|
|
|
@ -59,23 +59,27 @@ |
|
|
|
|
|
|
|
|
|
\************************************************************************************/ |
|
|
|
|
|
|
|
|
|
/************************************************************************************\
|
|
|
|
|
This version adds a new and improved variant of chessboard corner detection |
|
|
|
|
that works better in poor lighting condition. It is based on work from |
|
|
|
|
Oliver Schreer and Stefano Masneri. This method works faster than the previous |
|
|
|
|
one and reverts back to the older method in case no chessboard detection is |
|
|
|
|
possible. Overall performance improves also because now the method avoids |
|
|
|
|
performing the same computation multiple times when not necessary. |
|
|
|
|
|
|
|
|
|
\************************************************************************************/ |
|
|
|
|
|
|
|
|
|
#include "precomp.hpp" |
|
|
|
|
#include "opencv2/imgproc/imgproc_c.h" |
|
|
|
|
#include "opencv2/calib3d/calib3d_c.h" |
|
|
|
|
#include "circlesgrid.hpp" |
|
|
|
|
#include <stdarg.h> |
|
|
|
|
#include <vector> |
|
|
|
|
|
|
|
|
|
//#define ENABLE_TRIM_COL_ROW
|
|
|
|
|
|
|
|
|
|
//#define DEBUG_CHESSBOARD
|
|
|
|
|
#ifdef DEBUG_CHESSBOARD |
|
|
|
|
# include "opencv2/opencv_modules.hpp" |
|
|
|
|
# ifdef HAVE_OPENCV_HIGHGUI |
|
|
|
|
# include "opencv2/highgui.hpp" |
|
|
|
|
# else |
|
|
|
|
# undef DEBUG_CHESSBOARD |
|
|
|
|
# endif |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
#ifdef DEBUG_CHESSBOARD |
|
|
|
|
static int PRINTF( const char* fmt, ... ) |
|
|
|
|
{ |
|
|
|
@ -191,38 +195,204 @@ static void icvRemoveQuadFromGroup(CvCBQuad **quads, int count, CvCBQuad *q0); |
|
|
|
|
|
|
|
|
|
static int icvCheckBoardMonotony( CvPoint2D32f* corners, CvSize pattern_size ); |
|
|
|
|
|
|
|
|
|
#if 0 |
|
|
|
|
static void |
|
|
|
|
icvCalcAffineTranf2D32f(CvPoint2D32f* pts1, CvPoint2D32f* pts2, int count, CvMat* affine_trans) |
|
|
|
|
int cvCheckChessboardBinary(IplImage* src, CvSize size); |
|
|
|
|
|
|
|
|
|
/***************************************************************************************************/ |
|
|
|
|
//COMPUTE INTENSITY HISTOGRAM OF INPUT IMAGE
|
|
|
|
|
static int icvGetIntensityHistogram( unsigned char* pucImage, int iSizeCols, int iSizeRows, std::vector<int>& piHist ); |
|
|
|
|
//SMOOTH HISTOGRAM USING WINDOW OF SIZE 2*iWidth+1
|
|
|
|
|
static int icvSmoothHistogram( const std::vector<int>& piHist, std::vector<int>& piHistSmooth, int iWidth ); |
|
|
|
|
//COMPUTE FAST HISTOGRAM GRADIENT
|
|
|
|
|
static int icvGradientOfHistogram( const std::vector<int>& piHist, std::vector<int>& piHistGrad ); |
|
|
|
|
//PERFORM SMART IMAGE THRESHOLDING BASED ON ANALYSIS OF INTENSTY HISTOGRAM
|
|
|
|
|
static bool icvBinarizationHistogramBased( unsigned char* pucImg, int iCols, int iRows ); |
|
|
|
|
/***************************************************************************************************/ |
|
|
|
|
int icvGetIntensityHistogram( unsigned char* pucImage, int iSizeCols, int iSizeRows, std::vector<int>& piHist ) |
|
|
|
|
{ |
|
|
|
|
int i, j; |
|
|
|
|
int real_count = 0; |
|
|
|
|
for( j = 0; j < count; j++ ) |
|
|
|
|
int iVal; |
|
|
|
|
|
|
|
|
|
// sum up all pixel in row direction and divide by number of columns
|
|
|
|
|
for ( int j=0; j<iSizeRows; j++ ) |
|
|
|
|
{ |
|
|
|
|
for ( int i=0; i<iSizeCols; i++ ) |
|
|
|
|
{ |
|
|
|
|
if( pts1[j].x >= 0 ) real_count++; |
|
|
|
|
iVal = (int)pucImage[j*iSizeCols+i]; |
|
|
|
|
piHist[iVal]++; |
|
|
|
|
} |
|
|
|
|
if(real_count < 3) return; |
|
|
|
|
cv::Ptr<CvMat> xy = cvCreateMat( 2*real_count, 6, CV_32FC1 ); |
|
|
|
|
cv::Ptr<CvMat> uv = cvCreateMat( 2*real_count, 1, CV_32FC1 ); |
|
|
|
|
//estimate affine transfromation
|
|
|
|
|
for( i = 0, j = 0; j < count; j++ ) |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
/***************************************************************************************************/ |
|
|
|
|
int icvSmoothHistogram( const std::vector<int>& piHist, std::vector<int>& piHistSmooth, int iWidth ) |
|
|
|
|
{ |
|
|
|
|
int iIdx; |
|
|
|
|
for ( int i=0; i<256; i++) |
|
|
|
|
{ |
|
|
|
|
int iSmooth = 0; |
|
|
|
|
for ( int ii=-iWidth; ii<=iWidth; ii++) |
|
|
|
|
{ |
|
|
|
|
if( pts1[j].x >= 0 ) |
|
|
|
|
{ |
|
|
|
|
CV_MAT_ELEM( *xy, float, i*2+1, 2 ) = CV_MAT_ELEM( *xy, float, i*2, 0 ) = pts2[j].x; |
|
|
|
|
CV_MAT_ELEM( *xy, float, i*2+1, 3 ) = CV_MAT_ELEM( *xy, float, i*2, 1 ) = pts2[j].y; |
|
|
|
|
CV_MAT_ELEM( *xy, float, i*2, 2 ) = CV_MAT_ELEM( *xy, float, i*2, 3 ) = CV_MAT_ELEM( *xy, float, i*2, 5 ) = \
|
|
|
|
|
CV_MAT_ELEM( *xy, float, i*2+1, 0 ) = CV_MAT_ELEM( *xy, float, i*2+1, 1 ) = CV_MAT_ELEM( *xy, float, i*2+1, 4 ) = 0; |
|
|
|
|
CV_MAT_ELEM( *xy, float, i*2, 4 ) = CV_MAT_ELEM( *xy, float, i*2+1, 5 ) = 1; |
|
|
|
|
CV_MAT_ELEM( *uv, float, i*2, 0 ) = pts1[j].x; |
|
|
|
|
CV_MAT_ELEM( *uv, float, i*2+1, 0 ) = pts1[j].y; |
|
|
|
|
i++; |
|
|
|
|
} |
|
|
|
|
iIdx = i+ii; |
|
|
|
|
if (iIdx > 0 && iIdx < 256) |
|
|
|
|
{ |
|
|
|
|
iSmooth += piHist[iIdx]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
piHistSmooth[i] = iSmooth/(2*iWidth+1); |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
/***************************************************************************************************/ |
|
|
|
|
int icvGradientOfHistogram( const std::vector<int>& piHist, std::vector<int>& piHistGrad ) |
|
|
|
|
{ |
|
|
|
|
piHistGrad[0] = 0; |
|
|
|
|
for ( int i=1; i<255; i++) |
|
|
|
|
{ |
|
|
|
|
piHistGrad[i] = piHist[i-1] - piHist[i+1]; |
|
|
|
|
if ( abs(piHistGrad[i]) < 100 ) |
|
|
|
|
{ |
|
|
|
|
if ( piHistGrad[i-1] == 0) |
|
|
|
|
piHistGrad[i] = -100; |
|
|
|
|
else |
|
|
|
|
piHistGrad[i] = piHistGrad[i-1]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
/***************************************************************************************************/ |
|
|
|
|
bool icvBinarizationHistogramBased( unsigned char* pucImg, int iCols, int iRows ) |
|
|
|
|
{ |
|
|
|
|
int iMaxPix = iCols*iRows; |
|
|
|
|
int iMaxPix1 = iMaxPix/100; |
|
|
|
|
const int iNumBins = 256; |
|
|
|
|
std::vector<int> piHistIntensity(iNumBins, 0); |
|
|
|
|
std::vector<int> piHistSmooth(iNumBins, 0); |
|
|
|
|
std::vector<int> piHistGrad(iNumBins, 0); |
|
|
|
|
std::vector<int> piAccumSum(iNumBins, 0); |
|
|
|
|
std::vector<int> piMaxPos(20, 0); |
|
|
|
|
int iThresh = 0; |
|
|
|
|
int iIdx; |
|
|
|
|
int iWidth = 1; |
|
|
|
|
|
|
|
|
|
icvGetIntensityHistogram( pucImg, iCols, iRows, piHistIntensity ); |
|
|
|
|
|
|
|
|
|
// get accumulated sum starting from bright
|
|
|
|
|
piAccumSum[iNumBins-1] = piHistIntensity[iNumBins-1]; |
|
|
|
|
for ( int i=iNumBins-2; i>=0; i-- ) |
|
|
|
|
{ |
|
|
|
|
piAccumSum[i] = piHistIntensity[i] + piAccumSum[i+1]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// first smooth the distribution
|
|
|
|
|
icvSmoothHistogram( piHistIntensity, piHistSmooth, iWidth ); |
|
|
|
|
|
|
|
|
|
// compute gradient
|
|
|
|
|
icvGradientOfHistogram( piHistSmooth, piHistGrad ); |
|
|
|
|
|
|
|
|
|
// check for zeros
|
|
|
|
|
int iCntMaxima = 0; |
|
|
|
|
for ( int i=iNumBins-2; (i>2) && (iCntMaxima<20); i--) |
|
|
|
|
{ |
|
|
|
|
if ( (piHistGrad[i-1] < 0) && (piHistGrad[i] > 0) ) |
|
|
|
|
{ |
|
|
|
|
piMaxPos[iCntMaxima] = i; |
|
|
|
|
iCntMaxima++; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
iIdx = 0; |
|
|
|
|
int iSumAroundMax = 0; |
|
|
|
|
for ( int i=0; i<iCntMaxima; i++ ) |
|
|
|
|
{ |
|
|
|
|
iIdx = piMaxPos[i]; |
|
|
|
|
iSumAroundMax = piHistSmooth[iIdx-1] + piHistSmooth[iIdx] + piHistSmooth[iIdx+1]; |
|
|
|
|
if ( iSumAroundMax < iMaxPix1 && iIdx < 64 ) |
|
|
|
|
{ |
|
|
|
|
for ( int j=i; j<iCntMaxima-1; j++ ) |
|
|
|
|
{ |
|
|
|
|
piMaxPos[j] = piMaxPos[j+1]; |
|
|
|
|
} |
|
|
|
|
iCntMaxima--; |
|
|
|
|
i--; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if ( iCntMaxima == 1) |
|
|
|
|
{ |
|
|
|
|
iThresh = piMaxPos[0]/2; |
|
|
|
|
} |
|
|
|
|
else if ( iCntMaxima == 2) |
|
|
|
|
{ |
|
|
|
|
iThresh = (piMaxPos[0] + piMaxPos[1])/2; |
|
|
|
|
} |
|
|
|
|
else // iCntMaxima >= 3
|
|
|
|
|
{ |
|
|
|
|
// CHECKING THRESHOLD FOR WHITE
|
|
|
|
|
int iIdxAccSum = 0, iAccum = 0; |
|
|
|
|
for (int i=iNumBins-1; i>0; i--) |
|
|
|
|
{ |
|
|
|
|
iAccum += piHistIntensity[i]; |
|
|
|
|
// iMaxPix/18 is about 5,5%, minimum required number of pixels required for white part of chessboard
|
|
|
|
|
if ( iAccum > (iMaxPix/18) ) |
|
|
|
|
{ |
|
|
|
|
iIdxAccSum = i; |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int iIdxBGMax = 0; |
|
|
|
|
int iBrightMax = piMaxPos[0]; |
|
|
|
|
// printf("iBrightMax = %d\n", iBrightMax);
|
|
|
|
|
for ( int n=0; n<iCntMaxima-1; n++) |
|
|
|
|
{ |
|
|
|
|
iIdxBGMax = n+1; |
|
|
|
|
if ( piMaxPos[n] < iIdxAccSum ) |
|
|
|
|
{ |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
iBrightMax = piMaxPos[n]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// CHECKING THRESHOLD FOR BLACK
|
|
|
|
|
int iMaxVal = piHistIntensity[piMaxPos[iIdxBGMax]]; |
|
|
|
|
|
|
|
|
|
//IF TOO CLOSE TO 255, jump to next maximum
|
|
|
|
|
if ( piMaxPos[iIdxBGMax] >= 250 && iIdxBGMax < iCntMaxima ) |
|
|
|
|
{ |
|
|
|
|
iIdxBGMax++; |
|
|
|
|
iMaxVal = piHistIntensity[piMaxPos[iIdxBGMax]]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for ( int n=iIdxBGMax + 1; n<iCntMaxima; n++) |
|
|
|
|
{ |
|
|
|
|
if ( piHistIntensity[piMaxPos[n]] >= iMaxVal ) |
|
|
|
|
{ |
|
|
|
|
iMaxVal = piHistIntensity[piMaxPos[n]]; |
|
|
|
|
iIdxBGMax = n; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//SETTING THRESHOLD FOR BINARIZATION
|
|
|
|
|
int iDist2 = (iBrightMax - piMaxPos[iIdxBGMax])/2; |
|
|
|
|
iThresh = iBrightMax - iDist2; |
|
|
|
|
PRINTF("THRESHOLD SELECTED = %d, BRIGHTMAX = %d, DARKMAX = %d\n", iThresh, iBrightMax, piMaxPos[iIdxBGMax]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ( iThresh > 0 ) |
|
|
|
|
{ |
|
|
|
|
for ( int jj=0; jj<iRows; jj++) |
|
|
|
|
{ |
|
|
|
|
for ( int ii=0; ii<iCols; ii++) |
|
|
|
|
{ |
|
|
|
|
if ( pucImg[jj*iCols+ii]< iThresh ) |
|
|
|
|
pucImg[jj*iCols+ii] = 0; |
|
|
|
|
else |
|
|
|
|
pucImg[jj*iCols+ii] = 255; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cvSolve( xy, uv, affine_trans, CV_SVD ); |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
CV_IMPL |
|
|
|
|
int cvFindChessboardCorners( const void* arr, CvSize pattern_size, |
|
|
|
@ -232,6 +402,7 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size, |
|
|
|
|
int found = 0; |
|
|
|
|
CvCBQuad *quads = 0, **quad_group = 0; |
|
|
|
|
CvCBCorner *corners = 0, **corner_group = 0; |
|
|
|
|
IplImage* cImgSeg = 0; |
|
|
|
|
|
|
|
|
|
try |
|
|
|
|
{ |
|
|
|
@ -239,14 +410,14 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size, |
|
|
|
|
const int min_dilations = 0; |
|
|
|
|
const int max_dilations = 7; |
|
|
|
|
cv::Ptr<CvMat> norm_img, thresh_img; |
|
|
|
|
#ifdef DEBUG_CHESSBOARD |
|
|
|
|
cv::Ptr<IplImage> dbg_img; |
|
|
|
|
cv::Ptr<IplImage> dbg1_img; |
|
|
|
|
cv::Ptr<IplImage> dbg2_img; |
|
|
|
|
#endif |
|
|
|
|
cv::Ptr<CvMemStorage> storage; |
|
|
|
|
|
|
|
|
|
CvMat stub, *img = (CvMat*)arr; |
|
|
|
|
cImgSeg = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 1 ); |
|
|
|
|
memcpy( cImgSeg->imageData, cvPtr1D( img, 0), img->rows*img->cols ); |
|
|
|
|
|
|
|
|
|
CvMat stub2, *thresh_img_new; |
|
|
|
|
thresh_img_new = cvGetMat( cImgSeg, &stub2, 0, 0 ); |
|
|
|
|
|
|
|
|
|
int expected_corners_num = (pattern_size.width/2+1)*(pattern_size.height/2+1); |
|
|
|
|
|
|
|
|
@ -255,7 +426,6 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size, |
|
|
|
|
if( out_corner_count ) |
|
|
|
|
*out_corner_count = 0; |
|
|
|
|
|
|
|
|
|
IplImage _img; |
|
|
|
|
int quad_count = 0, group_idx = 0, dilations = 0; |
|
|
|
|
|
|
|
|
|
img = cvGetMat( img, &stub ); |
|
|
|
@ -273,12 +443,6 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size, |
|
|
|
|
storage.reset(cvCreateMemStorage(0)); |
|
|
|
|
thresh_img.reset(cvCreateMat( img->rows, img->cols, CV_8UC1 )); |
|
|
|
|
|
|
|
|
|
#ifdef DEBUG_CHESSBOARD |
|
|
|
|
dbg_img = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 3 ); |
|
|
|
|
dbg1_img = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 3 ); |
|
|
|
|
dbg2_img = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 3 ); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
if( CV_MAT_CN(img->type) != 1 || (flags & CV_CALIB_CB_NORMALIZE_IMAGE) ) |
|
|
|
|
{ |
|
|
|
|
// equalize the input image histogram -
|
|
|
|
@ -300,11 +464,19 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size, |
|
|
|
|
|
|
|
|
|
if( flags & CV_CALIB_CB_FAST_CHECK) |
|
|
|
|
{ |
|
|
|
|
cvGetImage(img, &_img); |
|
|
|
|
int check_chessboard_result = cvCheckChessboard(&_img, pattern_size); |
|
|
|
|
if(check_chessboard_result <= 0) |
|
|
|
|
//perform new method for checking chessboard using a binary image.
|
|
|
|
|
//image is binarised using a threshold dependent on the image histogram
|
|
|
|
|
icvBinarizationHistogramBased( (unsigned char*) cImgSeg->imageData, cImgSeg->width, cImgSeg->height ); |
|
|
|
|
int check_chessboard_result = cvCheckChessboardBinary(cImgSeg, pattern_size); |
|
|
|
|
if(check_chessboard_result <= 0) //fall back to the old method
|
|
|
|
|
{ |
|
|
|
|
return 0; |
|
|
|
|
IplImage _img; |
|
|
|
|
cvGetImage(img, &_img); |
|
|
|
|
check_chessboard_result = cvCheckChessboard(&_img, pattern_size); |
|
|
|
|
if(check_chessboard_result <= 0) |
|
|
|
|
{ |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -312,201 +484,238 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size, |
|
|
|
|
// This is necessary because some squares simply do not separate properly with a single dilation. However,
|
|
|
|
|
// we want to use the minimum number of dilations possible since dilations cause the squares to become smaller,
|
|
|
|
|
// making it difficult to detect smaller squares.
|
|
|
|
|
for( k = 0; k < 6; k++ ) |
|
|
|
|
for( dilations = min_dilations; dilations <= max_dilations; dilations++ ) |
|
|
|
|
{ |
|
|
|
|
int max_quad_buf_size = 0; |
|
|
|
|
for( dilations = min_dilations; dilations <= max_dilations; dilations++ ) |
|
|
|
|
{ |
|
|
|
|
if (found) |
|
|
|
|
break; // already found it
|
|
|
|
|
if (found) |
|
|
|
|
break; // already found it
|
|
|
|
|
|
|
|
|
|
cvFree(&quads); |
|
|
|
|
cvFree(&corners); |
|
|
|
|
cvFree(&quads); |
|
|
|
|
cvFree(&corners); |
|
|
|
|
|
|
|
|
|
/*if( k == 1 )
|
|
|
|
|
{ |
|
|
|
|
//Pattern was not found using binarization
|
|
|
|
|
// Run multi-level quads extraction
|
|
|
|
|
// In case one-level binarization did not give enough number of quads
|
|
|
|
|
CV_CALL( quad_count = icvGenerateQuadsEx( &quads, &corners, storage, img, thresh_img, dilations, flags )); |
|
|
|
|
PRINTF("EX quad count: %d/%d\n", quad_count, expected_corners_num); |
|
|
|
|
} |
|
|
|
|
else*/ |
|
|
|
|
{ |
|
|
|
|
// convert the input grayscale image to binary (black-n-white)
|
|
|
|
|
if( flags & CV_CALIB_CB_ADAPTIVE_THRESH ) |
|
|
|
|
{ |
|
|
|
|
int block_size = cvRound(prev_sqr_size == 0 ? |
|
|
|
|
MIN(img->cols,img->rows)*(k%2 == 0 ? 0.2 : 0.1): prev_sqr_size*2)|1; |
|
|
|
|
|
|
|
|
|
// convert to binary
|
|
|
|
|
cvAdaptiveThreshold( img, thresh_img, 255, |
|
|
|
|
CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY, block_size, (k/2)*5 ); |
|
|
|
|
if (dilations > 0) |
|
|
|
|
cvDilate( thresh_img, thresh_img, 0, dilations-1 ); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
// Make dilation before the thresholding.
|
|
|
|
|
// It splits chessboard corners
|
|
|
|
|
//cvDilate( img, thresh_img, 0, 1 );
|
|
|
|
|
int max_quad_buf_size = 0; |
|
|
|
|
|
|
|
|
|
// empiric threshold level
|
|
|
|
|
double mean = cvAvg( img ).val[0]; |
|
|
|
|
int thresh_level = cvRound( mean - 10 ); |
|
|
|
|
thresh_level = MAX( thresh_level, 10 ); |
|
|
|
|
//USE BINARY IMAGE COMPUTED USING icvBinarizationHistogramBased METHOD
|
|
|
|
|
cvDilate( thresh_img_new, thresh_img_new, 0, 1 ); |
|
|
|
|
|
|
|
|
|
cvThreshold( img, thresh_img, thresh_level, 255, CV_THRESH_BINARY ); |
|
|
|
|
cvDilate( thresh_img, thresh_img, 0, dilations ); |
|
|
|
|
} |
|
|
|
|
// So we can find rectangles that go to the edge, we draw a white line around the image edge.
|
|
|
|
|
// Otherwise FindContours will miss those clipped rectangle contours.
|
|
|
|
|
// The border color will be the image mean, because otherwise we risk screwing up filters like cvSmooth()...
|
|
|
|
|
cvRectangle( thresh_img_new, cvPoint(0,0), cvPoint(thresh_img_new->cols-1, thresh_img_new->rows-1), CV_RGB(255,255,255), 3, 8); |
|
|
|
|
quad_count = icvGenerateQuads( &quads, &corners, storage, thresh_img_new, flags, &max_quad_buf_size ); |
|
|
|
|
PRINTF("Quad count: %d/%d\n", quad_count, expected_corners_num); |
|
|
|
|
|
|
|
|
|
#ifdef DEBUG_CHESSBOARD |
|
|
|
|
cvCvtColor(thresh_img,dbg_img,CV_GRAY2BGR); |
|
|
|
|
#endif |
|
|
|
|
if( quad_count <= 0 ) |
|
|
|
|
{ |
|
|
|
|
continue; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// So we can find rectangles that go to the edge, we draw a white line around the image edge.
|
|
|
|
|
// Otherwise FindContours will miss those clipped rectangle contours.
|
|
|
|
|
// The border color will be the image mean, because otherwise we risk screwing up filters like cvSmooth()...
|
|
|
|
|
cvRectangle( thresh_img, cvPoint(0,0), cvPoint(thresh_img->cols-1, |
|
|
|
|
thresh_img->rows-1), CV_RGB(255,255,255), 3, 8); |
|
|
|
|
// Find quad's neighbors
|
|
|
|
|
icvFindQuadNeighbors( quads, quad_count ); |
|
|
|
|
|
|
|
|
|
quad_count = icvGenerateQuads( &quads, &corners, storage, thresh_img, flags, &max_quad_buf_size); |
|
|
|
|
// allocate extra for adding in icvOrderFoundQuads
|
|
|
|
|
cvFree(&quad_group); |
|
|
|
|
cvFree(&corner_group); |
|
|
|
|
quad_group = (CvCBQuad**)cvAlloc( sizeof(quad_group[0]) * max_quad_buf_size); |
|
|
|
|
corner_group = (CvCBCorner**)cvAlloc( sizeof(corner_group[0]) * max_quad_buf_size * 4 ); |
|
|
|
|
|
|
|
|
|
PRINTF("Quad count: %d/%d\n", quad_count, expected_corners_num); |
|
|
|
|
} |
|
|
|
|
for( group_idx = 0; ; group_idx++ ) |
|
|
|
|
{ |
|
|
|
|
int count = 0; |
|
|
|
|
count = icvFindConnectedQuads( quads, quad_count, quad_group, group_idx, storage ); |
|
|
|
|
|
|
|
|
|
int icount = count; |
|
|
|
|
if( count == 0 ) |
|
|
|
|
break; |
|
|
|
|
|
|
|
|
|
#ifdef DEBUG_CHESSBOARD |
|
|
|
|
cvCopy(dbg_img, dbg1_img); |
|
|
|
|
cvNamedWindow("all_quads", 1); |
|
|
|
|
// copy corners to temp array
|
|
|
|
|
for(int i = 0; i < quad_count; i++ ) |
|
|
|
|
{ |
|
|
|
|
for (int k=0; k<4; k++) |
|
|
|
|
{ |
|
|
|
|
CvPoint2D32f pt1, pt2; |
|
|
|
|
CvScalar color = CV_RGB(30,255,30); |
|
|
|
|
pt1 = quads[i].corners[k]->pt; |
|
|
|
|
pt2 = quads[i].corners[(k+1)%4]->pt; |
|
|
|
|
pt2.x = (pt1.x + pt2.x)/2; |
|
|
|
|
pt2.y = (pt1.y + pt2.y)/2; |
|
|
|
|
if (k>0) |
|
|
|
|
color = CV_RGB(200,200,0); |
|
|
|
|
cvLine( dbg1_img, cvPointFrom32f(pt1), cvPointFrom32f(pt2), color, 3, 8); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
// order the quad corners globally
|
|
|
|
|
// maybe delete or add some
|
|
|
|
|
PRINTF("Starting ordering of inner quads\n"); |
|
|
|
|
count = icvOrderFoundConnectedQuads(count, quad_group, &quad_count, &quads, &corners, pattern_size, max_quad_buf_size, storage ); |
|
|
|
|
PRINTF("Orig count: %d After ordering: %d\n", icount, count); |
|
|
|
|
|
|
|
|
|
if (count == 0) |
|
|
|
|
continue; // haven't found inner quads
|
|
|
|
|
|
|
|
|
|
cvShowImage("all_quads", (IplImage*)dbg1_img); |
|
|
|
|
cvWaitKey(); |
|
|
|
|
#endif |
|
|
|
|
// If count is more than it should be, this will remove those quads
|
|
|
|
|
// which cause maximum deviation from a nice square pattern.
|
|
|
|
|
count = icvCleanFoundConnectedQuads( count, quad_group, pattern_size ); |
|
|
|
|
PRINTF("Connected group: %d orig count: %d cleaned: %d\n", group_idx, icount, count); |
|
|
|
|
|
|
|
|
|
if( quad_count <= 0 ) |
|
|
|
|
continue; |
|
|
|
|
count = icvCheckQuadGroup( quad_group, count, corner_group, pattern_size ); |
|
|
|
|
PRINTF("Connected group: %d count: %d cleaned: %d\n", group_idx, icount, count); |
|
|
|
|
|
|
|
|
|
// Find quad's neighbors
|
|
|
|
|
icvFindQuadNeighbors( quads, quad_count ); |
|
|
|
|
int n = count > 0 ? pattern_size.width * pattern_size.height : -count; |
|
|
|
|
n = MIN( n, pattern_size.width * pattern_size.height ); |
|
|
|
|
float sum_dist = 0; |
|
|
|
|
int total = 0; |
|
|
|
|
|
|
|
|
|
// allocate extra for adding in icvOrderFoundQuads
|
|
|
|
|
cvFree(&quad_group); |
|
|
|
|
cvFree(&corner_group); |
|
|
|
|
quad_group = (CvCBQuad**)cvAlloc( sizeof(quad_group[0]) * max_quad_buf_size); |
|
|
|
|
corner_group = (CvCBCorner**)cvAlloc( sizeof(corner_group[0]) * max_quad_buf_size * 4 ); |
|
|
|
|
for(int i = 0; i < n; i++ ) |
|
|
|
|
{ |
|
|
|
|
int ni = 0; |
|
|
|
|
float avgi = corner_group[i]->meanDist(&ni); |
|
|
|
|
sum_dist += avgi*ni; |
|
|
|
|
total += ni; |
|
|
|
|
} |
|
|
|
|
prev_sqr_size = cvRound(sum_dist/MAX(total, 1)); |
|
|
|
|
|
|
|
|
|
for( group_idx = 0; ; group_idx++ ) |
|
|
|
|
{ |
|
|
|
|
int count = 0; |
|
|
|
|
count = icvFindConnectedQuads( quads, quad_count, quad_group, group_idx, storage ); |
|
|
|
|
if( count > 0 || (out_corner_count && -count > *out_corner_count) ) |
|
|
|
|
{ |
|
|
|
|
// copy corners to output array
|
|
|
|
|
for(int i = 0; i < n; i++ ) |
|
|
|
|
out_corners[i] = corner_group[i]->pt; |
|
|
|
|
|
|
|
|
|
if( out_corner_count ) |
|
|
|
|
*out_corner_count = n; |
|
|
|
|
|
|
|
|
|
if( count == pattern_size.width*pattern_size.height && |
|
|
|
|
icvCheckBoardMonotony( out_corners, pattern_size )) |
|
|
|
|
{ |
|
|
|
|
found = 1; |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
}//dilations
|
|
|
|
|
|
|
|
|
|
int icount = count; |
|
|
|
|
if( count == 0 ) |
|
|
|
|
break; |
|
|
|
|
PRINTF("Chessboard detection result 0: %d\n", found); |
|
|
|
|
|
|
|
|
|
// order the quad corners globally
|
|
|
|
|
// maybe delete or add some
|
|
|
|
|
PRINTF("Starting ordering of inner quads\n"); |
|
|
|
|
count = icvOrderFoundConnectedQuads(count, quad_group, &quad_count, &quads, &corners, |
|
|
|
|
pattern_size, max_quad_buf_size, storage ); |
|
|
|
|
PRINTF("Orig count: %d After ordering: %d\n", icount, count); |
|
|
|
|
// revert to old, slower, method if detection failed
|
|
|
|
|
if (!found) |
|
|
|
|
{ |
|
|
|
|
PRINTF("Fallback to old algorithm\n"); |
|
|
|
|
// empiric threshold level
|
|
|
|
|
// thresholding performed here and not inside the cycle to save processing time
|
|
|
|
|
int thresh_level; |
|
|
|
|
if ( !(flags & CV_CALIB_CB_ADAPTIVE_THRESH) ) |
|
|
|
|
{ |
|
|
|
|
double mean = cvAvg( img ).val[0]; |
|
|
|
|
thresh_level = cvRound( mean - 10 ); |
|
|
|
|
thresh_level = MAX( thresh_level, 10 ); |
|
|
|
|
cvThreshold( img, thresh_img, thresh_level, 255, CV_THRESH_BINARY ); |
|
|
|
|
} |
|
|
|
|
for( k = 0; k < 6; k++ ) |
|
|
|
|
{ |
|
|
|
|
int max_quad_buf_size = 0; |
|
|
|
|
for( dilations = min_dilations; dilations <= max_dilations; dilations++ ) |
|
|
|
|
{ |
|
|
|
|
if (found) |
|
|
|
|
break; // already found it
|
|
|
|
|
|
|
|
|
|
cvFree(&quads); |
|
|
|
|
cvFree(&corners); |
|
|
|
|
|
|
|
|
|
// convert the input grayscale image to binary (black-n-white)
|
|
|
|
|
if( flags & CV_CALIB_CB_ADAPTIVE_THRESH ) |
|
|
|
|
{ |
|
|
|
|
int block_size = cvRound(prev_sqr_size == 0 ? |
|
|
|
|
MIN(img->cols,img->rows)*(k%2 == 0 ? 0.2 : 0.1): prev_sqr_size*2)|1; |
|
|
|
|
|
|
|
|
|
// convert to binary
|
|
|
|
|
cvAdaptiveThreshold( img, thresh_img, 255, |
|
|
|
|
CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY, block_size, (k/2)*5 ); |
|
|
|
|
if (dilations > 0) |
|
|
|
|
cvDilate( thresh_img, thresh_img, 0, dilations-1 ); |
|
|
|
|
} |
|
|
|
|
//if flag CV_CALIB_CB_ADAPTIVE_THRESH is not set it doesn't make sense
|
|
|
|
|
//to iterate over k
|
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
k = 6; |
|
|
|
|
cvDilate( thresh_img, thresh_img, 0, 1 ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// So we can find rectangles that go to the edge, we draw a white line around the image edge.
|
|
|
|
|
// Otherwise FindContours will miss those clipped rectangle contours.
|
|
|
|
|
// The border color will be the image mean, because otherwise we risk screwing up filters like cvSmooth()...
|
|
|
|
|
cvRectangle( thresh_img, cvPoint(0,0), cvPoint(thresh_img->cols-1, |
|
|
|
|
thresh_img->rows-1), CV_RGB(255,255,255), 3, 8); |
|
|
|
|
|
|
|
|
|
quad_count = icvGenerateQuads( &quads, &corners, storage, thresh_img, flags, &max_quad_buf_size); |
|
|
|
|
PRINTF("Quad count: %d/%d\n", quad_count, expected_corners_num); |
|
|
|
|
|
|
|
|
|
if( quad_count <= 0 ) |
|
|
|
|
{ |
|
|
|
|
continue; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Find quad's neighbors
|
|
|
|
|
icvFindQuadNeighbors( quads, quad_count ); |
|
|
|
|
|
|
|
|
|
#ifdef DEBUG_CHESSBOARD |
|
|
|
|
cvCopy(dbg_img,dbg2_img); |
|
|
|
|
cvNamedWindow("connected_group", 1); |
|
|
|
|
// copy corners to temp array
|
|
|
|
|
for(int i = 0; i < quad_count; i++ ) |
|
|
|
|
{ |
|
|
|
|
if (quads[i].group_idx == group_idx) |
|
|
|
|
for (int k=0; k<4; k++) |
|
|
|
|
{ |
|
|
|
|
CvPoint2D32f pt1, pt2; |
|
|
|
|
CvScalar color = CV_RGB(30,255,30); |
|
|
|
|
if (quads[i].ordered) |
|
|
|
|
color = CV_RGB(255,30,30); |
|
|
|
|
pt1 = quads[i].corners[k]->pt; |
|
|
|
|
pt2 = quads[i].corners[(k+1)%4]->pt; |
|
|
|
|
pt2.x = (pt1.x + pt2.x)/2; |
|
|
|
|
pt2.y = (pt1.y + pt2.y)/2; |
|
|
|
|
if (k>0) |
|
|
|
|
color = CV_RGB(200,200,0); |
|
|
|
|
cvLine( dbg2_img, cvPointFrom32f(pt1), cvPointFrom32f(pt2), color, 3, 8); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
cvShowImage("connected_group", (IplImage*)dbg2_img); |
|
|
|
|
cvWaitKey(); |
|
|
|
|
#endif |
|
|
|
|
// allocate extra for adding in icvOrderFoundQuads
|
|
|
|
|
cvFree(&quad_group); |
|
|
|
|
cvFree(&corner_group); |
|
|
|
|
quad_group = (CvCBQuad**)cvAlloc( sizeof(quad_group[0]) * max_quad_buf_size); |
|
|
|
|
corner_group = (CvCBCorner**)cvAlloc( sizeof(corner_group[0]) * max_quad_buf_size * 4 ); |
|
|
|
|
|
|
|
|
|
if (count == 0) |
|
|
|
|
continue; // haven't found inner quads
|
|
|
|
|
for( group_idx = 0; ; group_idx++ ) |
|
|
|
|
{ |
|
|
|
|
int count = 0; |
|
|
|
|
count = icvFindConnectedQuads( quads, quad_count, quad_group, group_idx, storage ); |
|
|
|
|
|
|
|
|
|
int icount = count; |
|
|
|
|
if( count == 0 ) |
|
|
|
|
break; |
|
|
|
|
|
|
|
|
|
// If count is more than it should be, this will remove those quads
|
|
|
|
|
// which cause maximum deviation from a nice square pattern.
|
|
|
|
|
count = icvCleanFoundConnectedQuads( count, quad_group, pattern_size ); |
|
|
|
|
PRINTF("Connected group: %d orig count: %d cleaned: %d\n", group_idx, icount, count); |
|
|
|
|
// order the quad corners globally
|
|
|
|
|
// maybe delete or add some
|
|
|
|
|
PRINTF("Starting ordering of inner quads\n"); |
|
|
|
|
count = icvOrderFoundConnectedQuads(count, quad_group, &quad_count, &quads, &corners, pattern_size, max_quad_buf_size, storage ); |
|
|
|
|
|
|
|
|
|
count = icvCheckQuadGroup( quad_group, count, corner_group, pattern_size ); |
|
|
|
|
PRINTF("Connected group: %d count: %d cleaned: %d\n", group_idx, icount, count); |
|
|
|
|
PRINTF("Orig count: %d After ordering: %d\n", icount, count); |
|
|
|
|
|
|
|
|
|
{ |
|
|
|
|
int n = count > 0 ? pattern_size.width * pattern_size.height : -count; |
|
|
|
|
n = MIN( n, pattern_size.width * pattern_size.height ); |
|
|
|
|
float sum_dist = 0; |
|
|
|
|
int total = 0; |
|
|
|
|
if (count == 0) |
|
|
|
|
continue; // haven't found inner quads
|
|
|
|
|
|
|
|
|
|
for(int i = 0; i < n; i++ ) |
|
|
|
|
{ |
|
|
|
|
int ni = 0; |
|
|
|
|
float avgi = corner_group[i]->meanDist(&ni); |
|
|
|
|
sum_dist += avgi*ni; |
|
|
|
|
total += ni; |
|
|
|
|
} |
|
|
|
|
prev_sqr_size = cvRound(sum_dist/MAX(total, 1)); |
|
|
|
|
|
|
|
|
|
if( count > 0 || (out_corner_count && -count > *out_corner_count) ) |
|
|
|
|
{ |
|
|
|
|
// copy corners to output array
|
|
|
|
|
for(int i = 0; i < n; i++ ) |
|
|
|
|
out_corners[i] = corner_group[i]->pt; |
|
|
|
|
// If count is more than it should be, this will remove those quads
|
|
|
|
|
// which cause maximum deviation from a nice square pattern.
|
|
|
|
|
count = icvCleanFoundConnectedQuads( count, quad_group, pattern_size ); |
|
|
|
|
PRINTF("Connected group: %d orig count: %d cleaned: %d\n", group_idx, icount, count); |
|
|
|
|
|
|
|
|
|
if( out_corner_count ) |
|
|
|
|
*out_corner_count = n; |
|
|
|
|
count = icvCheckQuadGroup( quad_group, count, corner_group, pattern_size ); |
|
|
|
|
PRINTF("Connected group: %d count: %d cleaned: %d\n", group_idx, icount, count); |
|
|
|
|
|
|
|
|
|
if( count == pattern_size.width*pattern_size.height && |
|
|
|
|
icvCheckBoardMonotony( out_corners, pattern_size )) |
|
|
|
|
{ |
|
|
|
|
found = 1; |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
int n = count > 0 ? pattern_size.width * pattern_size.height : -count; |
|
|
|
|
n = MIN( n, pattern_size.width * pattern_size.height ); |
|
|
|
|
float sum_dist = 0; |
|
|
|
|
int total = 0; |
|
|
|
|
|
|
|
|
|
for(int i = 0; i < n; i++ ) |
|
|
|
|
{ |
|
|
|
|
int ni = 0; |
|
|
|
|
float avgi = corner_group[i]->meanDist(&ni); |
|
|
|
|
sum_dist += avgi*ni; |
|
|
|
|
total += ni; |
|
|
|
|
} |
|
|
|
|
prev_sqr_size = cvRound(sum_dist/MAX(total, 1)); |
|
|
|
|
|
|
|
|
|
if( count > 0 || (out_corner_count && -count > *out_corner_count) ) |
|
|
|
|
{ |
|
|
|
|
// copy corners to output array
|
|
|
|
|
for(int i = 0; i < n; i++ ) |
|
|
|
|
out_corners[i] = corner_group[i]->pt; |
|
|
|
|
|
|
|
|
|
if( out_corner_count ) |
|
|
|
|
*out_corner_count = n; |
|
|
|
|
|
|
|
|
|
if( count == pattern_size.width*pattern_size.height && icvCheckBoardMonotony( out_corners, pattern_size )) |
|
|
|
|
{ |
|
|
|
|
found = 1; |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
}//dilations
|
|
|
|
|
}//
|
|
|
|
|
}// for k = 0 -> 6
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
PRINTF("Chessboard detection result 1: %d\n", found); |
|
|
|
|
|
|
|
|
|
if( found ) |
|
|
|
|
found = icvCheckBoardMonotony( out_corners, pattern_size ); |
|
|
|
|
|
|
|
|
|
PRINTF("Chessboard detection result 2: %d\n", found); |
|
|
|
|
|
|
|
|
|
// check that none of the found corners is too close to the image boundary
|
|
|
|
|
if( found ) |
|
|
|
|
{ |
|
|
|
@ -521,36 +730,38 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size, |
|
|
|
|
found = k == pattern_size.width*pattern_size.height; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( found && pattern_size.height % 2 == 0 && pattern_size.width % 2 == 0 ) |
|
|
|
|
PRINTF("Chessboard detection result 3: %d\n", found); |
|
|
|
|
|
|
|
|
|
if( found ) |
|
|
|
|
{ |
|
|
|
|
if ( pattern_size.height % 2 == 0 && pattern_size.width % 2 == 0 ) |
|
|
|
|
{ |
|
|
|
|
int last_row = (pattern_size.height-1)*pattern_size.width; |
|
|
|
|
double dy0 = out_corners[last_row].y - out_corners[0].y; |
|
|
|
|
if( dy0 < 0 ) |
|
|
|
|
{ |
|
|
|
|
int n = pattern_size.width*pattern_size.height; |
|
|
|
|
for(int i = 0; i < n/2; i++ ) |
|
|
|
|
{ |
|
|
|
|
CvPoint2D32f temp; |
|
|
|
|
CV_SWAP(out_corners[i], out_corners[n-i-1], temp); |
|
|
|
|
} |
|
|
|
|
int n = pattern_size.width*pattern_size.height; |
|
|
|
|
for(int i = 0; i < n/2; i++ ) |
|
|
|
|
{ |
|
|
|
|
CvPoint2D32f temp; |
|
|
|
|
CV_SWAP(out_corners[i], out_corners[n-i-1], temp); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( found ) |
|
|
|
|
{ |
|
|
|
|
cv::Ptr<CvMat> gray; |
|
|
|
|
if( CV_MAT_CN(img->type) != 1 ) |
|
|
|
|
{ |
|
|
|
|
gray.reset(cvCreateMat(img->rows, img->cols, CV_8UC1)); |
|
|
|
|
cvCvtColor(img, gray, CV_BGR2GRAY); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
gray.reset(cvCloneMat(img)); |
|
|
|
|
} |
|
|
|
|
int wsize = 2; |
|
|
|
|
cvFindCornerSubPix( gray, out_corners, pattern_size.width*pattern_size.height, |
|
|
|
|
cvSize(wsize, wsize), cvSize(-1,-1), cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 15, 0.1)); |
|
|
|
|
} |
|
|
|
|
cv::Ptr<CvMat> gray; |
|
|
|
|
if( CV_MAT_CN(img->type) != 1 ) |
|
|
|
|
{ |
|
|
|
|
gray.reset(cvCreateMat(img->rows, img->cols, CV_8UC1)); |
|
|
|
|
cvCvtColor(img, gray, CV_BGR2GRAY); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
gray.reset(cvCloneMat(img)); |
|
|
|
|
} |
|
|
|
|
int wsize = 2; |
|
|
|
|
cvFindCornerSubPix( gray, out_corners, pattern_size.width*pattern_size.height, |
|
|
|
|
cvSize(wsize, wsize), cvSize(-1,-1), |
|
|
|
|
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 15, 0.1)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
catch(...) |
|
|
|
@ -559,6 +770,7 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size, |
|
|
|
|
cvFree(&corners); |
|
|
|
|
cvFree(&quad_group); |
|
|
|
|
cvFree(&corner_group); |
|
|
|
|
cvFree(&cImgSeg); |
|
|
|
|
throw; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -566,6 +778,7 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size, |
|
|
|
|
cvFree(&corners); |
|
|
|
|
cvFree(&quad_group); |
|
|
|
|
cvFree(&corner_group); |
|
|
|
|
cvFree(&cImgSeg); |
|
|
|
|
return found; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|