Merge pull request #9708 from dkurt:tf_face_detector

pull/10922/head
Vadim Pisarevsky 7 years ago
commit 5e0f95b948
  1. 195
      modules/dnn/misc/face_detector_accuracy.py
  2. 348
      modules/dnn/misc/quantize_face_detector.py
  3. 27
      modules/dnn/src/tensorflow/tf_importer.cpp
  4. 24
      modules/dnn/test/test_tf_importer.cpp

@ -0,0 +1,195 @@
# This script is used to estimate an accuracy of different face detection models.
# COCO evaluation tool is used to compute an accuracy metrics (Average Precision).
# Script works with different face detection datasets.
import os
import json
from fnmatch import fnmatch
from math import pi
import cv2 as cv
import argparse
import os
import sys
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
parser = argparse.ArgumentParser(
description='Evaluate OpenCV face detection algorithms '
'using COCO evaluation tool, http://cocodataset.org/#detections-eval')
parser.add_argument('--proto', help='Path to .prototxt of Caffe model or .pbtxt of TensorFlow graph')
parser.add_argument('--model', help='Path to .caffemodel trained in Caffe or .pb from TensorFlow')
parser.add_argument('--caffe', help='Indicate that tested model is from Caffe. Otherwise model from TensorFlow is expected.', action='store_true')
parser.add_argument('--cascade', help='Optional path to trained Haar cascade as '
'an additional model for evaluation')
parser.add_argument('--ann', help='Path to text file with ground truth annotations')
parser.add_argument('--pics', help='Path to images root directory')
parser.add_argument('--fddb', help='Evaluate FDDB dataset, http://vis-www.cs.umass.edu/fddb/', action='store_true')
parser.add_argument('--wider', help='Evaluate WIDER FACE dataset, http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/', action='store_true')
args = parser.parse_args()
dataset = {}
dataset['images'] = []
dataset['categories'] = [{ 'id': 0, 'name': 'face' }]
dataset['annotations'] = []
def ellipse2Rect(params):
rad_x = params[0]
rad_y = params[1]
angle = params[2] * 180.0 / pi
center_x = params[3]
center_y = params[4]
pts = cv.ellipse2Poly((int(center_x), int(center_y)), (int(rad_x), int(rad_y)),
int(angle), 0, 360, 10)
rect = cv.boundingRect(pts)
left = rect[0]
top = rect[1]
right = rect[0] + rect[2]
bottom = rect[1] + rect[3]
return left, top, right, bottom
def addImage(imagePath):
assert('images' in dataset)
imageId = len(dataset['images'])
dataset['images'].append({
'id': int(imageId),
'file_name': imagePath
})
return imageId
def addBBox(imageId, left, top, width, height):
assert('annotations' in dataset)
dataset['annotations'].append({
'id': len(dataset['annotations']),
'image_id': int(imageId),
'category_id': 0, # Face
'bbox': [int(left), int(top), int(width), int(height)],
'iscrowd': 0,
'area': float(width * height)
})
def addDetection(detections, imageId, left, top, width, height, score):
detections.append({
'image_id': int(imageId),
'category_id': 0, # Face
'bbox': [int(left), int(top), int(width), int(height)],
'score': float(score)
})
def fddb_dataset(annotations, images):
for d in os.listdir(annotations):
if fnmatch(d, 'FDDB-fold-*-ellipseList.txt'):
with open(os.path.join(annotations, d), 'rt') as f:
lines = [line.rstrip('\n') for line in f]
lineId = 0
while lineId < len(lines):
# Image
imgPath = lines[lineId]
lineId += 1
imageId = addImage(os.path.join(images, imgPath) + '.jpg')
img = cv.imread(os.path.join(images, imgPath) + '.jpg')
# Faces
numFaces = int(lines[lineId])
lineId += 1
for i in range(numFaces):
params = [float(v) for v in lines[lineId].split()]
lineId += 1
left, top, right, bottom = ellipse2Rect(params)
addBBox(imageId, left, top, width=right - left + 1,
height=bottom - top + 1)
def wider_dataset(annotations, images):
with open(annotations, 'rt') as f:
lines = [line.rstrip('\n') for line in f]
lineId = 0
while lineId < len(lines):
# Image
imgPath = lines[lineId]
lineId += 1
imageId = addImage(os.path.join(images, imgPath))
# Faces
numFaces = int(lines[lineId])
lineId += 1
for i in range(numFaces):
params = [int(v) for v in lines[lineId].split()]
lineId += 1
left, top, width, height = params[0], params[1], params[2], params[3]
addBBox(imageId, left, top, width, height)
def evaluate():
cocoGt = COCO('annotations.json')
cocoDt = cocoGt.loadRes('detections.json')
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
### Convert to COCO annotations format #########################################
assert(args.fddb or args.wider)
if args.fddb:
fddb_dataset(args.ann, args.pics)
elif args.wider:
wider_dataset(args.ann, args.pics)
with open('annotations.json', 'wt') as f:
json.dump(dataset, f)
### Obtain detections ##########################################################
detections = []
if args.proto and args.model:
if args.caffe:
net = cv.dnn.readNetFromCaffe(args.proto, args.model)
else:
net = cv.dnn.readNetFromTensorflow(args.model, args.proto)
def detect(img, imageId):
imgWidth = img.shape[1]
imgHeight = img.shape[0]
net.setInput(cv.dnn.blobFromImage(img, 1.0, (300, 300), (104., 177., 123.), False, False))
out = net.forward()
for i in range(out.shape[2]):
confidence = out[0, 0, i, 2]
left = int(out[0, 0, i, 3] * img.shape[1])
top = int(out[0, 0, i, 4] * img.shape[0])
right = int(out[0, 0, i, 5] * img.shape[1])
bottom = int(out[0, 0, i, 6] * img.shape[0])
addDetection(detections, imageId, left, top, width=right - left + 1,
height=bottom - top + 1, score=confidence)
elif args.cascade:
cascade = cv.CascadeClassifier(args.cascade)
def detect(img, imageId):
srcImgGray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
faces = cascade.detectMultiScale(srcImgGray)
for rect in faces:
left, top, width, height = rect[0], rect[1], rect[2], rect[3]
addDetection(detections, imageId, left, top, width, height, score=1.0)
for i in range(len(dataset['images'])):
sys.stdout.write('\r%d / %d' % (i + 1, len(dataset['images'])))
sys.stdout.flush()
img = cv.imread(dataset['images'][i]['file_name'])
imageId = int(dataset['images'][i]['id'])
detect(img, imageId)
with open('detections.json', 'wt') as f:
json.dump(detections, f)
evaluate()
def rm(f):
if os.path.exists(f):
os.remove(f)
rm('annotations.json')
rm('detections.json')

@ -0,0 +1,348 @@
import argparse
import cv2 as cv
import tensorflow as tf
import numpy as np
import struct
from tensorflow.python.tools import optimize_for_inference_lib
from tensorflow.tools.graph_transforms import TransformGraph
from tensorflow.core.framework.node_def_pb2 import NodeDef
from google.protobuf import text_format
parser = argparse.ArgumentParser(description="Use this script to create TensorFlow graph "
"with weights from OpenCV's face detection network. "
"Only backbone part of SSD model is converted this way. "
"Look for .pbtxt configuration file at "
"https://github.com/opencv/opencv_extra/tree/master/testdata/dnn/opencv_face_detector.pbtxt")
parser.add_argument('--model', help='Path to .caffemodel weights', required=True)
parser.add_argument('--proto', help='Path to .prototxt Caffe model definition', required=True)
parser.add_argument('--pb', help='Path to output .pb TensorFlow model', required=True)
parser.add_argument('--pbtxt', help='Path to output .pbxt TensorFlow graph', required=True)
parser.add_argument('--quantize', help='Quantize weights to uint8', action='store_true')
parser.add_argument('--fp16', help='Convert weights to half precision floats', action='store_true')
args = parser.parse_args()
assert(not args.quantize or not args.fp16)
dtype = tf.float16 if args.fp16 else tf.float32
################################################################################
cvNet = cv.dnn.readNetFromCaffe(args.proto, args.model)
def dnnLayer(name):
return cvNet.getLayer(long(cvNet.getLayerId(name)))
def scale(x, name):
with tf.variable_scope(name):
layer = dnnLayer(name)
w = tf.Variable(layer.blobs[0].flatten(), dtype=dtype, name='mul')
if len(layer.blobs) > 1:
b = tf.Variable(layer.blobs[1].flatten(), dtype=dtype, name='add')
return tf.nn.bias_add(tf.multiply(x, w), b)
else:
return tf.multiply(x, w, name)
def conv(x, name, stride=1, pad='SAME', dilation=1, activ=None):
with tf.variable_scope(name):
layer = dnnLayer(name)
w = tf.Variable(layer.blobs[0].transpose(2, 3, 1, 0), dtype=dtype, name='weights')
if dilation == 1:
conv = tf.nn.conv2d(x, filter=w, strides=(1, stride, stride, 1), padding=pad)
else:
assert(stride == 1)
conv = tf.nn.atrous_conv2d(x, w, rate=dilation, padding=pad)
if len(layer.blobs) > 1:
b = tf.Variable(layer.blobs[1].flatten(), dtype=dtype, name='bias')
conv = tf.nn.bias_add(conv, b)
return activ(conv) if activ else conv
def batch_norm(x, name):
with tf.variable_scope(name):
# Unfortunately, TensorFlow's batch normalization layer doesn't work with fp16 input.
# Here we do a cast to fp32 but remove it in the frozen graph.
if x.dtype != tf.float32:
x = tf.cast(x, tf.float32)
layer = dnnLayer(name)
assert(len(layer.blobs) >= 3)
mean = layer.blobs[0].flatten()
std = layer.blobs[1].flatten()
scale = layer.blobs[2].flatten()
eps = 1e-5
hasBias = len(layer.blobs) > 3
hasWeights = scale.shape != (1,)
if not hasWeights and not hasBias:
mean /= scale[0]
std /= scale[0]
mean = tf.Variable(mean, dtype=tf.float32, name='mean')
std = tf.Variable(std, dtype=tf.float32, name='std')
gamma = tf.Variable(scale if hasWeights else np.ones(mean.shape), dtype=tf.float32, name='gamma')
beta = tf.Variable(layer.blobs[3].flatten() if hasBias else np.zeros(mean.shape), dtype=tf.float32, name='beta')
bn = tf.nn.fused_batch_norm(x, gamma, beta, mean, std, eps,
is_training=False)[0]
if bn.dtype != dtype:
bn = tf.cast(bn, dtype)
return bn
def l2norm(x, name):
with tf.variable_scope(name):
layer = dnnLayer(name)
w = tf.Variable(layer.blobs[0].flatten(), dtype=dtype, name='mul')
return tf.nn.l2_normalize(x, 3, epsilon=1e-10) * w
### Graph definition ###########################################################
inp = tf.placeholder(dtype, [1, 300, 300, 3], 'data')
data_bn = batch_norm(inp, 'data_bn')
data_scale = scale(data_bn, 'data_scale')
data_scale = tf.pad(data_scale, [[0, 0], [3, 3], [3, 3], [0, 0]])
conv1_h = conv(data_scale, stride=2, pad='VALID', name='conv1_h')
conv1_bn_h = batch_norm(conv1_h, 'conv1_bn_h')
conv1_scale_h = scale(conv1_bn_h, 'conv1_scale_h')
conv1_relu = tf.nn.relu(conv1_scale_h)
conv1_pool = tf.layers.max_pooling2d(conv1_relu, pool_size=(3, 3), strides=(2, 2),
padding='SAME', name='conv1_pool')
layer_64_1_conv1_h = conv(conv1_pool, 'layer_64_1_conv1_h')
layer_64_1_bn2_h = batch_norm(layer_64_1_conv1_h, 'layer_64_1_bn2_h')
layer_64_1_scale2_h = scale(layer_64_1_bn2_h, 'layer_64_1_scale2_h')
layer_64_1_relu2 = tf.nn.relu(layer_64_1_scale2_h)
layer_64_1_conv2_h = conv(layer_64_1_relu2, 'layer_64_1_conv2_h')
layer_64_1_sum = layer_64_1_conv2_h + conv1_pool
layer_128_1_bn1_h = batch_norm(layer_64_1_sum, 'layer_128_1_bn1_h')
layer_128_1_scale1_h = scale(layer_128_1_bn1_h, 'layer_128_1_scale1_h')
layer_128_1_relu1 = tf.nn.relu(layer_128_1_scale1_h)
layer_128_1_conv1_h = conv(layer_128_1_relu1, stride=2, name='layer_128_1_conv1_h')
layer_128_1_bn2 = batch_norm(layer_128_1_conv1_h, 'layer_128_1_bn2')
layer_128_1_scale2 = scale(layer_128_1_bn2, 'layer_128_1_scale2')
layer_128_1_relu2 = tf.nn.relu(layer_128_1_scale2)
layer_128_1_conv2 = conv(layer_128_1_relu2, 'layer_128_1_conv2')
layer_128_1_conv_expand_h = conv(layer_128_1_relu1, stride=2, name='layer_128_1_conv_expand_h')
layer_128_1_sum = layer_128_1_conv2 + layer_128_1_conv_expand_h
layer_256_1_bn1 = batch_norm(layer_128_1_sum, 'layer_256_1_bn1')
layer_256_1_scale1 = scale(layer_256_1_bn1, 'layer_256_1_scale1')
layer_256_1_relu1 = tf.nn.relu(layer_256_1_scale1)
layer_256_1_conv1 = tf.pad(layer_256_1_relu1, [[0, 0], [1, 1], [1, 1], [0, 0]])
layer_256_1_conv1 = conv(layer_256_1_conv1, stride=2, pad='VALID', name='layer_256_1_conv1')
layer_256_1_bn2 = batch_norm(layer_256_1_conv1, 'layer_256_1_bn2')
layer_256_1_scale2 = scale(layer_256_1_bn2, 'layer_256_1_scale2')
layer_256_1_relu2 = tf.nn.relu(layer_256_1_scale2)
layer_256_1_conv2 = conv(layer_256_1_relu2, 'layer_256_1_conv2')
layer_256_1_conv_expand = conv(layer_256_1_relu1, stride=2, name='layer_256_1_conv_expand')
layer_256_1_sum = layer_256_1_conv2 + layer_256_1_conv_expand
layer_512_1_bn1 = batch_norm(layer_256_1_sum, 'layer_512_1_bn1')
layer_512_1_scale1 = scale(layer_512_1_bn1, 'layer_512_1_scale1')
layer_512_1_relu1 = tf.nn.relu(layer_512_1_scale1)
layer_512_1_conv1_h = conv(layer_512_1_relu1, 'layer_512_1_conv1_h')
layer_512_1_bn2_h = batch_norm(layer_512_1_conv1_h, 'layer_512_1_bn2_h')
layer_512_1_scale2_h = scale(layer_512_1_bn2_h, 'layer_512_1_scale2_h')
layer_512_1_relu2 = tf.nn.relu(layer_512_1_scale2_h)
layer_512_1_conv2_h = conv(layer_512_1_relu2, dilation=2, name='layer_512_1_conv2_h')
layer_512_1_conv_expand_h = conv(layer_512_1_relu1, 'layer_512_1_conv_expand_h')
layer_512_1_sum = layer_512_1_conv2_h + layer_512_1_conv_expand_h
last_bn_h = batch_norm(layer_512_1_sum, 'last_bn_h')
last_scale_h = scale(last_bn_h, 'last_scale_h')
fc7 = tf.nn.relu(last_scale_h, name='last_relu')
conv6_1_h = conv(fc7, 'conv6_1_h', activ=tf.nn.relu)
conv6_2_h = conv(conv6_1_h, stride=2, name='conv6_2_h', activ=tf.nn.relu)
conv7_1_h = conv(conv6_2_h, 'conv7_1_h', activ=tf.nn.relu)
conv7_2_h = tf.pad(conv7_1_h, [[0, 0], [1, 1], [1, 1], [0, 0]])
conv7_2_h = conv(conv7_2_h, stride=2, pad='VALID', name='conv7_2_h', activ=tf.nn.relu)
conv8_1_h = conv(conv7_2_h, pad='SAME', name='conv8_1_h', activ=tf.nn.relu)
conv8_2_h = conv(conv8_1_h, pad='SAME', name='conv8_2_h', activ=tf.nn.relu)
conv9_1_h = conv(conv8_2_h, 'conv9_1_h', activ=tf.nn.relu)
conv9_2_h = conv(conv9_1_h, pad='SAME', name='conv9_2_h', activ=tf.nn.relu)
conv4_3_norm = l2norm(layer_256_1_relu1, 'conv4_3_norm')
### Locations and confidences ##################################################
locations = []
confidences = []
flattenLayersNames = [] # Collect all reshape layers names that should be replaced to flattens.
for top, suffix in zip([locations, confidences], ['_mbox_loc', '_mbox_conf']):
for bottom, name in zip([conv4_3_norm, fc7, conv6_2_h, conv7_2_h, conv8_2_h, conv9_2_h],
['conv4_3_norm', 'fc7', 'conv6_2', 'conv7_2', 'conv8_2', 'conv9_2']):
name += suffix
flat = tf.layers.flatten(conv(bottom, name))
flattenLayersNames.append(flat.name[:flat.name.find(':')])
top.append(flat)
mbox_loc = tf.concat(locations, axis=-1, name='mbox_loc')
mbox_conf = tf.concat(confidences, axis=-1, name='mbox_conf')
total = int(np.prod(mbox_conf.shape[1:]))
mbox_conf_reshape = tf.reshape(mbox_conf, [-1, 2], name='mbox_conf_reshape')
mbox_conf_softmax = tf.nn.softmax(mbox_conf_reshape, name='mbox_conf_softmax')
mbox_conf_flatten = tf.reshape(mbox_conf_softmax, [-1, total], name='mbox_conf_flatten')
flattenLayersNames.append('mbox_conf_flatten')
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
### Check correctness ######################################################
out_nodes = ['mbox_loc', 'mbox_conf_flatten']
inp_nodes = [inp.name[:inp.name.find(':')]]
np.random.seed(2701)
inputData = np.random.standard_normal([1, 3, 300, 300]).astype(np.float32)
cvNet.setInput(inputData)
outDNN = cvNet.forward(out_nodes)
outTF = sess.run([mbox_loc, mbox_conf_flatten], feed_dict={inp: inputData.transpose(0, 2, 3, 1)})
print 'Max diff @ locations: %e' % np.max(np.abs(outDNN[0] - outTF[0]))
print 'Max diff @ confidence: %e' % np.max(np.abs(outDNN[1] - outTF[1]))
# Save a graph
graph_def = sess.graph.as_graph_def()
# Freeze graph. Replaces variables to constants.
graph_def = tf.graph_util.convert_variables_to_constants(sess, graph_def, out_nodes)
# Optimize graph. Removes training-only ops, unused nodes.
graph_def = optimize_for_inference_lib.optimize_for_inference(graph_def, inp_nodes, out_nodes, dtype.as_datatype_enum)
# Fuse constant operations.
transforms = ["fold_constants(ignore_errors=True)"]
if args.quantize:
transforms += ["quantize_weights(minimum_size=0)"]
transforms += ["sort_by_execution_order"]
graph_def = TransformGraph(graph_def, inp_nodes, out_nodes, transforms)
# By default, float16 weights are stored in repeated tensor's field called
# `half_val`. It has type int32 with leading zeros for unused bytes.
# This type is encoded by Varint that means only 7 bits are used for value
# representation but the last one is indicated the end of encoding. This way
# float16 might takes 1 or 2 or 3 bytes depends on value. To impove compression,
# we replace all `half_val` values to `tensor_content` using only 2 bytes for everyone.
for node in graph_def.node:
if 'value' in node.attr:
halfs = node.attr["value"].tensor.half_val
if not node.attr["value"].tensor.tensor_content and halfs:
node.attr["value"].tensor.tensor_content = struct.pack('H' * len(halfs), *halfs)
node.attr["value"].tensor.ClearField('half_val')
# Serialize
with tf.gfile.FastGFile(args.pb, 'wb') as f:
f.write(graph_def.SerializeToString())
################################################################################
# Write a text graph representation
################################################################################
def tensorMsg(values):
msg = 'tensor { dtype: DT_FLOAT tensor_shape { dim { size: %d } }' % len(values)
for value in values:
msg += 'float_val: %f ' % value
return msg + '}'
# Remove Const nodes and unused attributes.
for i in reversed(range(len(graph_def.node))):
if graph_def.node[i].op in ['Const', 'Dequantize']:
del graph_def.node[i]
for attr in ['T', 'data_format', 'Tshape', 'N', 'Tidx', 'Tdim',
'use_cudnn_on_gpu', 'Index', 'Tperm', 'is_training',
'Tpaddings']:
if attr in graph_def.node[i].attr:
del graph_def.node[i].attr[attr]
# Append prior box generators
min_sizes = [30, 60, 111, 162, 213, 264]
max_sizes = [60, 111, 162, 213, 264, 315]
steps = [8, 16, 32, 64, 100, 300]
aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]]
layers = [conv4_3_norm, fc7, conv6_2_h, conv7_2_h, conv8_2_h, conv9_2_h]
for i in range(6):
priorBox = NodeDef()
priorBox.name = 'PriorBox_%d' % i
priorBox.op = 'PriorBox'
priorBox.input.append(layers[i].name[:layers[i].name.find(':')])
priorBox.input.append(inp_nodes[0]) # data
text_format.Merge('i: %d' % min_sizes[i], priorBox.attr["min_size"])
text_format.Merge('i: %d' % max_sizes[i], priorBox.attr["max_size"])
text_format.Merge('b: true', priorBox.attr["flip"])
text_format.Merge('b: false', priorBox.attr["clip"])
text_format.Merge(tensorMsg(aspect_ratios[i]), priorBox.attr["aspect_ratio"])
text_format.Merge(tensorMsg([0.1, 0.1, 0.2, 0.2]), priorBox.attr["variance"])
text_format.Merge('f: %f' % steps[i], priorBox.attr["step"])
text_format.Merge('f: 0.5', priorBox.attr["offset"])
graph_def.node.extend([priorBox])
# Concatenate prior boxes
concat = NodeDef()
concat.name = 'mbox_priorbox'
concat.op = 'ConcatV2'
for i in range(6):
concat.input.append('PriorBox_%d' % i)
concat.input.append('mbox_loc/axis')
graph_def.node.extend([concat])
# DetectionOutput layer
detectionOut = NodeDef()
detectionOut.name = 'detection_out'
detectionOut.op = 'DetectionOutput'
detectionOut.input.append('mbox_loc')
detectionOut.input.append('mbox_conf_flatten')
detectionOut.input.append('mbox_priorbox')
text_format.Merge('i: 2', detectionOut.attr['num_classes'])
text_format.Merge('b: true', detectionOut.attr['share_location'])
text_format.Merge('i: 0', detectionOut.attr['background_label_id'])
text_format.Merge('f: 0.45', detectionOut.attr['nms_threshold'])
text_format.Merge('i: 400', detectionOut.attr['top_k'])
text_format.Merge('s: "CENTER_SIZE"', detectionOut.attr['code_type'])
text_format.Merge('i: 200', detectionOut.attr['keep_top_k'])
text_format.Merge('f: 0.01', detectionOut.attr['confidence_threshold'])
graph_def.node.extend([detectionOut])
# Replace L2Normalization subgraph onto a single node.
for i in reversed(range(len(graph_def.node))):
if graph_def.node[i].name in ['conv4_3_norm/l2_normalize/Square',
'conv4_3_norm/l2_normalize/Sum',
'conv4_3_norm/l2_normalize/Maximum',
'conv4_3_norm/l2_normalize/Rsqrt']:
del graph_def.node[i]
for node in graph_def.node:
if node.name == 'conv4_3_norm/l2_normalize':
node.op = 'L2Normalize'
node.input.pop()
node.input.pop()
node.input.append(layer_256_1_relu1.name)
break
softmaxShape = NodeDef()
softmaxShape.name = 'reshape_before_softmax'
softmaxShape.op = 'Const'
text_format.Merge(
'tensor {'
' dtype: DT_INT32'
' tensor_shape { dim { size: 3 } }'
' int_val: 0'
' int_val: -1'
' int_val: 2'
'}', softmaxShape.attr["value"])
graph_def.node.extend([softmaxShape])
for node in graph_def.node:
if node.name == 'mbox_conf_reshape':
node.input[1] = softmaxShape.name
elif node.name == 'mbox_conf_softmax':
text_format.Merge('i: 2', node.attr['axis'])
elif node.name in flattenLayersNames:
node.op = 'Flatten'
inpName = node.input[0]
node.input.pop()
node.input.pop()
node.input.append(inpName)
tf.train.write_graph(graph_def, "", args.pbtxt, as_text=True)

@ -651,7 +651,8 @@ static void addConstNodes(tensorflow::GraphDef& net, std::map<String, int>& cons
tensor->set_dtype(tensorflow::DT_FLOAT);
tensor->set_tensor_content(content.data, content.total() * content.elemSize1());
ExcludeLayer(net, li, 0, false);
net.mutable_node(tensorId)->set_name(name);
CV_Assert(const_layers.insert(std::make_pair(name, tensorId)).second);
layers_to_ignore.insert(name);
continue;
}
@ -1477,6 +1478,17 @@ void TFImporter::populateNet(Net dstNet)
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
}
else if (type == "L2Normalize")
{
// op: "L2Normalize"
// input: "input"
CV_Assert(layer.input_size() == 1);
layerParams.set("across_spatial", false);
layerParams.set("channel_shared", false);
int id = dstNet.addLayer(name, "Normalize", layerParams);
layer_id[name] = id;
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
}
else if (type == "PriorBox")
{
if (hasLayerAttr(layer, "min_size"))
@ -1489,6 +1501,8 @@ void TFImporter::populateNet(Net dstNet)
layerParams.set("clip", getLayerAttr(layer, "clip").b());
if (hasLayerAttr(layer, "offset"))
layerParams.set("offset", getLayerAttr(layer, "offset").f());
if (hasLayerAttr(layer, "step"))
layerParams.set("step", getLayerAttr(layer, "step").f());
const std::string paramNames[] = {"variance", "aspect_ratio", "scales",
"width", "height"};
@ -1538,8 +1552,17 @@ void TFImporter::populateNet(Net dstNet)
connect(layer_id, dstNet, parsePin(layer.input(i)), id, i);
data_layouts[name] = DATA_LAYOUT_UNKNOWN;
}
else if (type == "Softmax")
{
if (hasLayerAttr(layer, "axis"))
layerParams.set("axis", getLayerAttr(layer, "axis").i());
int id = dstNet.addLayer(name, "Softmax", layerParams);
layer_id[name] = id;
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
}
else if (type == "Abs" || type == "Tanh" || type == "Sigmoid" ||
type == "Relu" || type == "Elu" || type == "Softmax" ||
type == "Relu" || type == "Elu" ||
type == "Identity" || type == "Relu6")
{
std::string dnnType = type;

@ -386,4 +386,28 @@ TEST(Test_TensorFlow, memory_read)
runTensorFlowNet("batch_norm_text", DNN_TARGET_CPU, true, l1, lInf, true);
}
TEST(Test_TensorFlow, opencv_face_detector_uint8)
{
std::string proto = findDataFile("dnn/opencv_face_detector.pbtxt", false);
std::string model = findDataFile("dnn/opencv_face_detector_uint8.pb", false);
Net net = readNetFromTensorflow(model, proto);
Mat img = imread(findDataFile("gpu/lbpcascade/er.png", false));
Mat blob = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false);
net.setInput(blob);
// Output has shape 1x1xNx7 where N - number of detections.
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
Mat out = net.forward();
// References are from test for Caffe model.
Mat ref = (Mat_<float>(6, 5) << 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631,
0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168,
0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290,
0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477,
0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494,
0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801);
normAssert(out.reshape(1, out.total() / 7).rowRange(0, 6).colRange(2, 7), ref, "", 2.8e-4, 3.4e-3);
}
}

Loading…
Cancel
Save