Merge pull request #687 from vpisarev:fast_lin_svm2

pull/683/merge
Vadim Pisarevsky 12 years ago committed by OpenCV Buildbot
commit 5febc07b6b
  1. 18
      modules/ml/src/svm.cpp
  2. 4
      modules/ml/test/test_mltests2.cpp
  3. 89
      modules/ml/test/test_save_load.cpp

@ -1551,25 +1551,28 @@ void CvSVM::optimize_linear_svm()
return; return;
int var_count = get_var_count(); int var_count = get_var_count();
int sample_size = (int)(var_count*sizeof(sv[0][0])); cv::AutoBuffer<double> vbuf(var_count);
double* v = vbuf;
float** new_sv = (float**)cvMemStorageAlloc(storage, df_count*sizeof(new_sv[0])); float** new_sv = (float**)cvMemStorageAlloc(storage, df_count*sizeof(new_sv[0]));
for( i = 0; i < df_count; i++ ) for( i = 0; i < df_count; i++ )
{ {
new_sv[i] = (float*)cvMemStorageAlloc(storage, sample_size); new_sv[i] = (float*)cvMemStorageAlloc(storage, var_count*sizeof(new_sv[i][0]));
float* dst = new_sv[i]; float* dst = new_sv[i];
memset(dst, 0, sample_size); memset(v, 0, var_count*sizeof(v[0]));
int j, k, sv_count = df[i].sv_count; int j, k, sv_count = df[i].sv_count;
for( j = 0; j < sv_count; j++ ) for( j = 0; j < sv_count; j++ )
{ {
const float* src = class_count > 1 ? sv[df[i].sv_index[j]] : sv[j]; const float* src = class_count > 1 && df[i].sv_index ? sv[df[i].sv_index[j]] : sv[j];
double a = df[i].alpha[j]; double a = df[i].alpha[j];
for( k = 0; k < var_count; k++ ) for( k = 0; k < var_count; k++ )
dst[k] = (float)(dst[k] + src[k]*a); v[k] += src[k]*a;
} }
for( k = 0; k < var_count; k++ )
dst[k] = (float)v[k];
df[i].sv_count = 1; df[i].sv_count = 1;
df[i].alpha[0] = 1.; df[i].alpha[0] = 1.;
if( class_count > 1 ) if( class_count > 1 && df[i].sv_index )
df[i].sv_index[0] = i; df[i].sv_index[0] = i;
} }
@ -2570,7 +2573,8 @@ void CvSVM::read( CvFileStorage* fs, CvFileNode* svm_node )
CV_NEXT_SEQ_ELEM( df_node->data.seq->elem_size, reader ); CV_NEXT_SEQ_ELEM( df_node->data.seq->elem_size, reader );
} }
optimize_linear_svm(); if( cvReadIntByName(fs, svm_node, "optimize_linear", 1) != 0 )
optimize_linear_svm();
create_kernel(); create_kernel();
__END__; __END__;

@ -769,7 +769,11 @@ void CV_MLBaseTest::load( const char* filename )
else if( !modelName.compare(CV_KNEAREST) ) else if( !modelName.compare(CV_KNEAREST) )
knearest->load( filename ); knearest->load( filename );
else if( !modelName.compare(CV_SVM) ) else if( !modelName.compare(CV_SVM) )
{
delete svm;
svm = new CvSVM;
svm->load( filename ); svm->load( filename );
}
else if( !modelName.compare(CV_ANN) ) else if( !modelName.compare(CV_ANN) )
ann->load( filename ); ann->load( filename );
else if( !modelName.compare(CV_DTREE) ) else if( !modelName.compare(CV_DTREE) )

@ -82,32 +82,53 @@ int CV_SLMLTest::validate_test_results( int testCaseIdx )
int code = cvtest::TS::OK; int code = cvtest::TS::OK;
// 1. compare files // 1. compare files
ifstream f1( fname1.c_str() ), f2( fname2.c_str() ); FILE *fs1 = fopen(fname1.c_str(), "rb"), *fs2 = fopen(fname2.c_str(), "rb");
string s1, s2; size_t sz1 = 0, sz2 = 0;
int lineIdx = 0; if( !fs1 || !fs2 )
CV_Assert( f1.is_open() && f2.is_open() ); code = cvtest::TS::FAIL_MISSING_TEST_DATA;
for( ; !f1.eof() && !f2.eof(); lineIdx++ ) if( code >= 0 )
{ {
getline( f1, s1 ); fseek(fs1, 0, SEEK_END); fseek(fs2, 0, SEEK_END);
getline( f2, s2 ); sz1 = ftell(fs1);
if( s1.compare(s2) ) sz2 = ftell(fs2);
fseek(fs1, 0, SEEK_SET); fseek(fs2, 0, SEEK_SET);
}
if( sz1 != sz2 )
code = cvtest::TS::FAIL_INVALID_OUTPUT;
if( code >= 0 )
{
const int BUFSZ = 1024;
uchar buf1[BUFSZ], buf2[BUFSZ];
for( size_t pos = 0; pos < sz1; )
{ {
ts->printf( cvtest::TS::LOG, "first and second saved files differ in %n-line; first %n line: %s; second %n-line: %s", size_t r1 = fread(buf1, 1, BUFSZ, fs1);
lineIdx, lineIdx, s1.c_str(), lineIdx, s2.c_str() ); size_t r2 = fread(buf2, 1, BUFSZ, fs2);
code = cvtest::TS::FAIL_INVALID_OUTPUT; if( r1 != r2 || memcmp(buf1, buf2, r1) != 0 )
{
ts->printf( cvtest::TS::LOG,
"in test case %d first (%s) and second (%s) saved files differ in %d-th kb\n",
testCaseIdx, fname1.c_str(), fname2.c_str(),
(int)pos );
code = cvtest::TS::FAIL_INVALID_OUTPUT;
break;
}
pos += r1;
} }
} }
if( !f1.eof() || !f2.eof() )
if(fs1)
fclose(fs1);
if(fs2)
fclose(fs2);
// delete temporary files
if( code >= 0 )
{ {
ts->printf( cvtest::TS::LOG, "in test case %d first and second saved files differ in %n-line; first %n line: %s; second %n-line: %s", remove( fname1.c_str() );
testCaseIdx, lineIdx, lineIdx, s1.c_str(), lineIdx, s2.c_str() ); remove( fname2.c_str() );
code = cvtest::TS::FAIL_INVALID_OUTPUT;
} }
f1.close();
f2.close();
// delete temporary files
remove( fname1.c_str() );
remove( fname2.c_str() );
// 2. compare responses // 2. compare responses
CV_Assert( test_resps1.size() == test_resps2.size() ); CV_Assert( test_resps1.size() == test_resps2.size() );
@ -133,4 +154,32 @@ TEST(ML_Boost, save_load) { CV_SLMLTest test( CV_BOOST ); test.safe_run(); }
TEST(ML_RTrees, save_load) { CV_SLMLTest test( CV_RTREES ); test.safe_run(); } TEST(ML_RTrees, save_load) { CV_SLMLTest test( CV_RTREES ); test.safe_run(); }
TEST(ML_ERTrees, save_load) { CV_SLMLTest test( CV_ERTREES ); test.safe_run(); } TEST(ML_ERTrees, save_load) { CV_SLMLTest test( CV_ERTREES ); test.safe_run(); }
TEST(DISABLED_ML_SVM, linear_save_load)
{
CvSVM svm1, svm2, svm3;
svm1.load("SVM45_X_38-1.xml");
svm2.load("SVM45_X_38-2.xml");
string tname = tempfile("a.xml");
svm2.save(tname.c_str());
svm3.load(tname.c_str());
ASSERT_EQ(svm1.get_var_count(), svm2.get_var_count());
ASSERT_EQ(svm1.get_var_count(), svm3.get_var_count());
int m = 10000, n = svm1.get_var_count();
Mat samples(m, n, CV_32F), r1, r2, r3;
randu(samples, 0., 1.);
svm1.predict(samples, r1);
svm2.predict(samples, r2);
svm3.predict(samples, r3);
double eps = 1e-4;
EXPECT_LE(norm(r1, r2, NORM_INF), eps);
EXPECT_LE(norm(r1, r3, NORM_INF), eps);
remove(tname.c_str());
}
/* End of file. */ /* End of file. */

Loading…
Cancel
Save