - h[2] * h[2]) / denom2; |
|
|
|
|
if (val1 < val2) |
|
|
|
|
swap(val1, val2); |
|
|
|
|
if (val1 > 0 && val2 > 0) |
|
|
|
|
f0 = sqrt(abs(denom1) > abs(denom2) ? val1 : val2); |
|
|
|
|
else if (val1 > 0) |
|
|
|
|
f0 = sqrt(val1); |
|
|
|
|
else |
|
|
|
|
f0_ok = false; |
|
|
|
|
} |
|
|
|
|
d1 = h[0] * h[3] + h[1] * h[4]; |
|
|
|
|
d2 = h[0] * h[0] + h[1] * h[1] - h[3] * h[3] - h[4] * h[4]; |
|
|
|
|
v1 = -h[2] * h[5] / d1; |
|
|
|
|
v2 = (h[5] * h[5] - h[2] * h[2]) / d2; |
|
|
|
|
if (v1 < v2) swap(v1, v2); |
|
|
|
|
if (v1 > 0 && v2 > 0) f0 = sqrt(abs(d1) > abs(d2) ? v1 : v2); |
|
|
|
|
else if (v1 > 0) f0 = sqrt(v1); |
|
|
|
|
else f0_ok = false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool focalsFromFundamental(const Mat &F, double &f0, double &f1) |
|
|
|
|
double estimateFocal(const vector<Mat> &images, const vector<ImageFeatures> &/*features*/,
|
|
|
|
|
const vector<MatchesInfo> &pairwise_matches) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(F.type() == CV_64F); |
|
|
|
|
CV_Assert(F.size() == Size(3, 3)); |
|
|
|
|
|
|
|
|
|
Mat Ft = F.t(); |
|
|
|
|
Mat k = Mat::zeros(3, 1, CV_64F); |
|
|
|
|
k.at<double>(2, 0) = 1.f; |
|
|
|
|
const int num_images = static_cast<int>(images.size()); |
|
|
|
|
|
|
|
|
|
// 1. Compute quantities
|
|
|
|
|
double a = normL2sq(F*Ft*k) / normL2sq(Ft*k); |
|
|
|
|
double b = normL2sq(Ft*F*k) / normL2sq(F*k); |
|
|
|
|
double c = sqr(k.dot(F*k)) / (normL2sq(Ft*k) * normL2sq(F*k)); |
|
|
|
|
double d = k.dot(F*Ft*F*k) / k.dot(F*k); |
|
|
|
|
double A = 1/c + a - 2*d; |
|
|
|
|
double B = 1/c + b - 2*d; |
|
|
|
|
double P = 2*(1/c - 2*d + 0.5*normL2sq(F)); |
|
|
|
|
double Q = -(A + B)/c + 0.5*(normL2sq(F*Ft) - 0.5*sqr(normL2sq(F))); |
|
|
|
|
|
|
|
|
|
// 2. Solve quadratic equation Z*Z*a_ + Z*b_ + c_ = 0
|
|
|
|
|
double a_ = 1 + c*P; |
|
|
|
|
double b_ = -(c*P*P + 2*P + 4*c*Q); |
|
|
|
|
double c_ = P*P + 4*c*P*Q + 12*A*B; |
|
|
|
|
double D = b_*b_ - 4*a_*c_; |
|
|
|
|
if (abs(D) < 1e-5) |
|
|
|
|
D = 0; |
|
|
|
|
else if (D < 0) |
|
|
|
|
return false; |
|
|
|
|
double D_sqrt = sqrt(D); |
|
|
|
|
double Z0 = (-b_ - D_sqrt) / (2*a_); |
|
|
|
|
double Z1 = (-b_ + D_sqrt) / (2*a_); |
|
|
|
|
|
|
|
|
|
// 3. Choose solution
|
|
|
|
|
double w0 = abs(Z0*Z0*Z0 - 3*P*Z0*Z0 + 2*(P*P + 2*Q)*Z0 - 4*(P*Q + 4*A*B/c)); |
|
|
|
|
double w1 = abs(Z1*Z1*Z1 - 3*P*Z1*Z1 + 2*(P*P + 2*Q)*Z1 - 4*(P*Q + 4*A*B/c)); |
|
|
|
|
double Z = Z0; |
|
|
|
|
if (w1 < w0) |
|
|
|
|
Z = Z1; |
|
|
|
|
vector<double> focals; |
|
|
|
|
for (int src_idx = 0; src_idx < num_images; ++src_idx) |
|
|
|
|
{ |
|
|
|
|
for (int dst_idx = 0; dst_idx < num_images; ++dst_idx) |
|
|
|
|
{ |
|
|
|
|
const MatchesInfo &m = pairwise_matches[src_idx*num_images + dst_idx]; |
|
|
|
|
if (m.H.empty()) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
// 4.
|
|
|
|
|
double X = -1/c*(1 + 2*B/(Z - P)); |
|
|
|
|
double Y = -1/c*(1 + 2*A/(Z - P)); |
|
|
|
|
double f0, f1; |
|
|
|
|
bool f0ok, f1ok; |
|
|
|
|
focalsFromHomography(m.H, f0, f1, f0ok, f1ok); |
|
|
|
|
if (f0ok && f1ok) focals.push_back(sqrt(f0*f1)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// 5. Compute focal lengths
|
|
|
|
|
f0 = 1/sqrt(1 + X/normL2sq(Ft*k)); |
|
|
|
|
f1 = 1/sqrt(1 + Y/normL2sq(F*k)); |
|
|
|
|
if (focals.size() + 1 >= images.size()) |
|
|
|
|
{ |
|
|
|
|
nth_element(focals.begin(), focals.end(), focals.begin() + focals.size()/2); |
|
|
|
|
return focals[focals.size()/2]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
LOGLN("Can't estimate focal length, will use naive approach"); |
|
|
|
|
double focals_sum = 0; |
|
|
|
|
for (int i = 0; i < num_images; ++i) |
|
|
|
|
focals_sum += images[i].rows + images[i].cols; |
|
|
|
|
return focals_sum / num_images; |
|
|
|
|
} |
|
|
|
|