mirror of https://github.com/opencv/opencv.git
parent
9ddb23e025
commit
5f3ee657ce
6 changed files with 104 additions and 169 deletions
@ -0,0 +1,97 @@ |
||||
#ifndef KDTREE_H |
||||
#define KDTREE_H |
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace ml |
||||
{ |
||||
|
||||
/*!
|
||||
Fast Nearest Neighbor Search Class. |
||||
|
||||
The class implements D. Lowe BBF (Best-Bin-First) algorithm for the last |
||||
approximate (or accurate) nearest neighbor search in multi-dimensional spaces. |
||||
|
||||
First, a set of vectors is passed to KDTree::KDTree() constructor |
||||
or KDTree::build() method, where it is reordered. |
||||
|
||||
Then arbitrary vectors can be passed to KDTree::findNearest() methods, which |
||||
find the K nearest neighbors among the vectors from the initial set. |
||||
The user can balance between the speed and accuracy of the search by varying Emax |
||||
parameter, which is the number of leaves that the algorithm checks. |
||||
The larger parameter values yield more accurate results at the expense of lower processing speed. |
||||
|
||||
\code |
||||
KDTree T(points, false); |
||||
const int K = 3, Emax = INT_MAX; |
||||
int idx[K]; |
||||
float dist[K]; |
||||
T.findNearest(query_vec, K, Emax, idx, 0, dist); |
||||
CV_Assert(dist[0] <= dist[1] && dist[1] <= dist[2]); |
||||
\endcode |
||||
*/ |
||||
class CV_EXPORTS_W KDTree |
||||
{ |
||||
public: |
||||
/*!
|
||||
The node of the search tree. |
||||
*/ |
||||
struct Node |
||||
{ |
||||
Node() : idx(-1), left(-1), right(-1), boundary(0.f) {} |
||||
Node(int _idx, int _left, int _right, float _boundary) |
||||
: idx(_idx), left(_left), right(_right), boundary(_boundary) {} |
||||
|
||||
//! split dimension; >=0 for nodes (dim), < 0 for leaves (index of the point)
|
||||
int idx; |
||||
//! node indices of the left and the right branches
|
||||
int left, right; |
||||
//! go to the left if query_vec[node.idx]<=node.boundary, otherwise go to the right
|
||||
float boundary; |
||||
}; |
||||
|
||||
//! the default constructor
|
||||
CV_WRAP KDTree(); |
||||
//! the full constructor that builds the search tree
|
||||
CV_WRAP KDTree(InputArray points, bool copyAndReorderPoints = false); |
||||
//! the full constructor that builds the search tree
|
||||
CV_WRAP KDTree(InputArray points, InputArray _labels, |
||||
bool copyAndReorderPoints = false); |
||||
//! builds the search tree
|
||||
CV_WRAP void build(InputArray points, bool copyAndReorderPoints = false); |
||||
//! builds the search tree
|
||||
CV_WRAP void build(InputArray points, InputArray labels, |
||||
bool copyAndReorderPoints = false); |
||||
//! finds the K nearest neighbors of "vec" while looking at Emax (at most) leaves
|
||||
CV_WRAP int findNearest(InputArray vec, int K, int Emax, |
||||
OutputArray neighborsIdx, |
||||
OutputArray neighbors = noArray(), |
||||
OutputArray dist = noArray(), |
||||
OutputArray labels = noArray()) const; |
||||
//! finds all the points from the initial set that belong to the specified box
|
||||
CV_WRAP void findOrthoRange(InputArray minBounds, |
||||
InputArray maxBounds, |
||||
OutputArray neighborsIdx, |
||||
OutputArray neighbors = noArray(), |
||||
OutputArray labels = noArray()) const; |
||||
//! returns vectors with the specified indices
|
||||
CV_WRAP void getPoints(InputArray idx, OutputArray pts, |
||||
OutputArray labels = noArray()) const; |
||||
//! return a vector with the specified index
|
||||
const float* getPoint(int ptidx, int* label = 0) const; |
||||
//! returns the search space dimensionality
|
||||
CV_WRAP int dims() const; |
||||
|
||||
std::vector<Node> nodes; //!< all the tree nodes
|
||||
CV_PROP Mat points; //!< all the points. It can be a reordered copy of the input vector set or the original vector set.
|
||||
CV_PROP std::vector<int> labels; //!< the parallel array of labels.
|
||||
CV_PROP int maxDepth; //!< maximum depth of the search tree. Do not modify it
|
||||
CV_PROP_RW int normType; //!< type of the distance (cv::NORM_L1 or cv::NORM_L2) used for search. Initially set to cv::NORM_L2, but you can modify it
|
||||
}; |
||||
|
||||
} |
||||
} |
||||
|
||||
#endif |
Loading…
Reference in new issue