mirror of https://github.com/opencv/opencv.git
parent
e46e13a775
commit
5e38cf8042
8 changed files with 2158 additions and 36 deletions
File diff suppressed because one or more lines are too long
@ -0,0 +1,418 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
// Copyright (c) 2010, Paul Furgale, Chi Hay Tong |
||||
// |
||||
// The original code was written by Paul Furgale and Chi Hay Tong |
||||
// and later optimized and prepared for integration into OpenCV by Itseez. |
||||
// |
||||
//M*/ |
||||
|
||||
#include <thrust/sort.h> |
||||
|
||||
#include "opencv2/gpu/device/common.hpp" |
||||
#include "opencv2/gpu/device/utility.hpp" |
||||
#include "opencv2/gpu/device/functional.hpp" |
||||
|
||||
namespace cv { namespace gpu { namespace device |
||||
{ |
||||
namespace orb |
||||
{ |
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
||||
// cull |
||||
|
||||
int cull_gpu(int* loc, float* response, int size, int n_points) |
||||
{ |
||||
thrust::device_ptr<int> loc_ptr(loc); |
||||
thrust::device_ptr<float> response_ptr(response); |
||||
|
||||
thrust::sort_by_key(response_ptr, response_ptr + size, loc_ptr, thrust::greater<float>()); |
||||
|
||||
return n_points; |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
||||
// HarrisResponses |
||||
|
||||
__global__ void HarrisResponses(const PtrStepb img, const short2* loc_, float* response, const int npoints, const int blockSize, const float harris_k) |
||||
{ |
||||
__shared__ int smem[8 * 32]; |
||||
|
||||
volatile int* srow = smem + threadIdx.y * blockDim.x; |
||||
|
||||
const int ptidx = blockIdx.x * blockDim.y + threadIdx.y; |
||||
|
||||
if (ptidx < npoints) |
||||
{ |
||||
const short2 loc = loc_[ptidx]; |
||||
|
||||
const int r = blockSize / 2; |
||||
const int x0 = loc.x - r; |
||||
const int y0 = loc.y - r; |
||||
|
||||
int a = 0, b = 0, c = 0; |
||||
|
||||
for (int ind = threadIdx.x; ind < blockSize * blockSize; ind += blockDim.x) |
||||
{ |
||||
const int i = ind / blockSize; |
||||
const int j = ind % blockSize; |
||||
|
||||
int Ix = (img(y0 + i, x0 + j + 1) - img(y0 + i, x0 + j - 1)) * 2 + |
||||
(img(y0 + i - 1, x0 + j + 1) - img(y0 + i - 1, x0 + j - 1)) + |
||||
(img(y0 + i + 1, x0 + j + 1) - img(y0 + i + 1, x0 + j - 1)); |
||||
|
||||
int Iy = (img(y0 + i + 1, x0 + j) - img(y0 + i - 1, x0 + j)) * 2 + |
||||
(img(y0 + i + 1, x0 + j - 1) - img(y0 + i - 1, x0 + j - 1)) + |
||||
(img(y0 + i + 1, x0 + j + 1) - img(y0 + i - 1, x0 + j + 1)); |
||||
|
||||
a += Ix * Ix; |
||||
b += Iy * Iy; |
||||
c += Ix * Iy; |
||||
} |
||||
|
||||
reduce<32>(srow, a, threadIdx.x, plus<volatile int>()); |
||||
reduce<32>(srow, b, threadIdx.x, plus<volatile int>()); |
||||
reduce<32>(srow, c, threadIdx.x, plus<volatile int>()); |
||||
|
||||
if (threadIdx.x == 0) |
||||
{ |
||||
float scale = (1 << 2) * blockSize * 255.0f; |
||||
scale = 1.0f / scale; |
||||
const float scale_sq_sq = scale * scale * scale * scale; |
||||
|
||||
response[ptidx] = ((float)a * b - (float)c * c - harris_k * ((float)a + b) * ((float)a + b)) * scale_sq_sq; |
||||
} |
||||
} |
||||
} |
||||
|
||||
void HarrisResponses_gpu(DevMem2Db img, const short2* loc, float* response, const int npoints, int blockSize, float harris_k, cudaStream_t stream) |
||||
{ |
||||
dim3 block(32, 8); |
||||
|
||||
dim3 grid; |
||||
grid.x = divUp(npoints, block.y); |
||||
|
||||
HarrisResponses<<<grid, block, 0, stream>>>(img, loc, response, npoints, blockSize, harris_k); |
||||
|
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
||||
// IC_Angle |
||||
|
||||
__constant__ int c_u_max[32]; |
||||
|
||||
void loadUMax(const int* u_max, int count) |
||||
{ |
||||
cudaSafeCall( cudaMemcpyToSymbol(c_u_max, u_max, count * sizeof(int)) ); |
||||
} |
||||
|
||||
__global__ void IC_Angle(const PtrStepb image, const short2* loc_, float* angle, const int npoints, const int half_k) |
||||
{ |
||||
__shared__ int smem[8 * 32]; |
||||
|
||||
volatile int* srow = smem + threadIdx.y * blockDim.x; |
||||
|
||||
const int ptidx = blockIdx.x * blockDim.y + threadIdx.y; |
||||
|
||||
if (ptidx < npoints) |
||||
{ |
||||
int m_01 = 0, m_10 = 0; |
||||
|
||||
const short2 loc = loc_[ptidx]; |
||||
|
||||
// Treat the center line differently, v=0 |
||||
for (int u = threadIdx.x - half_k; u <= half_k; u += blockDim.x) |
||||
m_10 += u * image(loc.y, loc.x + u); |
||||
|
||||
reduce<32>(srow, m_10, threadIdx.x, plus<volatile int>()); |
||||
|
||||
for (int v = 1; v <= half_k; ++v) |
||||
{ |
||||
// Proceed over the two lines |
||||
int v_sum = 0; |
||||
int m_sum = 0; |
||||
const int d = c_u_max[v]; |
||||
|
||||
for (int u = threadIdx.x - d; u <= d; u += blockDim.x) |
||||
{ |
||||
int val_plus = image(loc.y + v, loc.x + u); |
||||
int val_minus = image(loc.y - v, loc.x + u); |
||||
|
||||
v_sum += (val_plus - val_minus); |
||||
m_sum += u * (val_plus + val_minus); |
||||
} |
||||
|
||||
reduce<32>(srow, v_sum, threadIdx.x, plus<volatile int>()); |
||||
reduce<32>(srow, m_sum, threadIdx.x, plus<volatile int>()); |
||||
|
||||
m_10 += m_sum; |
||||
m_01 += v * v_sum; |
||||
} |
||||
|
||||
if (threadIdx.x == 0) |
||||
{ |
||||
float kp_dir = ::atan2f((float)m_01, (float)m_10); |
||||
kp_dir += (kp_dir < 0) * (2.0f * CV_PI); |
||||
kp_dir *= 180.0f / CV_PI; |
||||
|
||||
angle[ptidx] = kp_dir; |
||||
} |
||||
} |
||||
} |
||||
|
||||
void IC_Angle_gpu(DevMem2Db image, const short2* loc, float* angle, int npoints, int half_k, cudaStream_t stream) |
||||
{ |
||||
dim3 block(32, 8); |
||||
|
||||
dim3 grid; |
||||
grid.x = divUp(npoints, block.y); |
||||
|
||||
IC_Angle<<<grid, block, 0, stream>>>(image, loc, angle, npoints, half_k); |
||||
|
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
||||
// computeOrbDescriptor |
||||
|
||||
template <int WTA_K> struct OrbDescriptor; |
||||
|
||||
#define GET_VALUE(idx) \ |
||||
img(loc.y + __float2int_rn(pattern_x[idx] * sina + pattern_y[idx] * cosa), \ |
||||
loc.x + __float2int_rn(pattern_x[idx] * cosa - pattern_y[idx] * sina)) |
||||
|
||||
template <> struct OrbDescriptor<2> |
||||
{ |
||||
__device__ static int calc(const PtrStepb& img, short2 loc, const int* pattern_x, const int* pattern_y, float sina, float cosa, int i) |
||||
{ |
||||
pattern_x += 16 * i; |
||||
pattern_y += 16 * i; |
||||
|
||||
int t0, t1, val; |
||||
|
||||
t0 = GET_VALUE(0); t1 = GET_VALUE(1); |
||||
val = t0 < t1; |
||||
|
||||
t0 = GET_VALUE(2); t1 = GET_VALUE(3); |
||||
val |= (t0 < t1) << 1; |
||||
|
||||
t0 = GET_VALUE(4); t1 = GET_VALUE(5); |
||||
val |= (t0 < t1) << 2; |
||||
|
||||
t0 = GET_VALUE(6); t1 = GET_VALUE(7); |
||||
val |= (t0 < t1) << 3; |
||||
|
||||
t0 = GET_VALUE(8); t1 = GET_VALUE(9); |
||||
val |= (t0 < t1) << 4; |
||||
|
||||
t0 = GET_VALUE(10); t1 = GET_VALUE(11); |
||||
val |= (t0 < t1) << 5; |
||||
|
||||
t0 = GET_VALUE(12); t1 = GET_VALUE(13); |
||||
val |= (t0 < t1) << 6; |
||||
|
||||
t0 = GET_VALUE(14); t1 = GET_VALUE(15); |
||||
val |= (t0 < t1) << 7; |
||||
|
||||
return val; |
||||
} |
||||
}; |
||||
|
||||
template <> struct OrbDescriptor<3> |
||||
{ |
||||
__device__ static int calc(const PtrStepb& img, short2 loc, const int* pattern_x, const int* pattern_y, float sina, float cosa, int i) |
||||
{ |
||||
pattern_x += 12 * i; |
||||
pattern_y += 12 * i; |
||||
|
||||
int t0, t1, t2, val; |
||||
|
||||
t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2); |
||||
val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0); |
||||
|
||||
t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5); |
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2; |
||||
|
||||
t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8); |
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4; |
||||
|
||||
t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11); |
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6; |
||||
|
||||
return val; |
||||
} |
||||
}; |
||||
|
||||
template <> struct OrbDescriptor<4> |
||||
{ |
||||
__device__ static int calc(const PtrStepb& img, short2 loc, const int* pattern_x, const int* pattern_y, float sina, float cosa, int i) |
||||
{ |
||||
pattern_x += 16 * i; |
||||
pattern_y += 16 * i; |
||||
|
||||
int t0, t1, t2, t3, k, val; |
||||
int a, b; |
||||
|
||||
t0 = GET_VALUE(0); t1 = GET_VALUE(1); |
||||
t2 = GET_VALUE(2); t3 = GET_VALUE(3); |
||||
a = 0, b = 2; |
||||
if( t1 > t0 ) t0 = t1, a = 1; |
||||
if( t3 > t2 ) t2 = t3, b = 3; |
||||
k = t0 > t2 ? a : b; |
||||
val = k; |
||||
|
||||
t0 = GET_VALUE(4); t1 = GET_VALUE(5); |
||||
t2 = GET_VALUE(6); t3 = GET_VALUE(7); |
||||
a = 0, b = 2; |
||||
if( t1 > t0 ) t0 = t1, a = 1; |
||||
if( t3 > t2 ) t2 = t3, b = 3; |
||||
k = t0 > t2 ? a : b; |
||||
val |= k << 2; |
||||
|
||||
t0 = GET_VALUE(8); t1 = GET_VALUE(9); |
||||
t2 = GET_VALUE(10); t3 = GET_VALUE(11); |
||||
a = 0, b = 2; |
||||
if( t1 > t0 ) t0 = t1, a = 1; |
||||
if( t3 > t2 ) t2 = t3, b = 3; |
||||
k = t0 > t2 ? a : b; |
||||
val |= k << 4; |
||||
|
||||
t0 = GET_VALUE(12); t1 = GET_VALUE(13); |
||||
t2 = GET_VALUE(14); t3 = GET_VALUE(15); |
||||
a = 0, b = 2; |
||||
if( t1 > t0 ) t0 = t1, a = 1; |
||||
if( t3 > t2 ) t2 = t3, b = 3; |
||||
k = t0 > t2 ? a : b; |
||||
val |= k << 6; |
||||
|
||||
return val; |
||||
} |
||||
}; |
||||
|
||||
#undef GET_VALUE |
||||
|
||||
template <int WTA_K> |
||||
__global__ void computeOrbDescriptor(const PtrStepb img, const short2* loc, const float* angle_, const int npoints, |
||||
const int* pattern_x, const int* pattern_y, PtrStepb desc, int dsize) |
||||
{ |
||||
const int descidx = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int ptidx = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (ptidx < npoints && descidx < dsize) |
||||
{ |
||||
float angle = angle_[ptidx]; |
||||
angle *= (float)(CV_PI / 180.f); |
||||
|
||||
float sina, cosa; |
||||
::sincosf(angle, &sina, &cosa); |
||||
|
||||
desc.ptr(ptidx)[descidx] = OrbDescriptor<WTA_K>::calc(img, loc[ptidx], pattern_x, pattern_y, sina, cosa, descidx); |
||||
} |
||||
} |
||||
|
||||
void computeOrbDescriptor_gpu(PtrStepb img, const short2* loc, const float* angle, const int npoints, |
||||
const int* pattern_x, const int* pattern_y, PtrStepb desc, int dsize, int WTA_K, cudaStream_t stream) |
||||
{ |
||||
dim3 block(32, 8); |
||||
|
||||
dim3 grid; |
||||
grid.x = divUp(dsize, block.x); |
||||
grid.y = divUp(npoints, block.y); |
||||
|
||||
switch (WTA_K) |
||||
{ |
||||
case 2: |
||||
computeOrbDescriptor<2><<<grid, block, 0, stream>>>(img, loc, angle, npoints, pattern_x, pattern_y, desc, dsize); |
||||
break; |
||||
|
||||
case 3: |
||||
computeOrbDescriptor<3><<<grid, block, 0, stream>>>(img, loc, angle, npoints, pattern_x, pattern_y, desc, dsize); |
||||
break; |
||||
|
||||
case 4: |
||||
computeOrbDescriptor<4><<<grid, block, 0, stream>>>(img, loc, angle, npoints, pattern_x, pattern_y, desc, dsize); |
||||
break; |
||||
} |
||||
|
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
||||
// mergeLocation |
||||
|
||||
__global__ void mergeLocation(const short2* loc_, float* x, float* y, const int npoints, float scale) |
||||
{ |
||||
const int ptidx = blockIdx.x * blockDim.x + threadIdx.x; |
||||
|
||||
if (ptidx < npoints) |
||||
{ |
||||
short2 loc = loc_[ptidx]; |
||||
|
||||
x[ptidx] = loc.x * scale; |
||||
y[ptidx] = loc.y * scale; |
||||
} |
||||
} |
||||
|
||||
void mergeLocation_gpu(const short2* loc, float* x, float* y, int npoints, float scale, cudaStream_t stream) |
||||
{ |
||||
dim3 block(256); |
||||
|
||||
dim3 grid; |
||||
grid.x = divUp(npoints, block.x); |
||||
|
||||
mergeLocation<<<grid, block, 0, stream>>>(loc, x, y, npoints, scale); |
||||
|
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
} |
||||
}}} |
@ -0,0 +1,171 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other GpuMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or bpied warranties, including, but not limited to, the bpied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
using namespace std; |
||||
|
||||
#if !defined (HAVE_CUDA) |
||||
|
||||
cv::gpu::FAST_GPU::FAST_GPU(int, bool, double) { throw_nogpu(); } |
||||
void cv::gpu::FAST_GPU::operator ()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } |
||||
void cv::gpu::FAST_GPU::operator ()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); } |
||||
void cv::gpu::FAST_GPU::downloadKeypoints(const GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); } |
||||
void cv::gpu::FAST_GPU::convertKeypoints(const Mat&, std::vector<KeyPoint>&) { throw_nogpu(); } |
||||
void cv::gpu::FAST_GPU::release() { throw_nogpu(); } |
||||
int cv::gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat&, const GpuMat&) { throw_nogpu(); return 0; } |
||||
int cv::gpu::FAST_GPU::getKeyPoints(GpuMat&) { throw_nogpu(); return 0; } |
||||
|
||||
#else /* !defined (HAVE_CUDA) */ |
||||
|
||||
cv::gpu::FAST_GPU::FAST_GPU(int _threshold, bool _nonmaxSupression, double _keypointsRatio) :
|
||||
nonmaxSupression(_nonmaxSupression), threshold(_threshold), keypointsRatio(_keypointsRatio), count_(0) |
||||
{ |
||||
} |
||||
|
||||
void cv::gpu::FAST_GPU::operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints) |
||||
{ |
||||
if (image.empty()) |
||||
return; |
||||
|
||||
(*this)(image, mask, d_keypoints_); |
||||
downloadKeypoints(d_keypoints_, keypoints); |
||||
} |
||||
|
||||
void cv::gpu::FAST_GPU::downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints) |
||||
{ |
||||
if (d_keypoints.empty()) |
||||
return; |
||||
|
||||
Mat h_keypoints(d_keypoints); |
||||
convertKeypoints(h_keypoints, keypoints); |
||||
} |
||||
|
||||
void cv::gpu::FAST_GPU::convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints) |
||||
{ |
||||
if (h_keypoints.empty()) |
||||
return; |
||||
|
||||
CV_Assert(h_keypoints.rows == ROWS_COUNT && h_keypoints.elemSize() == 4); |
||||
|
||||
int npoints = h_keypoints.cols; |
||||
|
||||
keypoints.resize(npoints); |
||||
|
||||
const short2* loc_row = h_keypoints.ptr<short2>(LOCATION_ROW); |
||||
const float* response_row = h_keypoints.ptr<float>(RESPONSE_ROW); |
||||
|
||||
for (int i = 0; i < npoints; ++i) |
||||
{ |
||||
KeyPoint kp(loc_row[i].x, loc_row[i].y, static_cast<float>(FEATURE_SIZE), -1, response_row[i]); |
||||
keypoints[i] = kp; |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::FAST_GPU::operator ()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints) |
||||
{ |
||||
calcKeyPointsLocation(img, mask); |
||||
keypoints.cols = getKeyPoints(keypoints); |
||||
} |
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{ |
||||
namespace fast
|
||||
{ |
||||
int calcKeypoints_gpu(DevMem2Db img, DevMem2Db mask, short2* kpLoc, int maxKeypoints, DevMem2Di score, int threshold); |
||||
int nonmaxSupression_gpu(const short2* kpLoc, int count, DevMem2Di score, short2* loc, float* response); |
||||
} |
||||
}}} |
||||
|
||||
int cv::gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat& img, const GpuMat& mask) |
||||
{ |
||||
using namespace cv::gpu::device::fast; |
||||
|
||||
CV_Assert(img.type() == CV_8UC1); |
||||
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == img.size())); |
||||
|
||||
int maxKeypoints = static_cast<int>(keypointsRatio * img.size().area()); |
||||
|
||||
ensureSizeIsEnough(1, maxKeypoints, CV_16SC2, kpLoc_); |
||||
|
||||
if (nonmaxSupression) |
||||
{ |
||||
ensureSizeIsEnough(img.size(), CV_32SC1, score_); |
||||
score_.setTo(Scalar::all(0)); |
||||
} |
||||
|
||||
count_ = calcKeypoints_gpu(img, mask, kpLoc_.ptr<short2>(), maxKeypoints, nonmaxSupression ? score_ : DevMem2Di(), threshold); |
||||
count_ = std::min(count_, maxKeypoints); |
||||
|
||||
return count_; |
||||
} |
||||
|
||||
int cv::gpu::FAST_GPU::getKeyPoints(GpuMat& keypoints) |
||||
{ |
||||
using namespace cv::gpu::device::fast; |
||||
|
||||
if (count_ == 0) |
||||
return 0; |
||||
|
||||
ensureSizeIsEnough(ROWS_COUNT, count_, CV_32FC1, keypoints); |
||||
|
||||
if (nonmaxSupression) |
||||
return nonmaxSupression_gpu(kpLoc_.ptr<short2>(), count_, score_, keypoints.ptr<short2>(LOCATION_ROW), keypoints.ptr<float>(RESPONSE_ROW)); |
||||
|
||||
GpuMat locRow(1, count_, kpLoc_.type(), keypoints.ptr(0)); |
||||
kpLoc_.colRange(0, count_).copyTo(locRow); |
||||
keypoints.row(1).setTo(Scalar::all(0)); |
||||
|
||||
return count_;
|
||||
} |
||||
|
||||
void cv::gpu::FAST_GPU::release() |
||||
{ |
||||
kpLoc_.release(); |
||||
score_.release(); |
||||
|
||||
d_keypoints_.release(); |
||||
} |
||||
|
||||
#endif /* !defined (HAVE_CUDA) */ |
@ -0,0 +1,764 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other GpuMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or bpied warranties, including, but not limited to, the bpied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
#if !defined (HAVE_CUDA) |
||||
|
||||
cv::gpu::ORB_GPU::ORB_GPU(size_t, const ORB::CommonParams&) : fastDetector_(0) { throw_nogpu(); } |
||||
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); } |
||||
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } |
||||
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&, GpuMat&) { throw_nogpu(); } |
||||
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); } |
||||
void cv::gpu::ORB_GPU::downloadKeyPoints(GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); } |
||||
void cv::gpu::ORB_GPU::convertKeyPoints(Mat&, std::vector<KeyPoint>&) { throw_nogpu(); } |
||||
void cv::gpu::ORB_GPU::setParams(size_t, const ORB::CommonParams&) { throw_nogpu(); } |
||||
void cv::gpu::ORB_GPU::release() { throw_nogpu(); } |
||||
void cv::gpu::ORB_GPU::buildScalePyramids(const GpuMat&, const GpuMat&) { throw_nogpu(); } |
||||
void cv::gpu::ORB_GPU::computeKeyPointsPyramid() { throw_nogpu(); } |
||||
void cv::gpu::ORB_GPU::computeDescriptors(GpuMat&) { throw_nogpu(); } |
||||
void cv::gpu::ORB_GPU::mergeKeyPoints(GpuMat&) { throw_nogpu(); } |
||||
|
||||
#else /* !defined (HAVE_CUDA) */ |
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{ |
||||
namespace orb |
||||
{ |
||||
int cull_gpu(int* loc, float* response, int size, int n_points); |
||||
|
||||
void HarrisResponses_gpu(DevMem2Db img, const short2* loc, float* response, const int npoints, int blockSize, float harris_k, cudaStream_t stream); |
||||
|
||||
void loadUMax(const int* u_max, int count); |
||||
|
||||
void IC_Angle_gpu(DevMem2Db image, const short2* loc, float* angle, int npoints, int half_k, cudaStream_t stream); |
||||
|
||||
void computeOrbDescriptor_gpu(PtrStepb img, const short2* loc, const float* angle, const int npoints, |
||||
const int* pattern_x, const int* pattern_y, PtrStepb desc, int dsize, int WTA_K, cudaStream_t stream); |
||||
|
||||
void mergeLocation_gpu(const short2* loc, float* x, float* y, int npoints, float scale, cudaStream_t stream); |
||||
} |
||||
}}} |
||||
|
||||
cv::gpu::ORB_GPU::ORB_GPU(size_t n_features, const ORB::CommonParams& detector_params) : |
||||
fastDetector_(DEFAULT_FAST_THRESHOLD) |
||||
{ |
||||
setParams(n_features, detector_params); |
||||
|
||||
blurFilter = createGaussianFilter_GPU(CV_8UC1, Size(7, 7), 2, 2, BORDER_REFLECT_101); |
||||
|
||||
blurForDescriptor = false; |
||||
} |
||||
|
||||
namespace |
||||
{ |
||||
const float HARRIS_K = 0.04f; |
||||
const int DESCRIPTOR_SIZE = 32; |
||||
|
||||
const int bit_pattern_31_[256 * 4] = |
||||
{ |
||||
8,-3, 9,5/*mean (0), correlation (0)*/, |
||||
4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/, |
||||
-11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/, |
||||
7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/, |
||||
2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/, |
||||
1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/, |
||||
-2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/, |
||||
-13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/, |
||||
-13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/, |
||||
10,4, 11,9/*mean (0.122065), correlation (0.093285)*/, |
||||
-13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/, |
||||
-11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/, |
||||
7,7, 12,6/*mean (0.160583), correlation (0.130064)*/, |
||||
-4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/, |
||||
-13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/, |
||||
-9,0, -7,5/*mean (0.198234), correlation (0.143636)*/, |
||||
12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/, |
||||
-3,6, -2,12/*mean (0.166847), correlation (0.171682)*/, |
||||
-6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/, |
||||
11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/, |
||||
4,7, 5,1/*mean (0.205106), correlation (0.186848)*/, |
||||
5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/, |
||||
3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/, |
||||
-8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/, |
||||
-2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/, |
||||
-13,12, -8,10/*mean (0.14783), correlation (0.206356)*/, |
||||
-7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/, |
||||
-4,2, -3,7/*mean (0.188237), correlation (0.21384)*/, |
||||
-10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/, |
||||
5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/, |
||||
5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/, |
||||
1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/, |
||||
9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/, |
||||
4,7, 4,12/*mean (0.131005), correlation (0.257622)*/, |
||||
2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/, |
||||
-4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/, |
||||
-8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/, |
||||
4,11, 9,12/*mean (0.226226), correlation (0.258255)*/, |
||||
0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/, |
||||
-13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/, |
||||
-3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/, |
||||
-6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/, |
||||
8,12, 10,7/*mean (0.225337), correlation (0.282851)*/, |
||||
0,9, 1,3/*mean (0.226687), correlation (0.278734)*/, |
||||
7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/, |
||||
-13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/, |
||||
10,7, 12,1/*mean (0.125517), correlation (0.31089)*/, |
||||
-6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/, |
||||
10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/, |
||||
-13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/, |
||||
-13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/, |
||||
3,3, 7,8/*mean (0.177755), correlation (0.309394)*/, |
||||
5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/, |
||||
-1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/, |
||||
3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/, |
||||
2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/, |
||||
-13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/, |
||||
-13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/, |
||||
-13,3, -11,8/*mean (0.134222), correlation (0.322922)*/, |
||||
-7,12, -4,7/*mean (0.153284), correlation (0.337061)*/, |
||||
6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/, |
||||
-9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/, |
||||
-2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/, |
||||
-12,5, -7,5/*mean (0.207805), correlation (0.335631)*/, |
||||
3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/, |
||||
-7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/, |
||||
-3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/, |
||||
2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/, |
||||
-11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/, |
||||
-1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/, |
||||
5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/, |
||||
-4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/, |
||||
-9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/, |
||||
-12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/, |
||||
10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/, |
||||
7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/, |
||||
-7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/, |
||||
-4,9, -3,4/*mean (0.099865), correlation (0.372276)*/, |
||||
7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/, |
||||
-7,6, -5,1/*mean (0.126125), correlation (0.369606)*/, |
||||
-13,11, -12,5/*mean (0.130364), correlation (0.358502)*/, |
||||
-3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/, |
||||
7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/, |
||||
-13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/, |
||||
1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/, |
||||
2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/, |
||||
-4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/, |
||||
-1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/, |
||||
7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/, |
||||
1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/, |
||||
9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/, |
||||
-1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/, |
||||
-13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/, |
||||
7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/, |
||||
12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/, |
||||
6,3, 7,11/*mean (0.1074), correlation (0.413224)*/, |
||||
5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/, |
||||
2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/, |
||||
3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/, |
||||
2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/, |
||||
9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/, |
||||
-8,4, -7,9/*mean (0.183682), correlation (0.402956)*/, |
||||
-11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/, |
||||
1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/, |
||||
6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/, |
||||
2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/, |
||||
6,3, 11,0/*mean (0.204588), correlation (0.411762)*/, |
||||
3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/, |
||||
7,8, 9,3/*mean (0.213237), correlation (0.409306)*/, |
||||
-11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/, |
||||
-10,11, -5,10/*mean (0.247672), correlation (0.413392)*/, |
||||
-5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/, |
||||
-10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/, |
||||
8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/, |
||||
4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/, |
||||
-10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/, |
||||
4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/, |
||||
-2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/, |
||||
-5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/, |
||||
7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/, |
||||
-9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/, |
||||
-5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/, |
||||
8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/, |
||||
-9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/, |
||||
1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/, |
||||
7,-4, 9,1/*mean (0.132692), correlation (0.454)*/, |
||||
-2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/, |
||||
11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/, |
||||
-12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/, |
||||
3,7, 7,12/*mean (0.147627), correlation (0.456643)*/, |
||||
5,5, 10,8/*mean (0.152901), correlation (0.455036)*/, |
||||
0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/, |
||||
-9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/, |
||||
0,7, 2,12/*mean (0.18312), correlation (0.433855)*/, |
||||
-1,2, 1,7/*mean (0.185504), correlation (0.443838)*/, |
||||
5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/, |
||||
3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/, |
||||
-13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/, |
||||
-5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/, |
||||
-4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/, |
||||
6,5, 8,0/*mean (0.1972), correlation (0.450481)*/, |
||||
-7,6, -6,12/*mean (0.199438), correlation (0.458156)*/, |
||||
-13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/, |
||||
1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/, |
||||
4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/, |
||||
-2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/, |
||||
2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/, |
||||
-2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/, |
||||
4,1, 9,3/*mean (0.23962), correlation (0.444824)*/, |
||||
-6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/, |
||||
-3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/, |
||||
7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/, |
||||
4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/, |
||||
-13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/, |
||||
7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/, |
||||
7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/, |
||||
-7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/, |
||||
-8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/, |
||||
-13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/, |
||||
2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/, |
||||
10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/, |
||||
-6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/, |
||||
8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/, |
||||
2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/, |
||||
-11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/, |
||||
-12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/, |
||||
-11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/, |
||||
5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/, |
||||
-2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/, |
||||
-1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/, |
||||
-13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/, |
||||
-10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/, |
||||
-3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/, |
||||
2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/, |
||||
-9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/, |
||||
-4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/, |
||||
-4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/, |
||||
-6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/, |
||||
6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/, |
||||
-13,11, -5,5/*mean (0.162427), correlation (0.501907)*/, |
||||
11,11, 12,6/*mean (0.16652), correlation (0.497632)*/, |
||||
7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/, |
||||
-1,12, 0,7/*mean (0.169456), correlation (0.495339)*/, |
||||
-4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/, |
||||
-7,1, -6,7/*mean (0.175), correlation (0.500024)*/, |
||||
-13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/, |
||||
-7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/, |
||||
-8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/, |
||||
-5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/, |
||||
-13,7, -8,10/*mean (0.196739), correlation (0.496503)*/, |
||||
1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/, |
||||
1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/, |
||||
9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/, |
||||
5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/, |
||||
-1,11, 1,-13/*mean (0.212), correlation (0.499414)*/, |
||||
-9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/, |
||||
-1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/, |
||||
-13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/, |
||||
8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/, |
||||
2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/, |
||||
7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/, |
||||
-10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/, |
||||
-10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/, |
||||
4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/, |
||||
3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/, |
||||
-4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/, |
||||
5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/, |
||||
4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/, |
||||
-9,9, -4,3/*mean (0.236977), correlation (0.497739)*/, |
||||
0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/, |
||||
-12,1, -6,1/*mean (0.243297), correlation (0.489447)*/, |
||||
3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/, |
||||
-10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/, |
||||
8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/, |
||||
-8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/, |
||||
2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/, |
||||
10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/, |
||||
6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/, |
||||
-7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/, |
||||
-3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/, |
||||
-1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/, |
||||
-3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/, |
||||
-8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/, |
||||
4,2, 12,12/*mean (0.01778), correlation (0.546921)*/, |
||||
2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/, |
||||
6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/, |
||||
3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/, |
||||
11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/, |
||||
-3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/, |
||||
4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/, |
||||
2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/, |
||||
-10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/, |
||||
-13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/, |
||||
-13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/, |
||||
6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/, |
||||
0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/, |
||||
-13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/, |
||||
-9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/, |
||||
-13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/, |
||||
5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/, |
||||
2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/, |
||||
-1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/, |
||||
9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/, |
||||
11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/, |
||||
3,0, 3,5/*mean (0.101147), correlation (0.525576)*/, |
||||
-1,4, 0,10/*mean (0.105263), correlation (0.531498)*/, |
||||
3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/, |
||||
-13,0, -10,5/*mean (0.112798), correlation (0.536582)*/, |
||||
5,8, 12,11/*mean (0.114181), correlation (0.555793)*/, |
||||
8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/, |
||||
7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/, |
||||
-10,4, -10,9/*mean (0.12094), correlation (0.554785)*/, |
||||
7,3, 12,4/*mean (0.122582), correlation (0.555825)*/, |
||||
9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/, |
||||
7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/, |
||||
-1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/ |
||||
};
|
||||
|
||||
void initializeOrbPattern(const Point* pattern0, Mat& pattern, int ntuples, int tupleSize, int poolSize) |
||||
{ |
||||
RNG rng(0x12345678); |
||||
|
||||
pattern.create(2, ntuples * tupleSize, CV_32SC1); |
||||
pattern.setTo(Scalar::all(0)); |
||||
|
||||
int* pattern_x_ptr = pattern.ptr<int>(0); |
||||
int* pattern_y_ptr = pattern.ptr<int>(1); |
||||
|
||||
for (int i = 0; i < ntuples; i++) |
||||
{ |
||||
for (int k = 0; k < tupleSize; k++) |
||||
{ |
||||
for(;;) |
||||
{ |
||||
int idx = rng.uniform(0, poolSize); |
||||
Point pt = pattern0[idx]; |
||||
|
||||
int k1; |
||||
for (k1 = 0; k1 < k; k1++) |
||||
if (pattern_x_ptr[tupleSize * i + k1] == pt.x && pattern_y_ptr[tupleSize * i + k1] == pt.y) |
||||
break; |
||||
|
||||
if (k1 == k) |
||||
{ |
||||
pattern_x_ptr[tupleSize * i + k] = pt.x; |
||||
pattern_y_ptr[tupleSize * i + k] = pt.y; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
void makeRandomPattern(int patchSize, Point* pattern, int npoints) |
||||
{ |
||||
// we always start with a fixed seed,
|
||||
// to make patterns the same on each run
|
||||
RNG rng(0x34985739);
|
||||
|
||||
for (int i = 0; i < npoints; i++) |
||||
{ |
||||
pattern[i].x = rng.uniform(-patchSize / 2, patchSize / 2 + 1); |
||||
pattern[i].y = rng.uniform(-patchSize / 2, patchSize / 2 + 1); |
||||
} |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::ORB_GPU::setParams(size_t n_features, const ORB::CommonParams& detector_params) |
||||
{ |
||||
params_ = detector_params; |
||||
|
||||
// fill the extractors and descriptors for the corresponding scales
|
||||
int n_levels = static_cast<int>(params_.n_levels_); |
||||
float factor = 1.0f / params_.scale_factor_; |
||||
float n_desired_features_per_scale = n_features * (1.0f - factor) / (1.0f - std::pow(factor, n_levels)); |
||||
|
||||
n_features_per_level_.resize(n_levels); |
||||
int sum_n_features = 0; |
||||
for (int level = 0; level < n_levels - 1; ++level) |
||||
{ |
||||
n_features_per_level_[level] = cvRound(n_desired_features_per_scale); |
||||
sum_n_features += n_features_per_level_[level]; |
||||
n_desired_features_per_scale *= factor; |
||||
} |
||||
n_features_per_level_[n_levels - 1] = n_features - sum_n_features; |
||||
|
||||
// pre-compute the end of a row in a circular patch
|
||||
int half_patch_size = params_.patch_size_ / 2; |
||||
vector<int> u_max(half_patch_size + 1); |
||||
for (int v = 0; v <= half_patch_size * sqrt(2.f) / 2 + 1; ++v) |
||||
u_max[v] = cvRound(sqrt(static_cast<float>(half_patch_size * half_patch_size - v * v))); |
||||
|
||||
// Make sure we are symmetric
|
||||
for (int v = half_patch_size, v_0 = 0; v >= half_patch_size * sqrt(2.f) / 2; --v) |
||||
{ |
||||
while (u_max[v_0] == u_max[v_0 + 1]) |
||||
++v_0; |
||||
u_max[v] = v_0; |
||||
++v_0; |
||||
} |
||||
CV_Assert(u_max.size() < 32); |
||||
cv::gpu::device::orb::loadUMax(&u_max[0], u_max.size()); |
||||
|
||||
// Calc pattern
|
||||
const int npoints = 512; |
||||
Point pattern_buf[npoints]; |
||||
const Point* pattern0 = (const Point*)bit_pattern_31_; |
||||
if (params_.patch_size_ != 31) |
||||
{ |
||||
pattern0 = pattern_buf; |
||||
makeRandomPattern(params_.patch_size_, pattern_buf, npoints); |
||||
} |
||||
|
||||
CV_Assert(params_.WTA_K_ == 2 || params_.WTA_K_ == 3 || params_.WTA_K_ == 4);
|
||||
|
||||
Mat h_pattern; |
||||
|
||||
if (params_.WTA_K_ == 2) |
||||
{ |
||||
h_pattern.create(2, npoints, CV_32SC1); |
||||
|
||||
int* pattern_x_ptr = h_pattern.ptr<int>(0); |
||||
int* pattern_y_ptr = h_pattern.ptr<int>(1); |
||||
|
||||
for (int i = 0; i < npoints; ++i) |
||||
{ |
||||
pattern_x_ptr[i] = pattern0[i].x; |
||||
pattern_y_ptr[i] = pattern0[i].y; |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
int ntuples = descriptorSize() * 4; |
||||
initializeOrbPattern(pattern0, h_pattern, ntuples, params_.WTA_K_, npoints); |
||||
} |
||||
|
||||
pattern_.upload(h_pattern); |
||||
} |
||||
|
||||
namespace |
||||
{ |
||||
inline float getScale(const ORB::CommonParams& params, int level) |
||||
{ |
||||
return pow(params.scale_factor_, level - static_cast<int>(params.first_level_)); |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::ORB_GPU::buildScalePyramids(const GpuMat& image, const GpuMat& mask) |
||||
{ |
||||
CV_Assert(image.type() == CV_8UC1); |
||||
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size())); |
||||
|
||||
imagePyr_.resize(params_.n_levels_); |
||||
maskPyr_.resize(params_.n_levels_); |
||||
|
||||
for (int level = 0; level < static_cast<int>(params_.n_levels_); ++level) |
||||
{ |
||||
float scale = 1.0f / getScale(params_, level); |
||||
|
||||
Size sz(cvRound(image.cols * scale), cvRound(image.rows * scale)); |
||||
|
||||
ensureSizeIsEnough(sz, image.type(), imagePyr_[level]); |
||||
ensureSizeIsEnough(sz, CV_8UC1, maskPyr_[level]); |
||||
maskPyr_[level].setTo(Scalar::all(255)); |
||||
|
||||
// Compute the resized image
|
||||
if (level != static_cast<int>(params_.first_level_)) |
||||
{ |
||||
if (level < static_cast<int>(params_.first_level_)) |
||||
{ |
||||
resize(image, imagePyr_[level], sz, 0, 0, INTER_LINEAR); |
||||
|
||||
if (!mask.empty()) |
||||
resize(mask, maskPyr_[level], sz, 0, 0, INTER_LINEAR); |
||||
} |
||||
else |
||||
{ |
||||
resize(imagePyr_[level - 1], imagePyr_[level], sz, 0, 0, INTER_LINEAR); |
||||
|
||||
if (!mask.empty()) |
||||
resize(maskPyr_[level - 1], maskPyr_[level], sz, 0, 0, INTER_LINEAR); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
image.copyTo(imagePyr_[level]); |
||||
|
||||
if (!mask.empty()) |
||||
mask.copyTo(maskPyr_[level]); |
||||
} |
||||
|
||||
// Filter keypoints by image border
|
||||
ensureSizeIsEnough(sz, CV_8UC1, buf_); |
||||
buf_.setTo(Scalar::all(0)); |
||||
Rect inner(params_.edge_threshold_, params_.edge_threshold_, sz.width - 2 * params_.edge_threshold_, sz.height - 2 * params_.edge_threshold_); |
||||
buf_(inner).setTo(Scalar::all(255)); |
||||
|
||||
bitwise_and(maskPyr_[level], buf_, maskPyr_[level]); |
||||
} |
||||
} |
||||
|
||||
namespace |
||||
{ |
||||
//takes keypoints and culls them by the response
|
||||
void cull(GpuMat& keypoints, int& count, int n_points) |
||||
{ |
||||
using namespace cv::gpu::device::orb; |
||||
|
||||
//this is only necessary if the keypoints size is greater than the number of desired points.
|
||||
if (count > n_points) |
||||
{ |
||||
if (n_points == 0)
|
||||
{ |
||||
keypoints.release(); |
||||
return; |
||||
} |
||||
|
||||
count = cull_gpu(keypoints.ptr<int>(FAST_GPU::LOCATION_ROW), keypoints.ptr<float>(FAST_GPU::RESPONSE_ROW), count, n_points); |
||||
} |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::ORB_GPU::computeKeyPointsPyramid() |
||||
{ |
||||
using namespace cv::gpu::device::orb; |
||||
|
||||
int half_patch_size = params_.patch_size_ / 2; |
||||
|
||||
keyPointsPyr_.resize(params_.n_levels_); |
||||
keyPointsCount_.resize(params_.n_levels_); |
||||
|
||||
for (int level = 0; level < static_cast<int>(params_.n_levels_); ++level) |
||||
{ |
||||
keyPointsCount_[level] = fastDetector_.calcKeyPointsLocation(imagePyr_[level], maskPyr_[level]); |
||||
|
||||
ensureSizeIsEnough(3, keyPointsCount_[level], CV_32FC1, keyPointsPyr_[level]); |
||||
|
||||
keyPointsCount_[level] = fastDetector_.getKeyPoints(keyPointsPyr_[level].rowRange(0, 2)); |
||||
|
||||
int n_features = n_features_per_level_[level]; |
||||
|
||||
if (params_.score_type_ == ORB::CommonParams::HARRIS_SCORE) |
||||
{ |
||||
// Keep more points than necessary as FAST does not give amazing corners
|
||||
cull(keyPointsPyr_[level], keyPointsCount_[level], 2 * n_features); |
||||
|
||||
// Compute the Harris cornerness (better scoring than FAST)
|
||||
HarrisResponses_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(1), keyPointsCount_[level], 7, HARRIS_K, 0); |
||||
}
|
||||
|
||||
//cull to the final desired level, using the new Harris scores or the original FAST scores.
|
||||
cull(keyPointsPyr_[level], keyPointsCount_[level], n_features); |
||||
|
||||
// Compute orientation
|
||||
IC_Angle_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2), keyPointsCount_[level], half_patch_size, 0); |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::ORB_GPU::computeDescriptors(GpuMat& descriptors) |
||||
{ |
||||
using namespace cv::gpu::device::orb; |
||||
|
||||
int nAllkeypoints = 0; |
||||
|
||||
for (size_t level = 0; level < params_.n_levels_; ++level) |
||||
nAllkeypoints += keyPointsCount_[level]; |
||||
|
||||
if (nAllkeypoints == 0) |
||||
{ |
||||
descriptors.release(); |
||||
return; |
||||
} |
||||
|
||||
ensureSizeIsEnough(nAllkeypoints, descriptorSize(), CV_8UC1, descriptors); |
||||
|
||||
int offset = 0; |
||||
|
||||
for (size_t level = 0; level < params_.n_levels_; ++level) |
||||
{
|
||||
GpuMat descRange = descriptors.rowRange(offset, offset + keyPointsCount_[level]); |
||||
|
||||
if (blurForDescriptor) |
||||
{ |
||||
// preprocess the resized image
|
||||
ensureSizeIsEnough(imagePyr_[level].size(), imagePyr_[level].type(), buf_); |
||||
blurFilter->apply(imagePyr_[level], buf_, Rect(0, 0, imagePyr_[level].cols, imagePyr_[level].rows)); |
||||
} |
||||
|
||||
computeOrbDescriptor_gpu(blurForDescriptor ? buf_ : imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2),
|
||||
keyPointsCount_[level], pattern_.ptr<int>(0), pattern_.ptr<int>(1), descRange, descriptorSize(), params_.WTA_K_, 0); |
||||
|
||||
offset += keyPointsCount_[level]; |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::ORB_GPU::mergeKeyPoints(GpuMat& keypoints) |
||||
{ |
||||
using namespace cv::gpu::device::orb; |
||||
|
||||
int nAllkeypoints = 0; |
||||
|
||||
for (size_t level = 0; level < params_.n_levels_; ++level) |
||||
nAllkeypoints += keyPointsCount_[level]; |
||||
|
||||
if (nAllkeypoints == 0) |
||||
{ |
||||
keypoints.release(); |
||||
return; |
||||
} |
||||
|
||||
ensureSizeIsEnough(ROWS_COUNT, nAllkeypoints, CV_32FC1, keypoints); |
||||
|
||||
int offset = 0; |
||||
|
||||
for (int level = 0; level < static_cast<int>(params_.n_levels_); ++level) |
||||
{ |
||||
float sf = getScale(params_, level); |
||||
|
||||
GpuMat keyPointsRange = keypoints.colRange(offset, offset + keyPointsCount_[level]);
|
||||
|
||||
float locScale = level != static_cast<int>(params_.first_level_) ? sf : 1.0f; |
||||
|
||||
mergeLocation_gpu(keyPointsPyr_[level].ptr<short2>(0), keyPointsRange.ptr<float>(0), keyPointsRange.ptr<float>(1), keyPointsCount_[level], locScale, 0); |
||||
|
||||
keyPointsPyr_[level].rowRange(1, 3).copyTo(keyPointsRange.rowRange(2, 4)); |
||||
|
||||
keyPointsRange.row(4).setTo(Scalar::all(level)); |
||||
keyPointsRange.row(5).setTo(Scalar::all(params_.patch_size_ * sf)); |
||||
|
||||
offset += keyPointsCount_[level]; |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::ORB_GPU::downloadKeyPoints(GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints) |
||||
{ |
||||
if (d_keypoints.empty()) |
||||
{ |
||||
keypoints.clear(); |
||||
return; |
||||
} |
||||
|
||||
Mat h_keypoints(d_keypoints); |
||||
|
||||
convertKeyPoints(h_keypoints, keypoints); |
||||
} |
||||
|
||||
void cv::gpu::ORB_GPU::convertKeyPoints(Mat& d_keypoints, std::vector<KeyPoint>& keypoints) |
||||
{ |
||||
if (d_keypoints.empty()) |
||||
{ |
||||
keypoints.clear(); |
||||
return; |
||||
} |
||||
|
||||
CV_Assert(d_keypoints.type() == CV_32FC1 && d_keypoints.rows == ROWS_COUNT); |
||||
|
||||
float* x_ptr = d_keypoints.ptr<float>(X_ROW); |
||||
float* y_ptr = d_keypoints.ptr<float>(Y_ROW); |
||||
float* response_ptr = d_keypoints.ptr<float>(RESPONSE_ROW); |
||||
float* angle_ptr = d_keypoints.ptr<float>(ANGLE_ROW); |
||||
float* octave_ptr = d_keypoints.ptr<float>(OCTAVE_ROW); |
||||
float* size_ptr = d_keypoints.ptr<float>(SIZE_ROW); |
||||
|
||||
keypoints.resize(d_keypoints.cols); |
||||
|
||||
for (int i = 0; i < d_keypoints.cols; ++i) |
||||
{ |
||||
KeyPoint kp; |
||||
|
||||
kp.pt.x = x_ptr[i]; |
||||
kp.pt.y = y_ptr[i]; |
||||
kp.response = response_ptr[i]; |
||||
kp.angle = angle_ptr[i]; |
||||
kp.octave = static_cast<int>(octave_ptr[i]); |
||||
kp.size = size_ptr[i]; |
||||
|
||||
keypoints[i] = kp; |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints) |
||||
{ |
||||
buildScalePyramids(image, mask); |
||||
computeKeyPointsPyramid(); |
||||
mergeKeyPoints(keypoints); |
||||
} |
||||
|
||||
void cv::gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors) |
||||
{ |
||||
buildScalePyramids(image, mask); |
||||
computeKeyPointsPyramid(); |
||||
computeDescriptors(descriptors); |
||||
mergeKeyPoints(keypoints); |
||||
} |
||||
|
||||
void cv::gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints) |
||||
{ |
||||
(*this)(image, mask, d_keypoints_); |
||||
downloadKeyPoints(d_keypoints_, keypoints); |
||||
} |
||||
|
||||
void cv::gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors) |
||||
{ |
||||
(*this)(image, mask, d_keypoints_, descriptors); |
||||
downloadKeyPoints(d_keypoints_, keypoints); |
||||
} |
||||
|
||||
void cv::gpu::ORB_GPU::release() |
||||
{ |
||||
imagePyr_.clear(); |
||||
maskPyr_.clear(); |
||||
|
||||
buf_.release(); |
||||
|
||||
keyPointsPyr_.clear(); |
||||
|
||||
fastDetector_.release(); |
||||
|
||||
d_keypoints_.release(); |
||||
} |
||||
|
||||
#endif /* !defined (HAVE_CUDA) */ |
Loading…
Reference in new issue