|
|
|
@ -37,18 +37,31 @@ TEST(ML_KNearest, accuracy) |
|
|
|
|
EXPECT_LE(err, 0.01f); |
|
|
|
|
} |
|
|
|
|
{ |
|
|
|
|
// TODO: broken
|
|
|
|
|
#if 0 |
|
|
|
|
SCOPED_TRACE("KDTree"); |
|
|
|
|
Mat bestLabels; |
|
|
|
|
Mat neighborIndexes; |
|
|
|
|
float err = 1000; |
|
|
|
|
Ptr<KNearest> knn = KNearest::create(); |
|
|
|
|
knn->setAlgorithmType(KNearest::KDTREE); |
|
|
|
|
knn->train(trainData, ml::ROW_SAMPLE, trainLabels); |
|
|
|
|
knn->findNearest(testData, 4, bestLabels); |
|
|
|
|
knn->findNearest(testData, 4, neighborIndexes); |
|
|
|
|
Mat bestLabels; |
|
|
|
|
// The output of the KDTree are the neighbor indexes, not actual class labels
|
|
|
|
|
// so we need to do some extra work to get actual predictions
|
|
|
|
|
for(int row_num = 0; row_num < neighborIndexes.rows; ++row_num){ |
|
|
|
|
vector<float> labels; |
|
|
|
|
for(int index = 0; index < neighborIndexes.row(row_num).cols; ++index) { |
|
|
|
|
labels.push_back(trainLabels.at<float>(neighborIndexes.row(row_num).at<int>(0, index) , 0)); |
|
|
|
|
} |
|
|
|
|
// computing the mode of the output class predictions to determine overall prediction
|
|
|
|
|
std::vector<int> histogram(3,0); |
|
|
|
|
for( int i=0; i<3; ++i ) |
|
|
|
|
++histogram[ static_cast<int>(labels[i]) ]; |
|
|
|
|
int bestLabel = static_cast<int>(std::max_element( histogram.begin(), histogram.end() ) - histogram.begin()); |
|
|
|
|
bestLabels.push_back(bestLabel); |
|
|
|
|
} |
|
|
|
|
bestLabels.convertTo(bestLabels, testLabels.type()); |
|
|
|
|
EXPECT_TRUE(calcErr( bestLabels, testLabels, sizes, err, true )); |
|
|
|
|
EXPECT_LE(err, 0.01f); |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -74,4 +87,26 @@ TEST(ML_KNearest, regression_12347) |
|
|
|
|
EXPECT_EQ(2, zBestLabels.at<float>(1,0)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST(ML_KNearest, bug_11877) |
|
|
|
|
{ |
|
|
|
|
Mat trainData = (Mat_<float>(5,2) << 3, 3, 3, 3, 4, 4, 4, 4, 4, 4); |
|
|
|
|
Mat trainLabels = (Mat_<float>(5,1) << 0, 0, 1, 1, 1); |
|
|
|
|
|
|
|
|
|
Ptr<KNearest> knnKdt = KNearest::create(); |
|
|
|
|
knnKdt->setAlgorithmType(KNearest::KDTREE); |
|
|
|
|
knnKdt->setIsClassifier(true); |
|
|
|
|
|
|
|
|
|
knnKdt->train(trainData, ml::ROW_SAMPLE, trainLabels); |
|
|
|
|
|
|
|
|
|
Mat testData = (Mat_<float>(2,2) << 3.1, 3.1, 4, 4.1); |
|
|
|
|
Mat testLabels = (Mat_<int>(2,1) << 0, 1); |
|
|
|
|
Mat result; |
|
|
|
|
|
|
|
|
|
knnKdt->findNearest(testData, 1, result); |
|
|
|
|
|
|
|
|
|
EXPECT_EQ(1, int(result.at<int>(0, 0))); |
|
|
|
|
EXPECT_EQ(2, int(result.at<int>(1, 0))); |
|
|
|
|
EXPECT_EQ(0, trainLabels.at<int>(result.at<int>(0, 0), 0)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
}} // namespace
|
|
|
|
|