|
|
|
@ -15,6 +15,10 @@ |
|
|
|
|
|
|
|
|
|
#include <iostream> |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL // OpenCL is not well supported
|
|
|
|
|
#undef HAVE_OPENCL |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
// Namespaces
|
|
|
|
|
namespace cv |
|
|
|
|
{ |
|
|
|
@ -251,38 +255,41 @@ private: |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
static inline bool |
|
|
|
|
ocl_non_linear_diffusion_step(const UMat& Lt, const UMat& Lf, UMat& Lstep, float step_size) |
|
|
|
|
ocl_non_linear_diffusion_step(InputArray Lt_, InputArray Lf_, OutputArray Lstep_, float step_size) |
|
|
|
|
{ |
|
|
|
|
if(!Lt.isContinuous()) |
|
|
|
|
if (!Lt_.isContinuous()) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
UMat Lt = Lt_.getUMat(), Lf = Lf_.getUMat(), Lstep = Lstep_.getUMat(); |
|
|
|
|
|
|
|
|
|
size_t globalSize[] = {(size_t)Lt.cols, (size_t)Lt.rows}; |
|
|
|
|
|
|
|
|
|
ocl::Kernel ker("AKAZE_nld_step_scalar", ocl::features2d::akaze_oclsrc); |
|
|
|
|
if( ker.empty() ) |
|
|
|
|
if (ker.empty()) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
return ker.args( |
|
|
|
|
ocl::KernelArg::ReadOnly(Lt), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Lf), |
|
|
|
|
ocl::KernelArg::PtrWriteOnly(Lstep), |
|
|
|
|
step_size).run(2, globalSize, 0, true); |
|
|
|
|
step_size) |
|
|
|
|
.run(2, globalSize, 0, true); |
|
|
|
|
} |
|
|
|
|
#endif // HAVE_OPENCL
|
|
|
|
|
|
|
|
|
|
static inline void |
|
|
|
|
non_linear_diffusion_step(const UMat& Lt, const UMat& Lf, UMat& Lstep, float step_size) |
|
|
|
|
non_linear_diffusion_step(InputArray Lt, InputArray Lf, OutputArray Lstep, float step_size) |
|
|
|
|
{ |
|
|
|
|
CV_INSTRUMENT_REGION() |
|
|
|
|
|
|
|
|
|
Lstep.create(Lt.size(), Lt.type()); |
|
|
|
|
|
|
|
|
|
CV_OCL_RUN(true, ocl_non_linear_diffusion_step(Lt, Lf, Lstep, step_size)); |
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
CV_OCL_RUN(OCL_PERFORMANCE_CHECK(Lstep.isUMat()), ocl_non_linear_diffusion_step(Lt, Lf, Lstep, step_size)); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
// when on CPU UMats should be already allocated on CPU so getMat here is basicallly no-op
|
|
|
|
|
Mat Mstep = Lstep.getMat(ACCESS_WRITE); |
|
|
|
|
parallel_for_(Range(0, Lt.rows), NonLinearScalarDiffusionStep(Lt.getMat(ACCESS_READ), |
|
|
|
|
Lf.getMat(ACCESS_READ), Mstep, step_size)); |
|
|
|
|
Mat Mstep = Lstep.getMat(); |
|
|
|
|
parallel_for_(Range(0, Lt.rows()), NonLinearScalarDiffusionStep(Lt.getMat(), Lf.getMat(), Mstep, step_size)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
@ -347,25 +354,28 @@ compute_kcontrast(const cv::Mat& Lx, const cv::Mat& Ly, float perc, int nbins) |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
static inline bool |
|
|
|
|
ocl_pm_g2(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast) |
|
|
|
|
ocl_pm_g2(InputArray Lx_, InputArray Ly_, OutputArray Lflow_, float kcontrast) |
|
|
|
|
{ |
|
|
|
|
UMat Lx = Lx_.getUMat(), Ly = Ly_.getUMat(), Lflow = Lflow_.getUMat(); |
|
|
|
|
|
|
|
|
|
int total = Lx.rows * Lx.cols; |
|
|
|
|
size_t globalSize[] = {(size_t)total}; |
|
|
|
|
|
|
|
|
|
ocl::Kernel ker("AKAZE_pm_g2", ocl::features2d::akaze_oclsrc); |
|
|
|
|
if( ker.empty() ) |
|
|
|
|
if (ker.empty()) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
return ker.args( |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Lx), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Ly), |
|
|
|
|
ocl::KernelArg::PtrWriteOnly(Lflow), |
|
|
|
|
kcontrast, total).run(1, globalSize, 0, true); |
|
|
|
|
kcontrast, total) |
|
|
|
|
.run(1, globalSize, 0, true); |
|
|
|
|
} |
|
|
|
|
#endif // HAVE_OPENCL
|
|
|
|
|
|
|
|
|
|
static inline void |
|
|
|
|
compute_diffusivity(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast, int diffusivity) |
|
|
|
|
compute_diffusivity(InputArray Lx, InputArray Ly, OutputArray Lflow, float kcontrast, int diffusivity) |
|
|
|
|
{ |
|
|
|
|
CV_INSTRUMENT_REGION() |
|
|
|
|
|
|
|
|
@ -376,7 +386,9 @@ compute_diffusivity(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast |
|
|
|
|
pm_g1(Lx, Ly, Lflow, kcontrast); |
|
|
|
|
break; |
|
|
|
|
case KAZE::DIFF_PM_G2: |
|
|
|
|
CV_OCL_RUN(true, ocl_pm_g2(Lx, Ly, Lflow, kcontrast)); |
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
CV_OCL_RUN(OCL_PERFORMANCE_CHECK(Lflow.isUMat()), ocl_pm_g2(Lx, Ly, Lflow, kcontrast)); |
|
|
|
|
#endif |
|
|
|
|
pm_g2(Lx, Ly, Lflow, kcontrast); |
|
|
|
|
break; |
|
|
|
|
case KAZE::DIFF_WEICKERT: |
|
|
|
@ -391,32 +403,6 @@ compute_diffusivity(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief Fetches pyramid from the gpu. |
|
|
|
|
* @details Setups mapping for matrices that might be probably on the GPU, if the |
|
|
|
|
* code executes with OpenCL. This will setup MLx, MLy, Mdet members in the pyramid with |
|
|
|
|
* mapping to respective UMats. This must be called before CPU-only parts of AKAZE, that work |
|
|
|
|
* only on these Mats. |
|
|
|
|
* |
|
|
|
|
* This prevents mapping/unmapping overhead (and possible uploads/downloads) that would occur, if |
|
|
|
|
* we just create Mats from UMats each time we need it later. This has devastating effects on OCL |
|
|
|
|
* performace. |
|
|
|
|
* |
|
|
|
|
* @param evolution Pyramid to download |
|
|
|
|
*/ |
|
|
|
|
static inline void downloadPyramid(std::vector<Evolution>& evolution) |
|
|
|
|
{ |
|
|
|
|
CV_INSTRUMENT_REGION() |
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < evolution.size(); ++i) { |
|
|
|
|
Evolution& e = evolution[i]; |
|
|
|
|
e.Mx = e.Lx.getMat(ACCESS_READ); |
|
|
|
|
e.My = e.Ly.getMat(ACCESS_READ); |
|
|
|
|
e.Mt = e.Lt.getMat(ACCESS_READ); |
|
|
|
|
e.Mdet = e.Ldet.getMat(ACCESS_READ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief This method creates the nonlinear scale space for a given image |
|
|
|
|
* @param img Input image for which the nonlinear scale space needs to be created |
|
|
|
@ -435,12 +421,11 @@ void AKAZEFeatures::Create_Nonlinear_Scale_Space(InputArray img) |
|
|
|
|
if (evolution_.size() == 1) { |
|
|
|
|
// we don't need to compute kcontrast factor
|
|
|
|
|
Compute_Determinant_Hessian_Response(); |
|
|
|
|
downloadPyramid(evolution_); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// derivatives, flow and diffusion step
|
|
|
|
|
UMat Lx, Ly, Lsmooth, Lflow, Lstep; |
|
|
|
|
Mat Lx, Ly, Lsmooth, Lflow, Lstep; |
|
|
|
|
|
|
|
|
|
// compute derivatives for computing k contrast
|
|
|
|
|
GaussianBlur(img, Lsmooth, Size(5, 5), 1.0f, 1.0f, BORDER_REPLICATE); |
|
|
|
@ -448,8 +433,7 @@ void AKAZEFeatures::Create_Nonlinear_Scale_Space(InputArray img) |
|
|
|
|
Scharr(Lsmooth, Ly, CV_32F, 0, 1, 1, 0, BORDER_DEFAULT); |
|
|
|
|
Lsmooth.release(); |
|
|
|
|
// compute the kcontrast factor
|
|
|
|
|
float kcontrast = compute_kcontrast(Lx.getMat(ACCESS_READ), Ly.getMat(ACCESS_READ), |
|
|
|
|
options_.kcontrast_percentile, options_.kcontrast_nbins); |
|
|
|
|
float kcontrast = compute_kcontrast(Lx, Ly, options_.kcontrast_percentile, options_.kcontrast_nbins); |
|
|
|
|
|
|
|
|
|
// Now generate the rest of evolution levels
|
|
|
|
|
for (size_t i = 1; i < evolution_.size(); i++) { |
|
|
|
@ -483,23 +467,21 @@ void AKAZEFeatures::Create_Nonlinear_Scale_Space(InputArray img) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Compute_Determinant_Hessian_Response(); |
|
|
|
|
downloadPyramid(evolution_); |
|
|
|
|
|
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* ************************************************************************* */ |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
static inline bool |
|
|
|
|
ocl_compute_determinant(const UMat& Lxx, const UMat& Lxy, const UMat& Lyy, |
|
|
|
|
UMat& Ldet, float sigma) |
|
|
|
|
ocl_compute_determinant(InputArray Lxx_, InputArray Lxy_, InputArray Lyy_, OutputArray Ldet_, float sigma) |
|
|
|
|
{ |
|
|
|
|
UMat Lxx = Lxx_.getUMat(), Lxy = Lxy_.getUMat(), Lyy = Lyy_.getUMat(), Ldet = Ldet_.getUMat(); |
|
|
|
|
|
|
|
|
|
const int total = Lxx.rows * Lxx.cols; |
|
|
|
|
size_t globalSize[] = {(size_t)total}; |
|
|
|
|
|
|
|
|
|
ocl::Kernel ker("AKAZE_compute_determinant", ocl::features2d::akaze_oclsrc); |
|
|
|
|
if( ker.empty() ) |
|
|
|
|
if (ker.empty()) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
return ker.args( |
|
|
|
@ -507,7 +489,8 @@ ocl_compute_determinant(const UMat& Lxx, const UMat& Lxy, const UMat& Lyy, |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Lxy), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Lyy), |
|
|
|
|
ocl::KernelArg::PtrWriteOnly(Ldet), |
|
|
|
|
sigma, total).run(1, globalSize, 0, true); |
|
|
|
|
sigma, total) |
|
|
|
|
.run(1, globalSize, 0, true); |
|
|
|
|
} |
|
|
|
|
#endif // HAVE_OPENCL
|
|
|
|
|
|
|
|
|
@ -521,27 +504,30 @@ ocl_compute_determinant(const UMat& Lxx, const UMat& Lxy, const UMat& Lyy, |
|
|
|
|
* @param Ldet output determinant |
|
|
|
|
* @param sigma determinant will be scaled by this sigma |
|
|
|
|
*/ |
|
|
|
|
static inline void compute_determinant(const UMat& Lxx, const UMat& Lxy, const UMat& Lyy, |
|
|
|
|
UMat& Ldet, float sigma) |
|
|
|
|
static inline void compute_determinant(InputArray Lxx, InputArray Lxy, InputArray Lyy, OutputArray Ldet, float sigma) |
|
|
|
|
{ |
|
|
|
|
CV_INSTRUMENT_REGION() |
|
|
|
|
|
|
|
|
|
Ldet.create(Lxx.size(), Lxx.type()); |
|
|
|
|
|
|
|
|
|
CV_OCL_RUN(true, ocl_compute_determinant(Lxx, Lxy, Lyy, Ldet, sigma)); |
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
CV_OCL_RUN(OCL_PERFORMANCE_CHECK(Ldet.isUMat()), ocl_compute_determinant(Lxx, Lxy, Lyy, Ldet, sigma)); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
// output determinant
|
|
|
|
|
Mat Mxx = Lxx.getMat(ACCESS_READ), Mxy = Lxy.getMat(ACCESS_READ), Myy = Lyy.getMat(ACCESS_READ); |
|
|
|
|
Mat Mdet = Ldet.getMat(ACCESS_WRITE); |
|
|
|
|
float *lxx = Mxx.ptr<float>(); |
|
|
|
|
float *lxy = Mxy.ptr<float>(); |
|
|
|
|
float *lyy = Myy.ptr<float>(); |
|
|
|
|
float *ldet = Mdet.ptr<float>(); |
|
|
|
|
const int total = Lxx.cols * Lxx.rows; |
|
|
|
|
for (int j = 0; j < total; j++) { |
|
|
|
|
ldet[j] = (lxx[j] * lyy[j] - lxy[j] * lxy[j]) * sigma; |
|
|
|
|
Mat Mxx = Lxx.getMat(), Mxy = Lxy.getMat(), Myy = Lyy.getMat(), Mdet = Ldet.getMat(); |
|
|
|
|
const int W = Mxx.cols, H = Mxx.rows; |
|
|
|
|
for (int y = 0; y < H; y++) |
|
|
|
|
{ |
|
|
|
|
float *lxx = Mxx.ptr<float>(y); |
|
|
|
|
float *lxy = Mxy.ptr<float>(y); |
|
|
|
|
float *lyy = Myy.ptr<float>(y); |
|
|
|
|
float *ldet = Mdet.ptr<float>(y); |
|
|
|
|
for (int x = 0; x < W; x++) |
|
|
|
|
{ |
|
|
|
|
ldet[x] = (lxx[x] * lyy[x] - lxy[x] * lxy[x]) * sigma; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
class DeterminantHessianResponse : public ParallelLoopBody |
|
|
|
@ -554,7 +540,7 @@ public: |
|
|
|
|
|
|
|
|
|
void operator()(const Range& range) const |
|
|
|
|
{ |
|
|
|
|
UMat Lxx, Lxy, Lyy; |
|
|
|
|
Mat Lxx, Lxy, Lyy; |
|
|
|
|
|
|
|
|
|
for (int i = range.start; i < range.end; i++) |
|
|
|
|
{ |
|
|
|
@ -670,16 +656,16 @@ public: |
|
|
|
|
const Evolution &e = (*evolution_)[i]; |
|
|
|
|
Mat &kpts = (*keypoints_by_layers_)[i]; |
|
|
|
|
// this mask will hold positions of keypoints in this level
|
|
|
|
|
kpts = Mat::zeros(e.Mdet.size(), CV_8UC1); |
|
|
|
|
kpts = Mat::zeros(e.Ldet.size(), CV_8UC1); |
|
|
|
|
|
|
|
|
|
// if border is too big we shouldn't search any keypoints
|
|
|
|
|
if (e.border + 1 >= e.Ldet.rows) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
const float * prev = e.Mdet.ptr<float>(e.border - 1); |
|
|
|
|
const float * curr = e.Mdet.ptr<float>(e.border ); |
|
|
|
|
const float * next = e.Mdet.ptr<float>(e.border + 1); |
|
|
|
|
const float * ldet = e.Mdet.ptr<float>(); |
|
|
|
|
const float * prev = e.Ldet.ptr<float>(e.border - 1); |
|
|
|
|
const float * curr = e.Ldet.ptr<float>(e.border ); |
|
|
|
|
const float * next = e.Ldet.ptr<float>(e.border + 1); |
|
|
|
|
const float * ldet = e.Ldet.ptr<float>(); |
|
|
|
|
uchar *mask = kpts.ptr<uchar>(); |
|
|
|
|
const int search_radius = e.sigma_size; // size of keypoint in this level
|
|
|
|
|
|
|
|
|
@ -743,8 +729,8 @@ void AKAZEFeatures::Find_Scale_Space_Extrema(std::vector<Mat>& keypoints_by_laye |
|
|
|
|
const Mat &keypoints = keypoints_by_layers[i]; |
|
|
|
|
const uchar *const kpts = keypoints_by_layers[i].ptr<uchar>(); |
|
|
|
|
uchar *const kpts_prev = keypoints_by_layers[i-1].ptr<uchar>(); |
|
|
|
|
const float *const ldet = evolution_[i].Mdet.ptr<float>(); |
|
|
|
|
const float *const ldet_prev = evolution_[i-1].Mdet.ptr<float>(); |
|
|
|
|
const float *const ldet = evolution_[i].Ldet.ptr<float>(); |
|
|
|
|
const float *const ldet_prev = evolution_[i-1].Ldet.ptr<float>(); |
|
|
|
|
// ratios are just powers of 2
|
|
|
|
|
const int diff_ratio = (int)evolution_[i].octave_ratio / (int)evolution_[i-1].octave_ratio; |
|
|
|
|
const int search_radius = evolution_[i].sigma_size * diff_ratio; // size of keypoint in this level
|
|
|
|
@ -775,8 +761,8 @@ void AKAZEFeatures::Find_Scale_Space_Extrema(std::vector<Mat>& keypoints_by_laye |
|
|
|
|
const Mat &keypoints = keypoints_by_layers[i]; |
|
|
|
|
const uchar *const kpts = keypoints_by_layers[i].ptr<uchar>(); |
|
|
|
|
uchar *const kpts_next = keypoints_by_layers[i+1].ptr<uchar>(); |
|
|
|
|
const float *const ldet = evolution_[i].Mdet.ptr<float>(); |
|
|
|
|
const float *const ldet_next = evolution_[i+1].Mdet.ptr<float>(); |
|
|
|
|
const float *const ldet = evolution_[i].Ldet.ptr<float>(); |
|
|
|
|
const float *const ldet_next = evolution_[i+1].Ldet.ptr<float>(); |
|
|
|
|
// ratios are just powers of 2, i+1 ratio is always greater or equal to i
|
|
|
|
|
const int diff_ratio = (int)evolution_[i+1].octave_ratio / (int)evolution_[i].octave_ratio; |
|
|
|
|
const int search_radius = evolution_[i+1].sigma_size; // size of keypoints in upper level
|
|
|
|
@ -814,7 +800,7 @@ void AKAZEFeatures::Do_Subpixel_Refinement( |
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < keypoints_by_layers.size(); i++) { |
|
|
|
|
const Evolution &e = evolution_[i]; |
|
|
|
|
const float * const ldet = e.Mdet.ptr<float>(); |
|
|
|
|
const float * const ldet = e.Ldet.ptr<float>(); |
|
|
|
|
const float ratio = e.octave_ratio; |
|
|
|
|
const int cols = e.Ldet.cols; |
|
|
|
|
const Mat& keypoints = keypoints_by_layers[i]; |
|
|
|
@ -1308,7 +1294,7 @@ void Compute_Main_Orientation(KeyPoint& kpt, const std::vector<Evolution>& evolu |
|
|
|
|
// Sample derivatives responses for the points within radius of 6*scale
|
|
|
|
|
const int ang_size = 109; |
|
|
|
|
float resX[ang_size], resY[ang_size]; |
|
|
|
|
Sample_Derivative_Response_Radius6(e.Mx, e.My, x0, y0, scale, resX, resY); |
|
|
|
|
Sample_Derivative_Response_Radius6(e.Lx, e.Ly, x0, y0, scale, resX, resY); |
|
|
|
|
|
|
|
|
|
// Compute the angle of each gradient vector
|
|
|
|
|
float Ang[ang_size]; |
|
|
|
@ -1445,8 +1431,8 @@ void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const |
|
|
|
|
ratio = (float)(1 << kpt.octave); |
|
|
|
|
scale = cvRound(0.5f*kpt.size / ratio); |
|
|
|
|
const int level = kpt.class_id; |
|
|
|
|
Mat Lx = evolution[level].Mx; |
|
|
|
|
Mat Ly = evolution[level].My; |
|
|
|
|
const Mat Lx = evolution[level].Lx; |
|
|
|
|
const Mat Ly = evolution[level].Ly; |
|
|
|
|
yf = kpt.pt.y / ratio; |
|
|
|
|
xf = kpt.pt.x / ratio; |
|
|
|
|
|
|
|
|
@ -1480,25 +1466,28 @@ void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const |
|
|
|
|
//Get the gaussian weighted x and y responses
|
|
|
|
|
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.50f*scale); |
|
|
|
|
|
|
|
|
|
y1 = (int)(sample_y - .5f); |
|
|
|
|
x1 = (int)(sample_x - .5f); |
|
|
|
|
y1 = cvFloor(sample_y); |
|
|
|
|
x1 = cvFloor(sample_x); |
|
|
|
|
|
|
|
|
|
y2 = (int)(sample_y + .5f); |
|
|
|
|
x2 = (int)(sample_x + .5f); |
|
|
|
|
y2 = y1 + 1; |
|
|
|
|
x2 = x1 + 1; |
|
|
|
|
|
|
|
|
|
if (x1 < 0 || y1 < 0 || x2 >= Lx.cols || y2 >= Lx.rows) |
|
|
|
|
continue; // FIXIT Boundaries
|
|
|
|
|
|
|
|
|
|
fx = sample_x - x1; |
|
|
|
|
fy = sample_y - y1; |
|
|
|
|
|
|
|
|
|
res1 = *(Lx.ptr<float>(y1)+x1); |
|
|
|
|
res2 = *(Lx.ptr<float>(y1)+x2); |
|
|
|
|
res3 = *(Lx.ptr<float>(y2)+x1); |
|
|
|
|
res4 = *(Lx.ptr<float>(y2)+x2); |
|
|
|
|
res1 = Lx.at<float>(y1, x1); |
|
|
|
|
res2 = Lx.at<float>(y1, x2); |
|
|
|
|
res3 = Lx.at<float>(y2, x1); |
|
|
|
|
res4 = Lx.at<float>(y2, x2); |
|
|
|
|
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4; |
|
|
|
|
|
|
|
|
|
res1 = *(Ly.ptr<float>(y1)+x1); |
|
|
|
|
res2 = *(Ly.ptr<float>(y1)+x2); |
|
|
|
|
res3 = *(Ly.ptr<float>(y2)+x1); |
|
|
|
|
res4 = *(Ly.ptr<float>(y2)+x2); |
|
|
|
|
res1 = Ly.at<float>(y1, x1); |
|
|
|
|
res2 = Ly.at<float>(y1, x2); |
|
|
|
|
res3 = Ly.at<float>(y2, x1); |
|
|
|
|
res4 = Ly.at<float>(y2, x2); |
|
|
|
|
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4; |
|
|
|
|
|
|
|
|
|
rx = gauss_s1*rx; |
|
|
|
@ -1533,8 +1522,9 @@ void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const |
|
|
|
|
// convert to unit vector
|
|
|
|
|
len = sqrt(len); |
|
|
|
|
|
|
|
|
|
const float len_inv = 1.0f / len; |
|
|
|
|
for (i = 0; i < dsize; i++) { |
|
|
|
|
desc[i] /= len; |
|
|
|
|
desc[i] *= len_inv; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -1575,8 +1565,8 @@ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, f |
|
|
|
|
scale = cvRound(0.5f*kpt.size / ratio); |
|
|
|
|
angle = kpt.angle * static_cast<float>(CV_PI / 180.f); |
|
|
|
|
const int level = kpt.class_id; |
|
|
|
|
Mat Lx = evolution[level].Mx; |
|
|
|
|
Mat Ly = evolution[level].My; |
|
|
|
|
const Mat Lx = evolution[level].Lx; |
|
|
|
|
const Mat Ly = evolution[level].Ly; |
|
|
|
|
yf = kpt.pt.y / ratio; |
|
|
|
|
xf = kpt.pt.x / ratio; |
|
|
|
|
co = cos(angle); |
|
|
|
@ -1613,34 +1603,28 @@ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, f |
|
|
|
|
// Get the gaussian weighted x and y responses
|
|
|
|
|
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale); |
|
|
|
|
|
|
|
|
|
y1 = cvRound(sample_y - 0.5f); |
|
|
|
|
x1 = cvRound(sample_x - 0.5f); |
|
|
|
|
y1 = cvFloor(sample_y); |
|
|
|
|
x1 = cvFloor(sample_x); |
|
|
|
|
|
|
|
|
|
y2 = cvRound(sample_y + 0.5f); |
|
|
|
|
x2 = cvRound(sample_x + 0.5f); |
|
|
|
|
y2 = y1 + 1; |
|
|
|
|
x2 = x1 + 1; |
|
|
|
|
|
|
|
|
|
// fix crash: indexing with out-of-bounds index, this might happen near the edges of image
|
|
|
|
|
// clip values so they fit into the image
|
|
|
|
|
const MatSize& size = Lx.size; |
|
|
|
|
y1 = min(max(0, y1), size[0] - 1); |
|
|
|
|
x1 = min(max(0, x1), size[1] - 1); |
|
|
|
|
y2 = min(max(0, y2), size[0] - 1); |
|
|
|
|
x2 = min(max(0, x2), size[1] - 1); |
|
|
|
|
CV_DbgAssert(Lx.size == Ly.size); |
|
|
|
|
if (x1 < 0 || y1 < 0 || x2 >= Lx.cols || y2 >= Lx.rows) |
|
|
|
|
continue; // FIXIT Boundaries
|
|
|
|
|
|
|
|
|
|
fx = sample_x - x1; |
|
|
|
|
fy = sample_y - y1; |
|
|
|
|
|
|
|
|
|
res1 = *(Lx.ptr<float>(y1, x1)); |
|
|
|
|
res2 = *(Lx.ptr<float>(y1, x2)); |
|
|
|
|
res3 = *(Lx.ptr<float>(y2, x1)); |
|
|
|
|
res4 = *(Lx.ptr<float>(y2, x2)); |
|
|
|
|
res1 = Lx.at<float>(y1, x1); |
|
|
|
|
res2 = Lx.at<float>(y1, x2); |
|
|
|
|
res3 = Lx.at<float>(y2, x1); |
|
|
|
|
res4 = Lx.at<float>(y2, x2); |
|
|
|
|
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4; |
|
|
|
|
|
|
|
|
|
res1 = *(Ly.ptr<float>(y1, x1)); |
|
|
|
|
res2 = *(Ly.ptr<float>(y1, x2)); |
|
|
|
|
res3 = *(Ly.ptr<float>(y2, x1)); |
|
|
|
|
res4 = *(Ly.ptr<float>(y2, x2)); |
|
|
|
|
res1 = Ly.at<float>(y1, x1); |
|
|
|
|
res2 = Ly.at<float>(y1, x2); |
|
|
|
|
res3 = Ly.at<float>(y2, x1); |
|
|
|
|
res4 = Ly.at<float>(y2, x2); |
|
|
|
|
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4; |
|
|
|
|
|
|
|
|
|
// Get the x and y derivatives on the rotated axis
|
|
|
|
@ -1675,8 +1659,9 @@ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, f |
|
|
|
|
// convert to unit vector
|
|
|
|
|
len = sqrt(len); |
|
|
|
|
|
|
|
|
|
const float len_inv = 1.0f / len; |
|
|
|
|
for (i = 0; i < dsize; i++) { |
|
|
|
|
desc[i] /= len; |
|
|
|
|
desc[i] *= len_inv; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -1689,13 +1674,6 @@ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, f |
|
|
|
|
*/ |
|
|
|
|
void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char *desc, int desc_size) const { |
|
|
|
|
|
|
|
|
|
float di = 0.0, dx = 0.0, dy = 0.0; |
|
|
|
|
float ri = 0.0, rx = 0.0, ry = 0.0, xf = 0.0, yf = 0.0; |
|
|
|
|
float sample_x = 0.0, sample_y = 0.0, ratio = 0.0; |
|
|
|
|
int x1 = 0, y1 = 0; |
|
|
|
|
int nsamples = 0, scale = 0; |
|
|
|
|
int dcount1 = 0, dcount2 = 0; |
|
|
|
|
|
|
|
|
|
const AKAZEOptions & options = *options_; |
|
|
|
|
const std::vector<Evolution>& evolution = *evolution_; |
|
|
|
|
|
|
|
|
@ -1705,14 +1683,14 @@ void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(cons |
|
|
|
|
float values[16*max_channels]; |
|
|
|
|
|
|
|
|
|
// Get the information from the keypoint
|
|
|
|
|
ratio = (float)(1 << kpt.octave); |
|
|
|
|
scale = cvRound(0.5f*kpt.size / ratio); |
|
|
|
|
const float ratio = (float)(1 << kpt.octave); |
|
|
|
|
const int scale = cvRound(0.5f*kpt.size / ratio); |
|
|
|
|
const int level = kpt.class_id; |
|
|
|
|
Mat Lx = evolution[level].Mx; |
|
|
|
|
Mat Ly = evolution[level].My; |
|
|
|
|
Mat Lt = evolution[level].Mt; |
|
|
|
|
yf = kpt.pt.y / ratio; |
|
|
|
|
xf = kpt.pt.x / ratio; |
|
|
|
|
const Mat Lx = evolution[level].Lx; |
|
|
|
|
const Mat Ly = evolution[level].Ly; |
|
|
|
|
const Mat Lt = evolution[level].Lt; |
|
|
|
|
const float yf = kpt.pt.y / ratio; |
|
|
|
|
const float xf = kpt.pt.x / ratio; |
|
|
|
|
|
|
|
|
|
// For 2x2 grid, 3x3 grid and 4x4 grid
|
|
|
|
|
const int pattern_size = options_->descriptor_pattern_size; |
|
|
|
@ -1726,27 +1704,31 @@ void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(cons |
|
|
|
|
memset(desc, 0, desc_size); |
|
|
|
|
|
|
|
|
|
// For the three grids
|
|
|
|
|
int dcount1 = 0; |
|
|
|
|
for (int z = 0; z < 3; z++) { |
|
|
|
|
dcount2 = 0; |
|
|
|
|
int dcount2 = 0; |
|
|
|
|
const int step = sample_step[z]; |
|
|
|
|
for (int i = -pattern_size; i < pattern_size; i += step) { |
|
|
|
|
for (int j = -pattern_size; j < pattern_size; j += step) { |
|
|
|
|
di = dx = dy = 0.0; |
|
|
|
|
nsamples = 0; |
|
|
|
|
float di = 0.0, dx = 0.0, dy = 0.0; |
|
|
|
|
|
|
|
|
|
for (int k = i; k < i + step; k++) { |
|
|
|
|
for (int l = j; l < j + step; l++) { |
|
|
|
|
int nsamples = 0; |
|
|
|
|
for (int k = 0; k < step; k++) { |
|
|
|
|
for (int l = 0; l < step; l++) { |
|
|
|
|
|
|
|
|
|
// Get the coordinates of the sample point
|
|
|
|
|
sample_y = yf + l*scale; |
|
|
|
|
sample_x = xf + k*scale; |
|
|
|
|
const float sample_y = yf + (l+j)*scale; |
|
|
|
|
const float sample_x = xf + (k+i)*scale; |
|
|
|
|
|
|
|
|
|
y1 = cvRound(sample_y); |
|
|
|
|
x1 = cvRound(sample_x); |
|
|
|
|
const int y1 = cvRound(sample_y); |
|
|
|
|
const int x1 = cvRound(sample_x); |
|
|
|
|
|
|
|
|
|
if (y1 < 0 || y1 >= Lt.rows || x1 < 0 || x1 >= Lt.cols) |
|
|
|
|
continue; // Boundaries
|
|
|
|
|
|
|
|
|
|
ri = *(Lt.ptr<float>(y1)+x1); |
|
|
|
|
rx = *(Lx.ptr<float>(y1)+x1); |
|
|
|
|
ry = *(Ly.ptr<float>(y1)+x1); |
|
|
|
|
const float ri = Lt.at<float>(y1, x1); |
|
|
|
|
const float rx = Lx.at<float>(y1, x1); |
|
|
|
|
const float ry = Ly.at<float>(y1, x1); |
|
|
|
|
|
|
|
|
|
di += ri; |
|
|
|
|
dx += rx; |
|
|
|
@ -1755,9 +1737,13 @@ void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(cons |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
di /= nsamples; |
|
|
|
|
dx /= nsamples; |
|
|
|
|
dy /= nsamples; |
|
|
|
|
if (nsamples > 0) |
|
|
|
|
{ |
|
|
|
|
const float nsamples_inv = 1.0f / nsamples; |
|
|
|
|
di *= nsamples_inv; |
|
|
|
|
dx *= nsamples_inv; |
|
|
|
|
dy *= nsamples_inv; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float *val = &values[dcount2*max_channels]; |
|
|
|
|
*(val) = di; |
|
|
|
@ -1794,17 +1780,20 @@ void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_st |
|
|
|
|
const std::vector<Evolution>& evolution = *evolution_; |
|
|
|
|
int pattern_size = options_->descriptor_pattern_size; |
|
|
|
|
int chan = options_->descriptor_channels; |
|
|
|
|
int valpos = 0; |
|
|
|
|
Mat Lx = evolution[level].Mx; |
|
|
|
|
Mat Ly = evolution[level].My; |
|
|
|
|
Mat Lt = evolution[level].Mt; |
|
|
|
|
const Mat Lx = evolution[level].Lx; |
|
|
|
|
const Mat Ly = evolution[level].Ly; |
|
|
|
|
const Mat Lt = evolution[level].Lt; |
|
|
|
|
|
|
|
|
|
const Size size = Lt.size(); |
|
|
|
|
CV_Assert(size == Lx.size()); |
|
|
|
|
CV_Assert(size == Ly.size()); |
|
|
|
|
|
|
|
|
|
int valpos = 0; |
|
|
|
|
for (int i = -pattern_size; i < pattern_size; i += sample_step) { |
|
|
|
|
for (int j = -pattern_size; j < pattern_size; j += sample_step) { |
|
|
|
|
float di, dx, dy; |
|
|
|
|
di = dx = dy = 0.0; |
|
|
|
|
int nsamples = 0; |
|
|
|
|
float di = 0.0f, dx = 0.0f, dy = 0.0f; |
|
|
|
|
|
|
|
|
|
int nsamples = 0; |
|
|
|
|
for (int k = i; k < i + sample_step; k++) { |
|
|
|
|
for (int l = j; l < j + sample_step; l++) { |
|
|
|
|
float sample_y = yf + (l*co * scale + k*si*scale); |
|
|
|
@ -1813,20 +1802,15 @@ void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_st |
|
|
|
|
int y1 = cvRound(sample_y); |
|
|
|
|
int x1 = cvRound(sample_x); |
|
|
|
|
|
|
|
|
|
// fix crash: indexing with out-of-bounds index, this might happen near the edges of image
|
|
|
|
|
// clip values so they fit into the image
|
|
|
|
|
const MatSize& size = Lt.size; |
|
|
|
|
CV_DbgAssert(size == Lx.size && |
|
|
|
|
size == Ly.size); |
|
|
|
|
y1 = min(max(0, y1), size[0] - 1); |
|
|
|
|
x1 = min(max(0, x1), size[1] - 1); |
|
|
|
|
if (y1 < 0 || y1 >= Lt.rows || x1 < 0 || x1 >= Lt.cols) |
|
|
|
|
continue; // Boundaries
|
|
|
|
|
|
|
|
|
|
float ri = *(Lt.ptr<float>(y1, x1)); |
|
|
|
|
float ri = Lt.at<float>(y1, x1); |
|
|
|
|
di += ri; |
|
|
|
|
|
|
|
|
|
if(chan > 1) { |
|
|
|
|
float rx = *(Lx.ptr<float>(y1, x1)); |
|
|
|
|
float ry = *(Ly.ptr<float>(y1, x1)); |
|
|
|
|
float rx = Lx.at<float>(y1, x1); |
|
|
|
|
float ry = Ly.at<float>(y1, x1); |
|
|
|
|
if (chan == 2) { |
|
|
|
|
dx += sqrtf(rx*rx + ry*ry); |
|
|
|
|
} |
|
|
|
@ -1840,9 +1824,14 @@ void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_st |
|
|
|
|
nsamples++; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
di /= nsamples; |
|
|
|
|
dx /= nsamples; |
|
|
|
|
dy /= nsamples; |
|
|
|
|
|
|
|
|
|
if (nsamples > 0) |
|
|
|
|
{ |
|
|
|
|
const float nsamples_inv = 1.0f / nsamples; |
|
|
|
|
di *= nsamples_inv; |
|
|
|
|
dx *= nsamples_inv; |
|
|
|
|
dy *= nsamples_inv; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
values[valpos] = di; |
|
|
|
|
if (chan > 1) { |
|
|
|
@ -1931,10 +1920,8 @@ void MLDB_Full_Descriptor_Invoker::Get_MLDB_Full_Descriptor(const KeyPoint& kpt, |
|
|
|
|
*/ |
|
|
|
|
void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char *desc, int desc_size) const { |
|
|
|
|
|
|
|
|
|
float di = 0.f, dx = 0.f, dy = 0.f; |
|
|
|
|
float rx = 0.f, ry = 0.f; |
|
|
|
|
float sample_x = 0.f, sample_y = 0.f; |
|
|
|
|
int x1 = 0, y1 = 0; |
|
|
|
|
|
|
|
|
|
const AKAZEOptions & options = *options_; |
|
|
|
|
const std::vector<Evolution>& evolution = *evolution_; |
|
|
|
@ -1944,9 +1931,9 @@ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& |
|
|
|
|
int scale = cvRound(0.5f*kpt.size / ratio); |
|
|
|
|
float angle = kpt.angle * static_cast<float>(CV_PI / 180.f); |
|
|
|
|
const int level = kpt.class_id; |
|
|
|
|
Mat Lx = evolution[level].Mx; |
|
|
|
|
Mat Ly = evolution[level].My; |
|
|
|
|
Mat Lt = evolution[level].Mt; |
|
|
|
|
const Mat Lx = evolution[level].Lx; |
|
|
|
|
const Mat Ly = evolution[level].Ly; |
|
|
|
|
const Mat Lt = evolution[level].Lt; |
|
|
|
|
float yf = kpt.pt.y / ratio; |
|
|
|
|
float xf = kpt.pt.x / ratio; |
|
|
|
|
float co = cos(angle); |
|
|
|
@ -1957,7 +1944,7 @@ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& |
|
|
|
|
const int max_channels = 3; |
|
|
|
|
const int channels = options.descriptor_channels; |
|
|
|
|
CV_Assert(channels <= max_channels); |
|
|
|
|
float values[(4 + 9 + 16)*max_channels]; |
|
|
|
|
float values[(4 + 9 + 16)*max_channels] = { 0 }; |
|
|
|
|
|
|
|
|
|
// Sample everything, but only do the comparisons
|
|
|
|
|
const int pattern_size = options.descriptor_pattern_size; |
|
|
|
@ -1972,9 +1959,7 @@ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& |
|
|
|
|
const int *coords = descriptorSamples_.ptr<int>(i); |
|
|
|
|
CV_Assert(coords[0] >= 0 && coords[0] < 3); |
|
|
|
|
const int sample_step = sample_steps[coords[0]]; |
|
|
|
|
di = 0.0f; |
|
|
|
|
dx = 0.0f; |
|
|
|
|
dy = 0.0f; |
|
|
|
|
float di = 0.f, dx = 0.f, dy = 0.f; |
|
|
|
|
|
|
|
|
|
for (int k = coords[1]; k < coords[1] + sample_step; k++) { |
|
|
|
|
for (int l = coords[2]; l < coords[2] + sample_step; l++) { |
|
|
|
@ -1983,14 +1968,17 @@ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& |
|
|
|
|
sample_y = yf + (l*scale*co + k*scale*si); |
|
|
|
|
sample_x = xf + (-l*scale*si + k*scale*co); |
|
|
|
|
|
|
|
|
|
y1 = cvRound(sample_y); |
|
|
|
|
x1 = cvRound(sample_x); |
|
|
|
|
const int y1 = cvRound(sample_y); |
|
|
|
|
const int x1 = cvRound(sample_x); |
|
|
|
|
|
|
|
|
|
di += *(Lt.ptr<float>(y1)+x1); |
|
|
|
|
if (x1 < 0 || y1 < 0 || x1 >= Lt.cols || y1 >= Lt.rows) |
|
|
|
|
continue; // Boundaries
|
|
|
|
|
|
|
|
|
|
di += Lt.at<float>(y1, x1); |
|
|
|
|
|
|
|
|
|
if (options.descriptor_channels > 1) { |
|
|
|
|
rx = *(Lx.ptr<float>(y1)+x1); |
|
|
|
|
ry = *(Ly.ptr<float>(y1)+x1); |
|
|
|
|
rx = Lx.at<float>(y1, x1); |
|
|
|
|
ry = Ly.at<float>(y1, x1); |
|
|
|
|
|
|
|
|
|
if (options.descriptor_channels == 2) { |
|
|
|
|
dx += sqrtf(rx*rx + ry*ry); |
|
|
|
@ -2051,14 +2039,17 @@ void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset( |
|
|
|
|
float ratio = (float)(1 << kpt.octave); |
|
|
|
|
int scale = cvRound(0.5f*kpt.size / ratio); |
|
|
|
|
const int level = kpt.class_id; |
|
|
|
|
Mat Lx = evolution[level].Mx; |
|
|
|
|
Mat Ly = evolution[level].My; |
|
|
|
|
Mat Lt = evolution[level].Mt; |
|
|
|
|
const Mat Lx = evolution[level].Lx; |
|
|
|
|
const Mat Ly = evolution[level].Ly; |
|
|
|
|
const Mat Lt = evolution[level].Lt; |
|
|
|
|
float yf = kpt.pt.y / ratio; |
|
|
|
|
float xf = kpt.pt.x / ratio; |
|
|
|
|
|
|
|
|
|
// Allocate memory for the matrix of values
|
|
|
|
|
Mat values ((4 + 9 + 16)*options.descriptor_channels, 1, CV_32FC1); |
|
|
|
|
const int max_channels = 3; |
|
|
|
|
const int channels = options.descriptor_channels; |
|
|
|
|
CV_Assert(channels <= max_channels); |
|
|
|
|
float values[(4 + 9 + 16)*max_channels] = { 0 }; |
|
|
|
|
|
|
|
|
|
const int pattern_size = options.descriptor_pattern_size; |
|
|
|
|
CV_Assert((pattern_size & 1) == 0); |
|
|
|
@ -2083,11 +2074,15 @@ void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset( |
|
|
|
|
|
|
|
|
|
y1 = cvRound(sample_y); |
|
|
|
|
x1 = cvRound(sample_x); |
|
|
|
|
di += *(Lt.ptr<float>(y1)+x1); |
|
|
|
|
|
|
|
|
|
if (x1 < 0 || y1 < 0 || x1 >= Lt.cols || y1 >= Lt.rows) |
|
|
|
|
continue; // Boundaries
|
|
|
|
|
|
|
|
|
|
di += Lt.at<float>(y1, x1); |
|
|
|
|
|
|
|
|
|
if (options.descriptor_channels > 1) { |
|
|
|
|
rx = *(Lx.ptr<float>(y1)+x1); |
|
|
|
|
ry = *(Ly.ptr<float>(y1)+x1); |
|
|
|
|
rx = Lx.at<float>(y1, x1); |
|
|
|
|
ry = Ly.at<float>(y1, x1); |
|
|
|
|
|
|
|
|
|
if (options.descriptor_channels == 2) { |
|
|
|
|
dx += sqrtf(rx*rx + ry*ry); |
|
|
|
@ -2100,26 +2095,26 @@ void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset( |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
*(values.ptr<float>(options.descriptor_channels*i)) = di; |
|
|
|
|
float* pValues = &values[channels * i]; |
|
|
|
|
pValues[0] = di; |
|
|
|
|
|
|
|
|
|
if (options.descriptor_channels == 2) { |
|
|
|
|
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx; |
|
|
|
|
pValues[1] = dx; |
|
|
|
|
} |
|
|
|
|
else if (options.descriptor_channels == 3) { |
|
|
|
|
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx; |
|
|
|
|
*(values.ptr<float>(options.descriptor_channels*i + 2)) = dy; |
|
|
|
|
pValues[1] = dx; |
|
|
|
|
pValues[2] = dy; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Do the comparisons
|
|
|
|
|
const float *vals = values.ptr<float>(0); |
|
|
|
|
const int *comps = descriptorBits_.ptr<int>(0); |
|
|
|
|
|
|
|
|
|
CV_Assert(divUp(descriptorBits_.rows, 8) == desc_size); |
|
|
|
|
memset(desc, 0, desc_size); |
|
|
|
|
|
|
|
|
|
for (int i = 0; i<descriptorBits_.rows; i++) { |
|
|
|
|
if (vals[comps[2 * i]] > vals[comps[2 * i + 1]]) { |
|
|
|
|
if (values[comps[2 * i]] > values[comps[2 * i + 1]]) { |
|
|
|
|
desc[i / 8] |= (1 << (i % 8)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -2149,7 +2144,8 @@ void generateDescriptorSubsample(Mat& sampleList, Mat& comparisons, int nbits, |
|
|
|
|
} |
|
|
|
|
ssz *= nchannels; |
|
|
|
|
|
|
|
|
|
CV_Assert(nbits <= ssz); // Descriptor size can't be bigger than full descriptor
|
|
|
|
|
CV_Assert(ssz == 162*nchannels); |
|
|
|
|
CV_Assert(nbits <= ssz && "Descriptor size can't be bigger than full descriptor (486 = 162*3 - 3 channels)"); |
|
|
|
|
|
|
|
|
|
// Since the full descriptor is usually under 10k elements, we pick
|
|
|
|
|
// the selection from the full matrix. We take as many samples per
|
|
|
|
|