Merge pull request #9308 from alalek:akaze_fixes

pull/9299/head
Alexander Alekhin 7 years ago
commit 5c961169cc
  1. 374
      modules/features2d/src/kaze/AKAZEFeatures.cpp
  2. 13
      modules/features2d/src/kaze/AKAZEFeatures.h
  3. 103
      modules/features2d/test/test_descriptors_regression.cpp
  4. 6
      modules/ts/misc/run_long.py

@ -15,6 +15,10 @@
#include <iostream>
#ifdef HAVE_OPENCL // OpenCL is not well supported
#undef HAVE_OPENCL
#endif
// Namespaces
namespace cv
{
@ -251,11 +255,13 @@ private:
#ifdef HAVE_OPENCL
static inline bool
ocl_non_linear_diffusion_step(const UMat& Lt, const UMat& Lf, UMat& Lstep, float step_size)
ocl_non_linear_diffusion_step(InputArray Lt_, InputArray Lf_, OutputArray Lstep_, float step_size)
{
if(!Lt.isContinuous())
if (!Lt_.isContinuous())
return false;
UMat Lt = Lt_.getUMat(), Lf = Lf_.getUMat(), Lstep = Lstep_.getUMat();
size_t globalSize[] = {(size_t)Lt.cols, (size_t)Lt.rows};
ocl::Kernel ker("AKAZE_nld_step_scalar", ocl::features2d::akaze_oclsrc);
@ -266,23 +272,24 @@ ocl_non_linear_diffusion_step(const UMat& Lt, const UMat& Lf, UMat& Lstep, float
ocl::KernelArg::ReadOnly(Lt),
ocl::KernelArg::PtrReadOnly(Lf),
ocl::KernelArg::PtrWriteOnly(Lstep),
step_size).run(2, globalSize, 0, true);
step_size)
.run(2, globalSize, 0, true);
}
#endif // HAVE_OPENCL
static inline void
non_linear_diffusion_step(const UMat& Lt, const UMat& Lf, UMat& Lstep, float step_size)
non_linear_diffusion_step(InputArray Lt, InputArray Lf, OutputArray Lstep, float step_size)
{
CV_INSTRUMENT_REGION()
Lstep.create(Lt.size(), Lt.type());
CV_OCL_RUN(true, ocl_non_linear_diffusion_step(Lt, Lf, Lstep, step_size));
#ifdef HAVE_OPENCL
CV_OCL_RUN(OCL_PERFORMANCE_CHECK(Lstep.isUMat()), ocl_non_linear_diffusion_step(Lt, Lf, Lstep, step_size));
#endif
// when on CPU UMats should be already allocated on CPU so getMat here is basicallly no-op
Mat Mstep = Lstep.getMat(ACCESS_WRITE);
parallel_for_(Range(0, Lt.rows), NonLinearScalarDiffusionStep(Lt.getMat(ACCESS_READ),
Lf.getMat(ACCESS_READ), Mstep, step_size));
Mat Mstep = Lstep.getMat();
parallel_for_(Range(0, Lt.rows()), NonLinearScalarDiffusionStep(Lt.getMat(), Lf.getMat(), Mstep, step_size));
}
/**
@ -347,8 +354,10 @@ compute_kcontrast(const cv::Mat& Lx, const cv::Mat& Ly, float perc, int nbins)
#ifdef HAVE_OPENCL
static inline bool
ocl_pm_g2(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast)
ocl_pm_g2(InputArray Lx_, InputArray Ly_, OutputArray Lflow_, float kcontrast)
{
UMat Lx = Lx_.getUMat(), Ly = Ly_.getUMat(), Lflow = Lflow_.getUMat();
int total = Lx.rows * Lx.cols;
size_t globalSize[] = {(size_t)total};
@ -360,12 +369,13 @@ ocl_pm_g2(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast)
ocl::KernelArg::PtrReadOnly(Lx),
ocl::KernelArg::PtrReadOnly(Ly),
ocl::KernelArg::PtrWriteOnly(Lflow),
kcontrast, total).run(1, globalSize, 0, true);
kcontrast, total)
.run(1, globalSize, 0, true);
}
#endif // HAVE_OPENCL
static inline void
compute_diffusivity(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast, int diffusivity)
compute_diffusivity(InputArray Lx, InputArray Ly, OutputArray Lflow, float kcontrast, int diffusivity)
{
CV_INSTRUMENT_REGION()
@ -376,7 +386,9 @@ compute_diffusivity(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast
pm_g1(Lx, Ly, Lflow, kcontrast);
break;
case KAZE::DIFF_PM_G2:
CV_OCL_RUN(true, ocl_pm_g2(Lx, Ly, Lflow, kcontrast));
#ifdef HAVE_OPENCL
CV_OCL_RUN(OCL_PERFORMANCE_CHECK(Lflow.isUMat()), ocl_pm_g2(Lx, Ly, Lflow, kcontrast));
#endif
pm_g2(Lx, Ly, Lflow, kcontrast);
break;
case KAZE::DIFF_WEICKERT:
@ -391,32 +403,6 @@ compute_diffusivity(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast
}
}
/**
* @brief Fetches pyramid from the gpu.
* @details Setups mapping for matrices that might be probably on the GPU, if the
* code executes with OpenCL. This will setup MLx, MLy, Mdet members in the pyramid with
* mapping to respective UMats. This must be called before CPU-only parts of AKAZE, that work
* only on these Mats.
*
* This prevents mapping/unmapping overhead (and possible uploads/downloads) that would occur, if
* we just create Mats from UMats each time we need it later. This has devastating effects on OCL
* performace.
*
* @param evolution Pyramid to download
*/
static inline void downloadPyramid(std::vector<Evolution>& evolution)
{
CV_INSTRUMENT_REGION()
for (size_t i = 0; i < evolution.size(); ++i) {
Evolution& e = evolution[i];
e.Mx = e.Lx.getMat(ACCESS_READ);
e.My = e.Ly.getMat(ACCESS_READ);
e.Mt = e.Lt.getMat(ACCESS_READ);
e.Mdet = e.Ldet.getMat(ACCESS_READ);
}
}
/**
* @brief This method creates the nonlinear scale space for a given image
* @param img Input image for which the nonlinear scale space needs to be created
@ -435,12 +421,11 @@ void AKAZEFeatures::Create_Nonlinear_Scale_Space(InputArray img)
if (evolution_.size() == 1) {
// we don't need to compute kcontrast factor
Compute_Determinant_Hessian_Response();
downloadPyramid(evolution_);
return;
}
// derivatives, flow and diffusion step
UMat Lx, Ly, Lsmooth, Lflow, Lstep;
Mat Lx, Ly, Lsmooth, Lflow, Lstep;
// compute derivatives for computing k contrast
GaussianBlur(img, Lsmooth, Size(5, 5), 1.0f, 1.0f, BORDER_REPLICATE);
@ -448,8 +433,7 @@ void AKAZEFeatures::Create_Nonlinear_Scale_Space(InputArray img)
Scharr(Lsmooth, Ly, CV_32F, 0, 1, 1, 0, BORDER_DEFAULT);
Lsmooth.release();
// compute the kcontrast factor
float kcontrast = compute_kcontrast(Lx.getMat(ACCESS_READ), Ly.getMat(ACCESS_READ),
options_.kcontrast_percentile, options_.kcontrast_nbins);
float kcontrast = compute_kcontrast(Lx, Ly, options_.kcontrast_percentile, options_.kcontrast_nbins);
// Now generate the rest of evolution levels
for (size_t i = 1; i < evolution_.size(); i++) {
@ -483,18 +467,16 @@ void AKAZEFeatures::Create_Nonlinear_Scale_Space(InputArray img)
}
Compute_Determinant_Hessian_Response();
downloadPyramid(evolution_);
return;
}
/* ************************************************************************* */
#ifdef HAVE_OPENCL
static inline bool
ocl_compute_determinant(const UMat& Lxx, const UMat& Lxy, const UMat& Lyy,
UMat& Ldet, float sigma)
ocl_compute_determinant(InputArray Lxx_, InputArray Lxy_, InputArray Lyy_, OutputArray Ldet_, float sigma)
{
UMat Lxx = Lxx_.getUMat(), Lxy = Lxy_.getUMat(), Lyy = Lyy_.getUMat(), Ldet = Ldet_.getUMat();
const int total = Lxx.rows * Lxx.cols;
size_t globalSize[] = {(size_t)total};
@ -507,7 +489,8 @@ ocl_compute_determinant(const UMat& Lxx, const UMat& Lxy, const UMat& Lyy,
ocl::KernelArg::PtrReadOnly(Lxy),
ocl::KernelArg::PtrReadOnly(Lyy),
ocl::KernelArg::PtrWriteOnly(Ldet),
sigma, total).run(1, globalSize, 0, true);
sigma, total)
.run(1, globalSize, 0, true);
}
#endif // HAVE_OPENCL
@ -521,27 +504,30 @@ ocl_compute_determinant(const UMat& Lxx, const UMat& Lxy, const UMat& Lyy,
* @param Ldet output determinant
* @param sigma determinant will be scaled by this sigma
*/
static inline void compute_determinant(const UMat& Lxx, const UMat& Lxy, const UMat& Lyy,
UMat& Ldet, float sigma)
static inline void compute_determinant(InputArray Lxx, InputArray Lxy, InputArray Lyy, OutputArray Ldet, float sigma)
{
CV_INSTRUMENT_REGION()
Ldet.create(Lxx.size(), Lxx.type());
CV_OCL_RUN(true, ocl_compute_determinant(Lxx, Lxy, Lyy, Ldet, sigma));
#ifdef HAVE_OPENCL
CV_OCL_RUN(OCL_PERFORMANCE_CHECK(Ldet.isUMat()), ocl_compute_determinant(Lxx, Lxy, Lyy, Ldet, sigma));
#endif
// output determinant
Mat Mxx = Lxx.getMat(ACCESS_READ), Mxy = Lxy.getMat(ACCESS_READ), Myy = Lyy.getMat(ACCESS_READ);
Mat Mdet = Ldet.getMat(ACCESS_WRITE);
float *lxx = Mxx.ptr<float>();
float *lxy = Mxy.ptr<float>();
float *lyy = Myy.ptr<float>();
float *ldet = Mdet.ptr<float>();
const int total = Lxx.cols * Lxx.rows;
for (int j = 0; j < total; j++) {
ldet[j] = (lxx[j] * lyy[j] - lxy[j] * lxy[j]) * sigma;
Mat Mxx = Lxx.getMat(), Mxy = Lxy.getMat(), Myy = Lyy.getMat(), Mdet = Ldet.getMat();
const int W = Mxx.cols, H = Mxx.rows;
for (int y = 0; y < H; y++)
{
float *lxx = Mxx.ptr<float>(y);
float *lxy = Mxy.ptr<float>(y);
float *lyy = Myy.ptr<float>(y);
float *ldet = Mdet.ptr<float>(y);
for (int x = 0; x < W; x++)
{
ldet[x] = (lxx[x] * lyy[x] - lxy[x] * lxy[x]) * sigma;
}
}
}
class DeterminantHessianResponse : public ParallelLoopBody
@ -554,7 +540,7 @@ public:
void operator()(const Range& range) const
{
UMat Lxx, Lxy, Lyy;
Mat Lxx, Lxy, Lyy;
for (int i = range.start; i < range.end; i++)
{
@ -670,16 +656,16 @@ public:
const Evolution &e = (*evolution_)[i];
Mat &kpts = (*keypoints_by_layers_)[i];
// this mask will hold positions of keypoints in this level
kpts = Mat::zeros(e.Mdet.size(), CV_8UC1);
kpts = Mat::zeros(e.Ldet.size(), CV_8UC1);
// if border is too big we shouldn't search any keypoints
if (e.border + 1 >= e.Ldet.rows)
continue;
const float * prev = e.Mdet.ptr<float>(e.border - 1);
const float * curr = e.Mdet.ptr<float>(e.border );
const float * next = e.Mdet.ptr<float>(e.border + 1);
const float * ldet = e.Mdet.ptr<float>();
const float * prev = e.Ldet.ptr<float>(e.border - 1);
const float * curr = e.Ldet.ptr<float>(e.border );
const float * next = e.Ldet.ptr<float>(e.border + 1);
const float * ldet = e.Ldet.ptr<float>();
uchar *mask = kpts.ptr<uchar>();
const int search_radius = e.sigma_size; // size of keypoint in this level
@ -743,8 +729,8 @@ void AKAZEFeatures::Find_Scale_Space_Extrema(std::vector<Mat>& keypoints_by_laye
const Mat &keypoints = keypoints_by_layers[i];
const uchar *const kpts = keypoints_by_layers[i].ptr<uchar>();
uchar *const kpts_prev = keypoints_by_layers[i-1].ptr<uchar>();
const float *const ldet = evolution_[i].Mdet.ptr<float>();
const float *const ldet_prev = evolution_[i-1].Mdet.ptr<float>();
const float *const ldet = evolution_[i].Ldet.ptr<float>();
const float *const ldet_prev = evolution_[i-1].Ldet.ptr<float>();
// ratios are just powers of 2
const int diff_ratio = (int)evolution_[i].octave_ratio / (int)evolution_[i-1].octave_ratio;
const int search_radius = evolution_[i].sigma_size * diff_ratio; // size of keypoint in this level
@ -775,8 +761,8 @@ void AKAZEFeatures::Find_Scale_Space_Extrema(std::vector<Mat>& keypoints_by_laye
const Mat &keypoints = keypoints_by_layers[i];
const uchar *const kpts = keypoints_by_layers[i].ptr<uchar>();
uchar *const kpts_next = keypoints_by_layers[i+1].ptr<uchar>();
const float *const ldet = evolution_[i].Mdet.ptr<float>();
const float *const ldet_next = evolution_[i+1].Mdet.ptr<float>();
const float *const ldet = evolution_[i].Ldet.ptr<float>();
const float *const ldet_next = evolution_[i+1].Ldet.ptr<float>();
// ratios are just powers of 2, i+1 ratio is always greater or equal to i
const int diff_ratio = (int)evolution_[i+1].octave_ratio / (int)evolution_[i].octave_ratio;
const int search_radius = evolution_[i+1].sigma_size; // size of keypoints in upper level
@ -814,7 +800,7 @@ void AKAZEFeatures::Do_Subpixel_Refinement(
for (size_t i = 0; i < keypoints_by_layers.size(); i++) {
const Evolution &e = evolution_[i];
const float * const ldet = e.Mdet.ptr<float>();
const float * const ldet = e.Ldet.ptr<float>();
const float ratio = e.octave_ratio;
const int cols = e.Ldet.cols;
const Mat& keypoints = keypoints_by_layers[i];
@ -1308,7 +1294,7 @@ void Compute_Main_Orientation(KeyPoint& kpt, const std::vector<Evolution>& evolu
// Sample derivatives responses for the points within radius of 6*scale
const int ang_size = 109;
float resX[ang_size], resY[ang_size];
Sample_Derivative_Response_Radius6(e.Mx, e.My, x0, y0, scale, resX, resY);
Sample_Derivative_Response_Radius6(e.Lx, e.Ly, x0, y0, scale, resX, resY);
// Compute the angle of each gradient vector
float Ang[ang_size];
@ -1445,8 +1431,8 @@ void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const
ratio = (float)(1 << kpt.octave);
scale = cvRound(0.5f*kpt.size / ratio);
const int level = kpt.class_id;
Mat Lx = evolution[level].Mx;
Mat Ly = evolution[level].My;
const Mat Lx = evolution[level].Lx;
const Mat Ly = evolution[level].Ly;
yf = kpt.pt.y / ratio;
xf = kpt.pt.x / ratio;
@ -1480,25 +1466,28 @@ void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const
//Get the gaussian weighted x and y responses
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.50f*scale);
y1 = (int)(sample_y - .5f);
x1 = (int)(sample_x - .5f);
y1 = cvFloor(sample_y);
x1 = cvFloor(sample_x);
y2 = (int)(sample_y + .5f);
x2 = (int)(sample_x + .5f);
y2 = y1 + 1;
x2 = x1 + 1;
if (x1 < 0 || y1 < 0 || x2 >= Lx.cols || y2 >= Lx.rows)
continue; // FIXIT Boundaries
fx = sample_x - x1;
fy = sample_y - y1;
res1 = *(Lx.ptr<float>(y1)+x1);
res2 = *(Lx.ptr<float>(y1)+x2);
res3 = *(Lx.ptr<float>(y2)+x1);
res4 = *(Lx.ptr<float>(y2)+x2);
res1 = Lx.at<float>(y1, x1);
res2 = Lx.at<float>(y1, x2);
res3 = Lx.at<float>(y2, x1);
res4 = Lx.at<float>(y2, x2);
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
res1 = *(Ly.ptr<float>(y1)+x1);
res2 = *(Ly.ptr<float>(y1)+x2);
res3 = *(Ly.ptr<float>(y2)+x1);
res4 = *(Ly.ptr<float>(y2)+x2);
res1 = Ly.at<float>(y1, x1);
res2 = Ly.at<float>(y1, x2);
res3 = Ly.at<float>(y2, x1);
res4 = Ly.at<float>(y2, x2);
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
rx = gauss_s1*rx;
@ -1533,8 +1522,9 @@ void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const
// convert to unit vector
len = sqrt(len);
const float len_inv = 1.0f / len;
for (i = 0; i < dsize; i++) {
desc[i] /= len;
desc[i] *= len_inv;
}
}
@ -1575,8 +1565,8 @@ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, f
scale = cvRound(0.5f*kpt.size / ratio);
angle = kpt.angle * static_cast<float>(CV_PI / 180.f);
const int level = kpt.class_id;
Mat Lx = evolution[level].Mx;
Mat Ly = evolution[level].My;
const Mat Lx = evolution[level].Lx;
const Mat Ly = evolution[level].Ly;
yf = kpt.pt.y / ratio;
xf = kpt.pt.x / ratio;
co = cos(angle);
@ -1613,34 +1603,28 @@ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, f
// Get the gaussian weighted x and y responses
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale);
y1 = cvRound(sample_y - 0.5f);
x1 = cvRound(sample_x - 0.5f);
y1 = cvFloor(sample_y);
x1 = cvFloor(sample_x);
y2 = cvRound(sample_y + 0.5f);
x2 = cvRound(sample_x + 0.5f);
y2 = y1 + 1;
x2 = x1 + 1;
// fix crash: indexing with out-of-bounds index, this might happen near the edges of image
// clip values so they fit into the image
const MatSize& size = Lx.size;
y1 = min(max(0, y1), size[0] - 1);
x1 = min(max(0, x1), size[1] - 1);
y2 = min(max(0, y2), size[0] - 1);
x2 = min(max(0, x2), size[1] - 1);
CV_DbgAssert(Lx.size == Ly.size);
if (x1 < 0 || y1 < 0 || x2 >= Lx.cols || y2 >= Lx.rows)
continue; // FIXIT Boundaries
fx = sample_x - x1;
fy = sample_y - y1;
res1 = *(Lx.ptr<float>(y1, x1));
res2 = *(Lx.ptr<float>(y1, x2));
res3 = *(Lx.ptr<float>(y2, x1));
res4 = *(Lx.ptr<float>(y2, x2));
res1 = Lx.at<float>(y1, x1);
res2 = Lx.at<float>(y1, x2);
res3 = Lx.at<float>(y2, x1);
res4 = Lx.at<float>(y2, x2);
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
res1 = *(Ly.ptr<float>(y1, x1));
res2 = *(Ly.ptr<float>(y1, x2));
res3 = *(Ly.ptr<float>(y2, x1));
res4 = *(Ly.ptr<float>(y2, x2));
res1 = Ly.at<float>(y1, x1);
res2 = Ly.at<float>(y1, x2);
res3 = Ly.at<float>(y2, x1);
res4 = Ly.at<float>(y2, x2);
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
// Get the x and y derivatives on the rotated axis
@ -1675,8 +1659,9 @@ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, f
// convert to unit vector
len = sqrt(len);
const float len_inv = 1.0f / len;
for (i = 0; i < dsize; i++) {
desc[i] /= len;
desc[i] *= len_inv;
}
}
@ -1689,13 +1674,6 @@ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, f
*/
void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char *desc, int desc_size) const {
float di = 0.0, dx = 0.0, dy = 0.0;
float ri = 0.0, rx = 0.0, ry = 0.0, xf = 0.0, yf = 0.0;
float sample_x = 0.0, sample_y = 0.0, ratio = 0.0;
int x1 = 0, y1 = 0;
int nsamples = 0, scale = 0;
int dcount1 = 0, dcount2 = 0;
const AKAZEOptions & options = *options_;
const std::vector<Evolution>& evolution = *evolution_;
@ -1705,14 +1683,14 @@ void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(cons
float values[16*max_channels];
// Get the information from the keypoint
ratio = (float)(1 << kpt.octave);
scale = cvRound(0.5f*kpt.size / ratio);
const float ratio = (float)(1 << kpt.octave);
const int scale = cvRound(0.5f*kpt.size / ratio);
const int level = kpt.class_id;
Mat Lx = evolution[level].Mx;
Mat Ly = evolution[level].My;
Mat Lt = evolution[level].Mt;
yf = kpt.pt.y / ratio;
xf = kpt.pt.x / ratio;
const Mat Lx = evolution[level].Lx;
const Mat Ly = evolution[level].Ly;
const Mat Lt = evolution[level].Lt;
const float yf = kpt.pt.y / ratio;
const float xf = kpt.pt.x / ratio;
// For 2x2 grid, 3x3 grid and 4x4 grid
const int pattern_size = options_->descriptor_pattern_size;
@ -1726,27 +1704,31 @@ void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(cons
memset(desc, 0, desc_size);
// For the three grids
int dcount1 = 0;
for (int z = 0; z < 3; z++) {
dcount2 = 0;
int dcount2 = 0;
const int step = sample_step[z];
for (int i = -pattern_size; i < pattern_size; i += step) {
for (int j = -pattern_size; j < pattern_size; j += step) {
di = dx = dy = 0.0;
nsamples = 0;
float di = 0.0, dx = 0.0, dy = 0.0;
for (int k = i; k < i + step; k++) {
for (int l = j; l < j + step; l++) {
int nsamples = 0;
for (int k = 0; k < step; k++) {
for (int l = 0; l < step; l++) {
// Get the coordinates of the sample point
sample_y = yf + l*scale;
sample_x = xf + k*scale;
const float sample_y = yf + (l+j)*scale;
const float sample_x = xf + (k+i)*scale;
y1 = cvRound(sample_y);
x1 = cvRound(sample_x);
const int y1 = cvRound(sample_y);
const int x1 = cvRound(sample_x);
if (y1 < 0 || y1 >= Lt.rows || x1 < 0 || x1 >= Lt.cols)
continue; // Boundaries
ri = *(Lt.ptr<float>(y1)+x1);
rx = *(Lx.ptr<float>(y1)+x1);
ry = *(Ly.ptr<float>(y1)+x1);
const float ri = Lt.at<float>(y1, x1);
const float rx = Lx.at<float>(y1, x1);
const float ry = Ly.at<float>(y1, x1);
di += ri;
dx += rx;
@ -1755,9 +1737,13 @@ void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(cons
}
}
di /= nsamples;
dx /= nsamples;
dy /= nsamples;
if (nsamples > 0)
{
const float nsamples_inv = 1.0f / nsamples;
di *= nsamples_inv;
dx *= nsamples_inv;
dy *= nsamples_inv;
}
float *val = &values[dcount2*max_channels];
*(val) = di;
@ -1794,17 +1780,20 @@ void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_st
const std::vector<Evolution>& evolution = *evolution_;
int pattern_size = options_->descriptor_pattern_size;
int chan = options_->descriptor_channels;
int valpos = 0;
Mat Lx = evolution[level].Mx;
Mat Ly = evolution[level].My;
Mat Lt = evolution[level].Mt;
const Mat Lx = evolution[level].Lx;
const Mat Ly = evolution[level].Ly;
const Mat Lt = evolution[level].Lt;
const Size size = Lt.size();
CV_Assert(size == Lx.size());
CV_Assert(size == Ly.size());
int valpos = 0;
for (int i = -pattern_size; i < pattern_size; i += sample_step) {
for (int j = -pattern_size; j < pattern_size; j += sample_step) {
float di, dx, dy;
di = dx = dy = 0.0;
int nsamples = 0;
float di = 0.0f, dx = 0.0f, dy = 0.0f;
int nsamples = 0;
for (int k = i; k < i + sample_step; k++) {
for (int l = j; l < j + sample_step; l++) {
float sample_y = yf + (l*co * scale + k*si*scale);
@ -1813,20 +1802,15 @@ void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_st
int y1 = cvRound(sample_y);
int x1 = cvRound(sample_x);
// fix crash: indexing with out-of-bounds index, this might happen near the edges of image
// clip values so they fit into the image
const MatSize& size = Lt.size;
CV_DbgAssert(size == Lx.size &&
size == Ly.size);
y1 = min(max(0, y1), size[0] - 1);
x1 = min(max(0, x1), size[1] - 1);
if (y1 < 0 || y1 >= Lt.rows || x1 < 0 || x1 >= Lt.cols)
continue; // Boundaries
float ri = *(Lt.ptr<float>(y1, x1));
float ri = Lt.at<float>(y1, x1);
di += ri;
if(chan > 1) {
float rx = *(Lx.ptr<float>(y1, x1));
float ry = *(Ly.ptr<float>(y1, x1));
float rx = Lx.at<float>(y1, x1);
float ry = Ly.at<float>(y1, x1);
if (chan == 2) {
dx += sqrtf(rx*rx + ry*ry);
}
@ -1840,9 +1824,14 @@ void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_st
nsamples++;
}
}
di /= nsamples;
dx /= nsamples;
dy /= nsamples;
if (nsamples > 0)
{
const float nsamples_inv = 1.0f / nsamples;
di *= nsamples_inv;
dx *= nsamples_inv;
dy *= nsamples_inv;
}
values[valpos] = di;
if (chan > 1) {
@ -1931,10 +1920,8 @@ void MLDB_Full_Descriptor_Invoker::Get_MLDB_Full_Descriptor(const KeyPoint& kpt,
*/
void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char *desc, int desc_size) const {
float di = 0.f, dx = 0.f, dy = 0.f;
float rx = 0.f, ry = 0.f;
float sample_x = 0.f, sample_y = 0.f;
int x1 = 0, y1 = 0;
const AKAZEOptions & options = *options_;
const std::vector<Evolution>& evolution = *evolution_;
@ -1944,9 +1931,9 @@ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint&
int scale = cvRound(0.5f*kpt.size / ratio);
float angle = kpt.angle * static_cast<float>(CV_PI / 180.f);
const int level = kpt.class_id;
Mat Lx = evolution[level].Mx;
Mat Ly = evolution[level].My;
Mat Lt = evolution[level].Mt;
const Mat Lx = evolution[level].Lx;
const Mat Ly = evolution[level].Ly;
const Mat Lt = evolution[level].Lt;
float yf = kpt.pt.y / ratio;
float xf = kpt.pt.x / ratio;
float co = cos(angle);
@ -1957,7 +1944,7 @@ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint&
const int max_channels = 3;
const int channels = options.descriptor_channels;
CV_Assert(channels <= max_channels);
float values[(4 + 9 + 16)*max_channels];
float values[(4 + 9 + 16)*max_channels] = { 0 };
// Sample everything, but only do the comparisons
const int pattern_size = options.descriptor_pattern_size;
@ -1972,9 +1959,7 @@ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint&
const int *coords = descriptorSamples_.ptr<int>(i);
CV_Assert(coords[0] >= 0 && coords[0] < 3);
const int sample_step = sample_steps[coords[0]];
di = 0.0f;
dx = 0.0f;
dy = 0.0f;
float di = 0.f, dx = 0.f, dy = 0.f;
for (int k = coords[1]; k < coords[1] + sample_step; k++) {
for (int l = coords[2]; l < coords[2] + sample_step; l++) {
@ -1983,14 +1968,17 @@ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint&
sample_y = yf + (l*scale*co + k*scale*si);
sample_x = xf + (-l*scale*si + k*scale*co);
y1 = cvRound(sample_y);
x1 = cvRound(sample_x);
const int y1 = cvRound(sample_y);
const int x1 = cvRound(sample_x);
di += *(Lt.ptr<float>(y1)+x1);
if (x1 < 0 || y1 < 0 || x1 >= Lt.cols || y1 >= Lt.rows)
continue; // Boundaries
di += Lt.at<float>(y1, x1);
if (options.descriptor_channels > 1) {
rx = *(Lx.ptr<float>(y1)+x1);
ry = *(Ly.ptr<float>(y1)+x1);
rx = Lx.at<float>(y1, x1);
ry = Ly.at<float>(y1, x1);
if (options.descriptor_channels == 2) {
dx += sqrtf(rx*rx + ry*ry);
@ -2051,14 +2039,17 @@ void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset(
float ratio = (float)(1 << kpt.octave);
int scale = cvRound(0.5f*kpt.size / ratio);
const int level = kpt.class_id;
Mat Lx = evolution[level].Mx;
Mat Ly = evolution[level].My;
Mat Lt = evolution[level].Mt;
const Mat Lx = evolution[level].Lx;
const Mat Ly = evolution[level].Ly;
const Mat Lt = evolution[level].Lt;
float yf = kpt.pt.y / ratio;
float xf = kpt.pt.x / ratio;
// Allocate memory for the matrix of values
Mat values ((4 + 9 + 16)*options.descriptor_channels, 1, CV_32FC1);
const int max_channels = 3;
const int channels = options.descriptor_channels;
CV_Assert(channels <= max_channels);
float values[(4 + 9 + 16)*max_channels] = { 0 };
const int pattern_size = options.descriptor_pattern_size;
CV_Assert((pattern_size & 1) == 0);
@ -2083,11 +2074,15 @@ void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset(
y1 = cvRound(sample_y);
x1 = cvRound(sample_x);
di += *(Lt.ptr<float>(y1)+x1);
if (x1 < 0 || y1 < 0 || x1 >= Lt.cols || y1 >= Lt.rows)
continue; // Boundaries
di += Lt.at<float>(y1, x1);
if (options.descriptor_channels > 1) {
rx = *(Lx.ptr<float>(y1)+x1);
ry = *(Ly.ptr<float>(y1)+x1);
rx = Lx.at<float>(y1, x1);
ry = Ly.at<float>(y1, x1);
if (options.descriptor_channels == 2) {
dx += sqrtf(rx*rx + ry*ry);
@ -2100,26 +2095,26 @@ void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset(
}
}
*(values.ptr<float>(options.descriptor_channels*i)) = di;
float* pValues = &values[channels * i];
pValues[0] = di;
if (options.descriptor_channels == 2) {
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx;
pValues[1] = dx;
}
else if (options.descriptor_channels == 3) {
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx;
*(values.ptr<float>(options.descriptor_channels*i + 2)) = dy;
pValues[1] = dx;
pValues[2] = dy;
}
}
// Do the comparisons
const float *vals = values.ptr<float>(0);
const int *comps = descriptorBits_.ptr<int>(0);
CV_Assert(divUp(descriptorBits_.rows, 8) == desc_size);
memset(desc, 0, desc_size);
for (int i = 0; i<descriptorBits_.rows; i++) {
if (vals[comps[2 * i]] > vals[comps[2 * i + 1]]) {
if (values[comps[2 * i]] > values[comps[2 * i + 1]]) {
desc[i / 8] |= (1 << (i % 8));
}
}
@ -2149,7 +2144,8 @@ void generateDescriptorSubsample(Mat& sampleList, Mat& comparisons, int nbits,
}
ssz *= nchannels;
CV_Assert(nbits <= ssz); // Descriptor size can't be bigger than full descriptor
CV_Assert(ssz == 162*nchannels);
CV_Assert(nbits <= ssz && "Descriptor size can't be bigger than full descriptor (486 = 162*3 - 3 channels)");
// Since the full descriptor is usually under 10k elements, we pick
// the selection from the full matrix. We take as many samples per

@ -29,15 +29,10 @@ struct Evolution
border = 0;
}
UMat Lx, Ly; ///< First order spatial derivatives
UMat Lt; ///< Evolution image
UMat Lsmooth; ///< Smoothed image, used only for computing determinant, released afterwards
UMat Ldet; ///< Detector response
// the same as above, holding CPU mapping to UMats above
Mat Mx, My;
Mat Mt;
Mat Mdet;
Mat Lx, Ly; ///< First order spatial derivatives
Mat Lt; ///< Evolution image
Mat Lsmooth; ///< Smoothed image, used only for computing determinant, released afterwards
Mat Ldet; ///< Detector response
Size size; ///< Size of the layer
float etime; ///< Evolution time

@ -43,6 +43,7 @@
using namespace std;
using namespace cv;
using namespace testing;
const string FEATURES2D_DIR = "features2d";
const string IMAGE_FILENAME = "tsukuba.png";
@ -417,68 +418,82 @@ TEST( Features2d_DescriptorExtractor, batch )
}
}
TEST( Features2d_Feature2d, no_crash )
class DescriptorImage : public TestWithParam<std::string>
{
protected:
virtual void SetUp() {
pattern = GetParam();
}
std::string pattern;
};
TEST_P(DescriptorImage, no_crash)
{
const String& pattern = string(cvtest::TS::ptr()->get_data_path() + "shared/*.png");
vector<String> fnames;
glob(pattern, fnames, false);
glob(cvtest::TS::ptr()->get_data_path() + pattern, fnames, false);
sort(fnames.begin(), fnames.end());
Ptr<AKAZE> akaze = AKAZE::create();
Ptr<AKAZE> akaze_mldb = AKAZE::create(AKAZE::DESCRIPTOR_MLDB);
Ptr<AKAZE> akaze_mldb_upright = AKAZE::create(AKAZE::DESCRIPTOR_MLDB_UPRIGHT);
Ptr<AKAZE> akaze_mldb_256 = AKAZE::create(AKAZE::DESCRIPTOR_MLDB, 256);
Ptr<AKAZE> akaze_mldb_upright_256 = AKAZE::create(AKAZE::DESCRIPTOR_MLDB_UPRIGHT, 256);
Ptr<AKAZE> akaze_kaze = AKAZE::create(AKAZE::DESCRIPTOR_KAZE);
Ptr<AKAZE> akaze_kaze_upright = AKAZE::create(AKAZE::DESCRIPTOR_KAZE_UPRIGHT);
Ptr<ORB> orb = ORB::create();
Ptr<KAZE> kaze = KAZE::create();
Ptr<BRISK> brisk = BRISK::create();
size_t i, n = fnames.size();
size_t n = fnames.size();
vector<KeyPoint> keypoints;
Mat descriptors;
orb->setMaxFeatures(5000);
for( i = 0; i < n; i++ )
for(size_t i = 0; i < n; i++ )
{
printf("%d. image: %s:\n", (int)i, fnames[i].c_str());
if( strstr(fnames[i].c_str(), "MP.png") != 0 )
{
printf("\tskip\n");
continue;
}
bool checkCount = strstr(fnames[i].c_str(), "templ.png") == 0;
Mat img = imread(fnames[i], -1);
printf("\tAKAZE ... "); fflush(stdout);
akaze->detectAndCompute(img, noArray(), keypoints, descriptors);
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
if( checkCount )
{
EXPECT_GT((int)keypoints.size(), 0);
}
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
printf("ok\n");
printf("\tKAZE ... "); fflush(stdout);
kaze->detectAndCompute(img, noArray(), keypoints, descriptors);
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
if( checkCount )
{
EXPECT_GT((int)keypoints.size(), 0);
}
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
printf("ok\n");
printf("\tORB ... "); fflush(stdout);
orb->detectAndCompute(img, noArray(), keypoints, descriptors);
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
if( checkCount )
{
EXPECT_GT((int)keypoints.size(), 0);
}
printf("\t%dx%d\n", img.cols, img.rows);
#define TEST_DETECTOR(name, descriptor) \
keypoints.clear(); descriptors.release(); \
printf("\t" name "\n"); fflush(stdout); \
descriptor->detectAndCompute(img, noArray(), keypoints, descriptors); \
printf("\t\t\t(%d keypoints, descriptor size = %d)\n", (int)keypoints.size(), descriptors.cols); fflush(stdout); \
if (checkCount) \
{ \
EXPECT_GT((int)keypoints.size(), 0); \
} \
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
printf("ok\n");
printf("\tBRISK ... "); fflush(stdout);
brisk->detectAndCompute(img, noArray(), keypoints, descriptors);
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
if( checkCount )
{
EXPECT_GT((int)keypoints.size(), 0);
}
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
printf("ok\n");
}
}
TEST_DETECTOR("AKAZE:MLDB", akaze_mldb);
TEST_DETECTOR("AKAZE:MLDB_UPRIGHT", akaze_mldb_upright);
TEST_DETECTOR("AKAZE:MLDB_256", akaze_mldb_256);
TEST_DETECTOR("AKAZE:MLDB_UPRIGHT_256", akaze_mldb_upright_256);
TEST_DETECTOR("AKAZE:KAZE", akaze_kaze);
TEST_DETECTOR("AKAZE:KAZE_UPRIGHT", akaze_kaze_upright);
TEST_DETECTOR("KAZE", kaze);
TEST_DETECTOR("ORB", orb);
TEST_DETECTOR("BRISK", brisk);
}
}
INSTANTIATE_TEST_CASE_P(Features2d, DescriptorImage,
testing::Values(
"shared/lena.png",
"shared/box*.png",
"shared/fruits*.png",
"shared/airplane.png",
"shared/graffiti.png",
"shared/1_itseez-0001*.png",
"shared/pic*.png",
"shared/templ.png"
)
);

@ -8,7 +8,11 @@ from pprint import PrettyPrinter as PP
LONG_TESTS_DEBUG_VALGRIND = [
('calib3d', 'Calib3d_InitUndistortRectifyMap.accuracy', 2017.22),
('dnn', 'Reproducibility*', 1000), # large DNN models
('features2d', 'Features2d_Feature2d.no_crash', 1235.68),
('features2d', 'Features2d/DescriptorImage.no_crash/3', 1000),
('features2d', 'Features2d/DescriptorImage.no_crash/4', 1000),
('features2d', 'Features2d/DescriptorImage.no_crash/5', 1000),
('features2d', 'Features2d/DescriptorImage.no_crash/6', 1000),
('features2d', 'Features2d/DescriptorImage.no_crash/7', 1000),
('imgcodecs', 'Imgcodecs_Png.write_big', 1000), # memory limit
('imgcodecs', 'Imgcodecs_Tiff.decode_tile16384x16384', 1000), # memory limit
('ml', 'ML_RTrees.regression', 1423.47),

Loading…
Cancel
Save