From 5b6a755719645ecd58a6b722f12b483966916c99 Mon Sep 17 00:00:00 2001
From: Vadim Pisarevsky <no@email>
Date: Tue, 2 Nov 2010 17:58:22 +0000
Subject: [PATCH] almost finished Python wrappers

---
 .../include/opencv2/calib3d/calib3d.hpp       |  24 +-
 modules/core/include/opencv2/core/core.hpp    |  99 +--
 .../core/include/opencv2/core/operations.hpp  |   3 +-
 modules/core/include/opencv2/core/types_c.h   |   3 +-
 modules/core/src/datastructs.cpp              | 121 +++-
 modules/core/src/persistence.cpp              |   1 -
 .../include/opencv2/features2d/features2d.hpp |  22 +-
 .../include/opencv2/highgui/highgui.hpp       |  10 +-
 modules/highgui/src/cap.cpp                   |  18 +-
 .../include/opencv2/imgproc/imgproc.hpp       |  20 +-
 modules/ml/include/opencv2/ml/ml.hpp          | 208 +++---
 modules/ml/src/ann_mlp.cpp                    |  11 +
 modules/ml/src/boost.cpp                      |  13 +-
 modules/ml/src/em.cpp                         |  33 +-
 modules/ml/src/gbt.cpp                        |  46 ++
 modules/ml/src/knearest.cpp                   |   7 +
 modules/ml/src/nbayes.cpp                     |  20 +
 modules/ml/src/rtrees.cpp                     |   4 +
 modules/ml/src/svm.cpp                        |  15 +
 modules/ml/src/tree.cpp                       |   5 +
 .../include/opencv2/objdetect/objdetect.hpp   |   5 +-
 modules/python/CMakeLists.txt                 |  31 +-
 modules/python/cv.cpp                         |  18 +-
 modules/python/gen2.py                        | 314 +++++----
 modules/python/hdr_parser.py                  |  46 +-
 modules/python/opencv2x.h                     | 622 ++++++++++++++----
 ...ncv_api_extra.hpp => opencv_extra_api.hpp} | 189 +++---
 27 files changed, 1283 insertions(+), 625 deletions(-)
 rename modules/python/{opencv_api_extra.hpp => opencv_extra_api.hpp} (73%)

diff --git a/modules/calib3d/include/opencv2/calib3d/calib3d.hpp b/modules/calib3d/include/opencv2/calib3d/calib3d.hpp
index b202799a8b..3aff20c569 100644
--- a/modules/calib3d/include/opencv2/calib3d/calib3d.hpp
+++ b/modules/calib3d/include/opencv2/calib3d/calib3d.hpp
@@ -443,12 +443,6 @@ enum
 
 //! computes the best-fit perspective transformation mapping srcPoints to dstPoints.
 CV_EXPORTS_AS(findHomographyAndOutliers) Mat findHomography( const Mat& srcPoints,
-                               const Mat& dstPoints,
-                               CV_OUT Mat& mask, int method=0,
-                               double ransacReprojThreshold=3 );
-
-//! computes the best-fit perspective transformation mapping srcPoints to dstPoints.
-CV_EXPORTS Mat findHomography( const Mat& srcPoints,
                                const Mat& dstPoints,
                                vector<uchar>& mask, int method=0,
                                double ransacReprojThreshold=3 );
@@ -493,14 +487,14 @@ CV_EXPORTS_AS(composeRT_J) void composeRT( const Mat& rvec1, const Mat& tvec1,
                            CV_OUT Mat& dt3dr2, CV_OUT Mat& dt3dt2 );
 
 //! projects points from the model coordinate space to the image coordinates. Takes the intrinsic and extrinsic camera parameters into account
-CV_EXPORTS void projectPoints( const Mat& objectPoints,
+CV_EXPORTS_W void projectPoints( const Mat& objectPoints,
                                const Mat& rvec, const Mat& tvec,
                                const Mat& cameraMatrix,
                                const Mat& distCoeffs,
                                CV_OUT vector<Point2f>& imagePoints );
 
 //! projects points from the model coordinate space to the image coordinates. Also computes derivatives of the image coordinates w.r.t the intrinsic and extrinsic camera parameters
-CV_EXPORTS void projectPoints( const Mat& objectPoints,
+CV_EXPORTS_AS(projectPointsJ) void projectPoints( const Mat& objectPoints,
                                const Mat& rvec, const Mat& tvec,
                                const Mat& cameraMatrix,
                                const Mat& distCoeffs,
@@ -518,7 +512,7 @@ CV_EXPORTS_W void solvePnP( const Mat& objectPoints,
                             bool useExtrinsicGuess=false );
 
 //! initializes camera matrix from a few 3D points and the corresponding projections.
-CV_EXPORTS Mat initCameraMatrix2D( const vector<vector<Point3f> >& objectPoints,
+CV_EXPORTS_W Mat initCameraMatrix2D( const vector<vector<Point3f> >& objectPoints,
                                    const vector<vector<Point2f> >& imagePoints,
                                    Size imageSize, double aspectRatio=1. );
 
@@ -527,9 +521,9 @@ enum { CALIB_CB_ADAPTIVE_THRESH = 1, CALIB_CB_NORMALIZE_IMAGE = 2,
        CALIB_CB_FILTER_QUADS = 4, CALIB_CB_FAST_CHECK = 8 };
 
 //! finds checkerboard pattern of the specified size in the image
-CV_EXPORTS bool findChessboardCorners( const Mat& image, Size patternSize,
-                                       CV_OUT vector<Point2f>& corners,
-                                       int flags=CALIB_CB_ADAPTIVE_THRESH+
+CV_EXPORTS_W bool findChessboardCorners( const Mat& image, Size patternSize,
+                                         CV_OUT vector<Point2f>& corners,
+                                         int flags=CALIB_CB_ADAPTIVE_THRESH+
                                               CALIB_CB_NORMALIZE_IMAGE );
 
 //! draws the checkerboard pattern (found or partly found) in the image
@@ -558,7 +552,7 @@ enum
 };
 
 //! finds intrinsic and extrinsic camera parameters from several fews of a known calibration pattern.
-CV_EXPORTS double calibrateCamera( const vector<vector<Point3f> >& objectPoints,
+CV_EXPORTS_W double calibrateCamera( const vector<vector<Point3f> >& objectPoints,
                                      const vector<vector<Point2f> >& imagePoints,
                                      Size imageSize,
                                      CV_IN_OUT Mat& cameraMatrix,
@@ -578,7 +572,7 @@ CV_EXPORTS_W void calibrationMatrixValues( const Mat& cameraMatrix,
                                 CV_OUT double& aspectRatio );
 
 //! finds intrinsic and extrinsic parameters of a stereo camera
-CV_EXPORTS double stereoCalibrate( const vector<vector<Point3f> >& objectPoints,
+CV_EXPORTS_W double stereoCalibrate( const vector<vector<Point3f> >& objectPoints,
                                      const vector<vector<Point2f> >& imagePoints1,
                                      const vector<vector<Point2f> >& imagePoints2,
                                      CV_IN_OUT Mat& cameraMatrix1, CV_IN_OUT Mat& distCoeffs1,
@@ -615,7 +609,7 @@ CV_EXPORTS_W bool stereoRectifyUncalibrated( const Mat& points1, const Mat& poin
                                              double threshold=5 );
 
 //! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
-CV_EXPORTS float rectify3Collinear( const Mat& cameraMatrix1, const Mat& distCoeffs1,
+CV_EXPORTS_W float rectify3Collinear( const Mat& cameraMatrix1, const Mat& distCoeffs1,
                                       const Mat& cameraMatrix2, const Mat& distCoeffs2,
                                       const Mat& cameraMatrix3, const Mat& distCoeffs3,
                                       const vector<vector<Point2f> >& imgpt1,
diff --git a/modules/core/include/opencv2/core/core.hpp b/modules/core/include/opencv2/core/core.hpp
index 23613871d1..cd96c130ca 100644
--- a/modules/core/include/opencv2/core/core.hpp
+++ b/modules/core/include/opencv2/core/core.hpp
@@ -972,7 +972,7 @@ public:
     typedef value_type channel_type;
     typedef value_type vec_type;
     
-    enum { depth = DataDepth<channel_type>::value, channels = 1,
+    enum { generic = 1, depth = DataDepth<channel_type>::value, channels = 1,
         fmt=DataDepth<channel_type>::fmt,
         type = CV_MAKETYPE(depth, channels) };
 };
@@ -984,7 +984,7 @@ public:
     typedef int work_type;
     typedef value_type channel_type;
     typedef value_type vec_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 1,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 1,
            fmt=DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
 };
@@ -996,7 +996,7 @@ public:
     typedef int work_type;
     typedef value_type channel_type;
     typedef value_type vec_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 1,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 1,
            fmt=DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
 };
@@ -1008,7 +1008,7 @@ public:
     typedef int work_type;
     typedef value_type channel_type;
     typedef value_type vec_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 1,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 1,
            fmt=DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
 };
@@ -1020,7 +1020,7 @@ public:
     typedef int work_type;
     typedef value_type channel_type;
     typedef value_type vec_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 1,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 1,
            fmt=DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
 };
@@ -1032,7 +1032,7 @@ public:
     typedef int work_type;
     typedef value_type channel_type;
     typedef value_type vec_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 1,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 1,
            fmt=DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
 };
@@ -1044,7 +1044,7 @@ public:
     typedef int work_type;
     typedef value_type channel_type;
     typedef value_type vec_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 1,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 1,
            fmt=DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
 };
@@ -1056,7 +1056,7 @@ public:
     typedef value_type work_type;
     typedef value_type channel_type;
     typedef value_type vec_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 1,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 1,
            fmt=DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
 };
@@ -1068,7 +1068,7 @@ public:
     typedef value_type work_type;
     typedef value_type channel_type;
     typedef value_type vec_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 1,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 1,
            fmt=DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
 };
@@ -1080,7 +1080,7 @@ public:
     typedef value_type work_type;
     typedef value_type channel_type;
     typedef value_type vec_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 1,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 1,
            fmt=DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
 };
@@ -1092,7 +1092,7 @@ public:
     typedef Vec<typename DataType<_Tp>::work_type, cn> work_type;
     typedef _Tp channel_type;
     typedef value_type vec_type;
-    enum { depth = DataDepth<channel_type>::value, channels = cn,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = cn,
            fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
 };
@@ -1103,7 +1103,7 @@ public:
     typedef std::complex<_Tp> value_type;
     typedef value_type work_type;
     typedef _Tp channel_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 2,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 2,
            fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
     typedef Vec<channel_type, channels> vec_type;
@@ -1115,7 +1115,7 @@ public:
     typedef Complex<_Tp> value_type;
     typedef value_type work_type;
     typedef _Tp channel_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 2,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 2,
            fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
     typedef Vec<channel_type, channels> vec_type;
@@ -1127,7 +1127,7 @@ public:
     typedef Point_<_Tp> value_type;
     typedef Point_<typename DataType<_Tp>::work_type> work_type;
     typedef _Tp channel_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 2,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 2,
            fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
     typedef Vec<channel_type, channels> vec_type;
@@ -1139,7 +1139,7 @@ public:
     typedef Point3_<_Tp> value_type;
     typedef Point3_<typename DataType<_Tp>::work_type> work_type;
     typedef _Tp channel_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 3,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 3,
            fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
     typedef Vec<channel_type, channels> vec_type;
@@ -1151,7 +1151,7 @@ public:
     typedef Size_<_Tp> value_type;
     typedef Size_<typename DataType<_Tp>::work_type> work_type;
     typedef _Tp channel_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 2,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 2,
            fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
     typedef Vec<channel_type, channels> vec_type;
@@ -1163,7 +1163,7 @@ public:
     typedef Rect_<_Tp> value_type;
     typedef Rect_<typename DataType<_Tp>::work_type> work_type;
     typedef _Tp channel_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 4,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 4,
            fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
     typedef Vec<channel_type, channels> vec_type;
@@ -1175,7 +1175,7 @@ public:
     typedef Scalar_<_Tp> value_type;
     typedef Scalar_<typename DataType<_Tp>::work_type> work_type;
     typedef _Tp channel_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 4,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 4,
            fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
     typedef Vec<channel_type, channels> vec_type;
@@ -1187,7 +1187,7 @@ public:
     typedef Range value_type;
     typedef value_type work_type;
     typedef int channel_type;
-    enum { depth = DataDepth<channel_type>::value, channels = 2,
+    enum { generic = 0, depth = DataDepth<channel_type>::value, channels = 2,
            fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
            type = CV_MAKETYPE(depth, channels) };
     typedef Vec<channel_type, channels> vec_type;
@@ -2154,27 +2154,27 @@ CV_EXPORTS_W void calcCovarMatrix( const Mat& samples, CV_OUT Mat& covar, CV_OUT
     }
     \endcode
 */
-class CV_EXPORTS_W PCA
+class CV_EXPORTS PCA
 {
 public:
     //! default constructor
-    CV_WRAP PCA();
+    PCA();
     //! the constructor that performs PCA
-    CV_WRAP PCA(const Mat& data, const Mat& mean, int flags, int maxComponents=0);
+    PCA(const Mat& data, const Mat& mean, int flags, int maxComponents=0);
     //! operator that performs PCA. The previously stored data, if any, is released
-    CV_WRAP_AS(compute) PCA& operator()(const Mat& data, const Mat& mean, int flags, int maxComponents=0);
+    PCA& operator()(const Mat& data, const Mat& mean, int flags, int maxComponents=0);
     //! projects vector from the original space to the principal components subspace
     Mat project(const Mat& vec) const;
     //! projects vector from the original space to the principal components subspace
-    CV_WRAP void project(const Mat& vec, CV_OUT Mat& result) const;
+    void project(const Mat& vec, CV_OUT Mat& result) const;
     //! reconstructs the original vector from the projection
     Mat backProject(const Mat& vec) const;
     //! reconstructs the original vector from the projection
-    CV_WRAP void backProject(const Mat& vec, CV_OUT Mat& result) const;
+    void backProject(const Mat& vec, CV_OUT Mat& result) const;
 
-    CV_PROP Mat eigenvectors; //!< eigenvectors of the covariation matrix
-    CV_PROP Mat eigenvalues; //!< eigenvalues of the covariation matrix
-    CV_PROP Mat mean; //!< mean value subtracted before the projection and added after the back projection
+    Mat eigenvectors; //!< eigenvectors of the covariation matrix
+    Mat eigenvalues; //!< eigenvalues of the covariation matrix
+    Mat mean; //!< mean value subtracted before the projection and added after the back projection
 };
 
 /*!
@@ -2273,7 +2273,7 @@ CV_WRAP static inline void randn(CV_OUT Mat& dst, const Scalar& mean, const Scal
 { theRNG().fill(dst, RNG::NORMAL, mean, stddev); }
 
 //! shuffles the input array elements
-CV_EXPORTS_W void randShuffle(Mat& dst, double iterFactor=1., RNG* rng=0);
+CV_EXPORTS void randShuffle(Mat& dst, double iterFactor=1., RNG* rng=0);
 
 //! draws the line segment (pt1, pt2) in the image
 CV_EXPORTS_W void line(Mat& img, Point pt1, Point pt2, const Scalar& color,
@@ -3576,30 +3576,46 @@ public:
     CV_WRAP KDTree();
     //! the full constructor that builds the search tree
     CV_WRAP KDTree(const Mat& _points, bool copyAndReorderPoints=false);
+    //! the full constructor that builds the search tree
+    CV_WRAP KDTree(const Mat& _points, const Mat& _labels, bool copyAndReorderPoints=false);
     //! builds the search tree
     CV_WRAP void build(const Mat& _points, bool copyAndReorderPoints=false);
+    //! builds the search tree
+    CV_WRAP void build(const Mat& _points, const Mat& _labels, bool copyAndReorderPoints=false);
     //! finds the K nearest neighbors of "vec" while looking at Emax (at most) leaves
     int findNearest(const float* vec,
                     int K, int Emax, int* neighborsIdx,
-                    Mat* neighbors=0, float* dist=0) const;
+                    Mat* neighbors=0, float* dist=0, int* labels=0) const;
     //! finds the K nearest neighbors while looking at Emax (at most) leaves
     int findNearest(const float* vec, int K, int Emax,
                     vector<int>* neighborsIdx,
-                    Mat* neighbors=0, vector<float>* dist=0) const;
+                    Mat* neighbors=0,
+                    vector<float>* dist=0,
+                    vector<int>* labels=0) const;
+    CV_WRAP int findNearest(const vector<float>& vec, int K, int Emax,
+                    CV_OUT vector<int>* neighborsIdx,
+                    CV_OUT Mat* neighbors=0,
+                    CV_OUT vector<float>* dist=0,
+                    CV_OUT vector<int>* labels=0) const;
     //! finds all the points from the initial set that belong to the specified box 
     void findOrthoRange(const float* minBounds, const float* maxBounds,
-                        vector<int>* neighborsIdx, Mat* neighbors=0) const;
+                        vector<int>* neighborsIdx, Mat* neighbors=0,
+                        vector<int>* labels=0) const;
+    CV_WRAP void findOrthoRange(const vector<float>& minBounds, const vector<float>& maxBounds,
+                                CV_OUT vector<int>* neighborsIdx, CV_OUT Mat* neighbors=0,
+                                CV_OUT vector<int>* labels=0) const;
     //! returns vectors with the specified indices
-    void getPoints(const int* idx, size_t nidx, Mat& pts) const;
+    void getPoints(const int* idx, size_t nidx, Mat& pts, vector<int>* labels=0) const;
     //! returns vectors with the specified indices
-    void getPoints(const Mat& idxs, Mat& pts) const;
+    CV_WRAP void getPoints(const vector<int>& idxs, Mat& pts, CV_OUT vector<int>* labels=0) const;
     //! return a vector with the specified index
-    const float* getPoint(int ptidx) const;
+    const float* getPoint(int ptidx, int* label=0) const;
     //! returns the search space dimensionality
     CV_WRAP int dims() const;
 
     vector<Node> nodes; //!< all the tree nodes
     CV_PROP Mat points; //!< all the points. It can be a reordered copy of the input vector set or the original vector set.
+    CV_PROP vector<int> labels; //!< the parallel array of labels.
     CV_PROP int maxDepth; //!< maximum depth of the search tree. Do not modify it
     CV_PROP_RW int normType; //!< type of the distance (cv::NORM_L1 or cv::NORM_L2) used for search. Initially set to cv::NORM_L2, but you can modify it
 };
@@ -3743,7 +3759,7 @@ public:
     //! returns the top-level mapping. YAML supports multiple streams
     CV_WRAP FileNode root(int streamidx=0) const;
     //! returns the specified element of the top-level mapping
-    CV_WRAP FileNode operator[](const string& nodename) const;
+    FileNode operator[](const string& nodename) const;
     //! returns the specified element of the top-level mapping
     CV_WRAP FileNode operator[](const char* nodename) const;
 
@@ -3777,7 +3793,7 @@ class CV_EXPORTS FileNodeIterator;
  Note that file nodes are only used for navigating file storages opened for reading.
  When a file storage is opened for writing, no data is stored in memory after it is written.
 */
-class CV_EXPORTS_W FileNode
+class CV_EXPORTS_W_SIMPLE FileNode
 {
 public:
     //! type of the file storage node
@@ -3813,7 +3829,6 @@ public:
     //! returns type of the node
     CV_WRAP int type() const;
 
-    CV_WRAP int rawDataSize(const string& fmt) const;
     //! returns true if the node is empty 
     CV_WRAP bool empty() const;
     //! returns true if the node is a "none" object 
@@ -3835,13 +3850,13 @@ public:
     //! returns the number of elements in the node, if it is a sequence or mapping, or 1 otherwise.
     CV_WRAP size_t size() const;
     //! returns the node content as an integer. If the node stores floating-point number, it is rounded.
-    CV_WRAP operator int() const;
+    operator int() const;
     //! returns the node content as float
-    CV_WRAP operator float() const;
+    operator float() const;
     //! returns the node content as double
-    CV_WRAP operator double() const;
+    operator double() const;
     //! returns the node content as text string
-    CV_WRAP operator string() const;
+    operator string() const;
     
     //! returns pointer to the underlying file node
     CvFileNode* operator *();
diff --git a/modules/core/include/opencv2/core/operations.hpp b/modules/core/include/opencv2/core/operations.hpp
index 83fe94a9be..aa40f9eb73 100644
--- a/modules/core/include/opencv2/core/operations.hpp
+++ b/modules/core/include/opencv2/core/operations.hpp
@@ -2990,8 +2990,7 @@ template<typename _Tp, class _LT> void sort( vector<_Tp>& vec, _LT LT=_LT() )
     {
         _Tp *lb;
         _Tp *ub;
-    }
-    stack[48];
+    } stack[48];
 
     size_t total = vec.size();
 
diff --git a/modules/core/include/opencv2/core/types_c.h b/modules/core/include/opencv2/core/types_c.h
index d3374e33ef..73bb97c1b5 100644
--- a/modules/core/include/opencv2/core/types_c.h
+++ b/modules/core/include/opencv2/core/types_c.h
@@ -161,8 +161,9 @@ typedef signed char schar;
 #define CV_CARRAY(counter)
 #define CV_CUSTOM_CARRAY(args)
 #define CV_EXPORTS_W CV_EXPORTS
+#define CV_EXPORTS_W_SIMPLE CV_EXPORTS
 #define CV_EXPORTS_AS(synonym) CV_EXPORTS
-#define CV_EXPORTS_AS_MAP CV_EXPORTS
+#define CV_EXPORTS_W_MAP CV_EXPORTS
 #define CV_IN_OUT
 #define CV_OUT
 #define CV_PROP
diff --git a/modules/core/src/datastructs.cpp b/modules/core/src/datastructs.cpp
index 8d4643cac9..535c9a30a0 100644
--- a/modules/core/src/datastructs.cpp
+++ b/modules/core/src/datastructs.cpp
@@ -3555,6 +3555,13 @@ KDTree::KDTree(const Mat& _points, bool _copyData)
     build(_points, _copyData);
 }
 
+KDTree::KDTree(const Mat& _points, const Mat& _labels, bool _copyData)
+{
+    maxDepth = -1;
+    normType = NORM_L2;
+    build(_points, _labels, _copyData);
+}    
+    
 struct SubTree
 {
     SubTree() : first(0), last(0), nodeIdx(0), depth(0) {}
@@ -3630,10 +3637,16 @@ computeSums( const Mat& points, const size_t* ofs, int a, int b, double* sums )
     }
 }
 
-
+    
 void KDTree::build(const Mat& _points, bool _copyData)
 {
-    CV_Assert(_points.type() == CV_32F);
+    build(_points, Mat(), _copyData);
+}
+
+
+void KDTree::build(const Mat& _points, const Mat& _labels, bool _copyData)
+{
+    CV_Assert(_points.type() == CV_32F && !_points.empty());
     vector<KDTree::Node>().swap(nodes);
 
     if( !_copyData )
@@ -3643,13 +3656,22 @@ void KDTree::build(const Mat& _points, bool _copyData)
         points.release();
         points.create(_points.size(), _points.type());
     }
-
+    
     int i, j, n = _points.rows, dims = _points.cols, top = 0;
     const float* data = _points.ptr<float>(0);
     float* dstdata = points.ptr<float>(0);
     size_t step = _points.step1();
     size_t dstep = points.step1();
     int ptpos = 0;
+    labels.resize(n);
+    const int* _labels_data = 0;
+    
+    if( !_labels.empty() )
+    {
+        int nlabels = _labels.checkVector(1, CV_32S, true);
+        CV_Assert(nlabels == n);
+        _labels_data = (const int*)_labels.data;
+    }
 
     Mat sumstack(MAX_TREE_DEPTH*2, dims*2, CV_64F);
     SubTree stack[MAX_TREE_DEPTH*2];
@@ -3675,7 +3697,8 @@ void KDTree::build(const Mat& _points, bool _copyData)
 
         if( count == 1 )
         {
-            int idx = _copyData ? ptpos++ : (int)(ptofs[first]/step);
+            int idx0 = (int)(ptofs[first]/step);
+            int idx = _copyData ? ptpos++ : idx0;
             nodes[nidx].idx = ~idx;
             if( _copyData )
             {
@@ -3684,6 +3707,7 @@ void KDTree::build(const Mat& _points, bool _copyData)
                 for( j = 0; j < dims; j++ )
                     dst[j] = src[j];
             }
+            labels[idx] = _labels_data ? _labels_data[idx0] : idx0; 
             _maxDepth = std::max(_maxDepth, depth);
             continue;
         }
@@ -3723,7 +3747,8 @@ void KDTree::build(const Mat& _points, bool _copyData)
 int KDTree::findNearest(const float* vec, int K, int emax,
                          vector<int>* neighborsIdx,
                          Mat* neighbors,
-                         vector<float>* dist) const
+                         vector<float>* dist,
+                         vector<int>* labels) const
 {
     K = std::min(K, points.rows);
     CV_Assert(K > 0);
@@ -3731,15 +3756,44 @@ int KDTree::findNearest(const float* vec, int K, int emax,
         neighborsIdx->resize(K);
     if(dist)
         dist->resize(K);
+    if(labels)
+        labels->resize(K);
     K = findNearest(vec, K, emax, neighborsIdx ? &(*neighborsIdx)[0] : 0,
-                    neighbors, dist ? &(*dist)[0] : 0);
+                    neighbors, dist ? &(*dist)[0] : 0, labels ? &(*labels)[0] : 0);
     if(neighborsIdx)
         neighborsIdx->resize(K);
     if(dist)
         dist->resize(K);
+    if(labels)
+        labels->resize(K);
     return K;
 }
-
+    
+int KDTree::findNearest(const vector<float>& vec, int K, int emax,
+                        vector<int>* neighborsIdx,
+                        Mat* neighbors,
+                        vector<float>* dist,
+                        vector<int>* labels) const
+{
+    CV_Assert((int)vec.size() == points.cols);
+    K = std::min(K, points.rows);
+    CV_Assert(K > 0);
+    if(neighborsIdx)
+        neighborsIdx->resize(K);
+    if(dist)
+        dist->resize(K);
+    if(labels)
+        labels->resize(K);
+    K = findNearest(&vec[0], K, emax, neighborsIdx ? &(*neighborsIdx)[0] : 0,
+                    neighbors, dist ? &(*dist)[0] : 0, labels ? &(*labels)[0] : 0);
+    if(neighborsIdx)
+        neighborsIdx->resize(K);
+    if(dist)
+        dist->resize(K);
+    if(labels)
+        labels->resize(K);
+    return K;
+}    
 
 struct PQueueElem
 {
@@ -3752,7 +3806,7 @@ struct PQueueElem
 
 int KDTree::findNearest(const float* vec, int K, int emax,
                         int* _neighborsIdx, Mat* _neighbors,
-                        float* _dist) const
+                        float* _dist, int* _labels) const
     
 {
     K = std::min(K, points.rows);
@@ -3885,6 +3939,11 @@ int KDTree::findNearest(const float* vec, int K, int emax,
         for( i = 0; i < K; i++ )
             _dist[i] = std::sqrt(dist[i]);
     }
+    if( _labels )
+    {
+        for( i = 0; i < K; i++ )
+            _labels[i] = labels[idx[i]];
+    }
 
     if( _neighbors )
         getPoints(idx, K, *_neighbors);
@@ -3893,7 +3952,8 @@ int KDTree::findNearest(const float* vec, int K, int emax,
 
 
 void KDTree::findOrthoRange(const float* L, const float* R,
-                            vector<int>* neighborsIdx, Mat* neighbors) const
+                            vector<int>* neighborsIdx,
+                            Mat* neighbors, vector<int>* _labels) const
 {
     int dims = points.cols;
     
@@ -3931,48 +3991,73 @@ void KDTree::findOrthoRange(const float* L, const float* R,
     }
 
     if( neighbors )
-        getPoints( &(*idx)[0], idx->size(), *neighbors );
+        getPoints( &(*idx)[0], idx->size(), *neighbors, _labels );
 }
 
     
-void KDTree::getPoints(const int* idx, size_t nidx, Mat& pts) const
+void KDTree::findOrthoRange(const vector<float>& L, const vector<float>& R,
+                            vector<int>* neighborsIdx, Mat* neighbors, vector<int>* _labels) const
+{
+    size_t dims = points.cols;
+    CV_Assert(L.size() == dims && R.size() == dims);
+    findOrthoRange(&L[0], &R[0], neighborsIdx, neighbors, _labels);
+}
+        
+    
+void KDTree::getPoints(const int* idx, size_t nidx, Mat& pts, vector<int>* _labels) const
 {
     int dims = points.cols, n = (int)nidx;
     pts.create( n, dims, points.type());
+    if(_labels)
+        _labels->resize(nidx);
+
     for( int i = 0; i < n; i++ )
     {
         int k = idx[i];
         CV_Assert( (unsigned)k < (unsigned)points.rows );
         const float* src = points.ptr<float>(k);
         std::copy(src, src + dims, pts.ptr<float>(i));
+        if(_labels)
+            (*_labels)[i] = labels[k];
     }
 }
 
 
-void KDTree::getPoints(const Mat& idx, Mat& pts) const
+void KDTree::getPoints(const vector<int>& idx, Mat& pts, vector<int>* _labels) const
 {
-    CV_Assert(idx.type() == CV_32S && idx.isContinuous() &&
-              (idx.cols == 1 || idx.rows == 1));
     int dims = points.cols;
-    int i, nidx = idx.cols + idx.rows - 1;
+    int i, nidx = (int)idx.size();
     pts.create( nidx, dims, points.type());
-    const int* _idx = idx.ptr<int>();
+    
+    if(_labels)
+        _labels->resize(nidx);
     
     for( i = 0; i < nidx; i++ )
     {
-        int k = _idx[i];
+        int k = idx[i];
         CV_Assert( (unsigned)k < (unsigned)points.rows );
         const float* src = points.ptr<float>(k);
         std::copy(src, src + dims, pts.ptr<float>(i));
+        if(_labels) (*_labels)[i] = labels[k];
     }
 }
 
 
-const float* KDTree::getPoint(int ptidx) const
+const float* KDTree::getPoint(int ptidx, int* label) const
 {
     CV_Assert( (unsigned)ptidx < (unsigned)points.rows);
+    if(label)
+        *label = label[ptidx];
     return points.ptr<float>(ptidx);
 }
+
+
+int KDTree::dims() const
+{
+    return !points.empty() ? points.cols : 0;
+}
+    
+////////////////////////////////////////////////////////////////////////////////
     
 schar*  seqPush( CvSeq* seq, const void* element )
 {
diff --git a/modules/core/src/persistence.cpp b/modules/core/src/persistence.cpp
index 4bf4dffdc9..79fd213d85 100644
--- a/modules/core/src/persistence.cpp
+++ b/modules/core/src/persistence.cpp
@@ -5130,7 +5130,6 @@ void* FileNode::readObj() const
     return cvRead( (CvFileStorage*)fs, (CvFileNode*)node );
 }
 
-
 FileNodeIterator::FileNodeIterator()
 {
     fs = 0;
diff --git a/modules/features2d/include/opencv2/features2d/features2d.hpp b/modules/features2d/include/opencv2/features2d/features2d.hpp
index 12a61be76f..0a26ada961 100644
--- a/modules/features2d/include/opencv2/features2d/features2d.hpp
+++ b/modules/features2d/include/opencv2/features2d/features2d.hpp
@@ -216,18 +216,18 @@ public:
  (usually represented as a feature vector). The keypoints representing the same object in different images can then be matched using
  cv::KDTree or another method.
 */
-class CV_EXPORTS KeyPoint
+class CV_EXPORTS_W_SIMPLE KeyPoint
 {
 public:
     //! the default constructor
-    KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0), class_id(-1) {}
+    CV_WRAP KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0), class_id(-1) {}
     //! the full constructor
     KeyPoint(Point2f _pt, float _size, float _angle=-1,
             float _response=0, int _octave=0, int _class_id=-1)
             : pt(_pt), size(_size), angle(_angle),
             response(_response), octave(_octave), class_id(_class_id) {}
     //! another form of the full constructor
-    KeyPoint(float x, float y, float _size, float _angle=-1,
+    CV_WRAP KeyPoint(float x, float y, float _size, float _angle=-1,
             float _response=0, int _octave=0, int _class_id=-1)
             : pt(x, y), size(_size), angle(_angle),
             response(_response), octave(_octave), class_id(_class_id) {}
@@ -245,18 +245,18 @@ public:
     //! area of keypoint regions union (now keypoint region is circle)
     static float overlap(const KeyPoint& kp1, const KeyPoint& kp2);
 
-    Point2f pt; //!< coordinates of the keypoints
-    float size; //!< diameter of the meaningfull keypoint neighborhood
-    float angle; //!< computed orientation of the keypoint (-1 if not applicable)
-    float response; //!< the response by which the most strong keypoints have been selected. Can be used for the further sorting or subsampling
-    int octave; //!< octave (pyramid layer) from which the keypoint has been extracted
-    int class_id; //!< object class (if the keypoints need to be clustered by an object they belong to) 
+    CV_PROP_RW Point2f pt; //!< coordinates of the keypoints
+    CV_PROP_RW float size; //!< diameter of the meaningfull keypoint neighborhood
+    CV_PROP_RW float angle; //!< computed orientation of the keypoint (-1 if not applicable)
+    CV_PROP_RW float response; //!< the response by which the most strong keypoints have been selected. Can be used for the further sorting or subsampling
+    CV_PROP_RW int octave; //!< octave (pyramid layer) from which the keypoint has been extracted
+    CV_PROP_RW int class_id; //!< object class (if the keypoints need to be clustered by an object they belong to) 
 };
 
 //! writes vector of keypoints to the file storage
-CV_EXPORTS_W void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints);
+CV_EXPORTS void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints);
 //! reads vector of keypoints from the specified file storage node
-CV_EXPORTS_W void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints);    
+CV_EXPORTS void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints);    
 
 /*!
  SIFT implementation.
diff --git a/modules/highgui/include/opencv2/highgui/highgui.hpp b/modules/highgui/include/opencv2/highgui/highgui.hpp
index 278683e966..9aa29aff82 100644
--- a/modules/highgui/include/opencv2/highgui/highgui.hpp
+++ b/modules/highgui/include/opencv2/highgui/highgui.hpp
@@ -88,7 +88,7 @@ CV_EXPORTS_W void imshow( const string& winname, const Mat& mat );
 
 typedef void (CV_CDECL *TrackbarCallback)(int pos, void* userdata);
 
-CV_EXPORTS_W int createTrackbar( const string& trackbarname, const string& winname,
+CV_EXPORTS int createTrackbar( const string& trackbarname, const string& winname,
                                int* value, int count,
                                TrackbarCallback onChange CV_DEFAULT(0),
                                void* userdata CV_DEFAULT(0));
@@ -99,7 +99,7 @@ CV_EXPORTS_W void setTrackbarPos( const string& trackbarname, const string& winn
 typedef void (*MouseCallback )(int event, int x, int y, int flags, void* param);
 
 //! assigns callback for mouse events
-CV_EXPORTS_W void setMouseCallback( const string& windowName, MouseCallback onMouse, void* param=0);
+CV_EXPORTS void setMouseCallback( const string& windowName, MouseCallback onMouse, void* param=0);
     
 CV_EXPORTS_W Mat imread( const string& filename, int flags=1 );
 CV_EXPORTS_W bool imwrite( const string& filename, const Mat& img,
@@ -131,7 +131,8 @@ public:
     
     CV_WRAP virtual bool grab();
     CV_WRAP virtual bool retrieve(CV_OUT Mat& image, int channel=0);
-    CV_WRAP_AS(read) virtual VideoCapture& operator >> (CV_OUT Mat& image);
+    virtual VideoCapture& operator >> (CV_OUT Mat& image);
+    CV_WRAP virtual bool read(CV_OUT Mat& image);
     
     CV_WRAP virtual bool set(int propId, double value);
     CV_WRAP virtual double get(int propId);
@@ -152,7 +153,8 @@ public:
     CV_WRAP virtual bool open(const string& filename, int fourcc, double fps,
                       Size frameSize, bool isColor=true);
     CV_WRAP virtual bool isOpened() const;
-    CV_WRAP_AS(write) virtual VideoWriter& operator << (const Mat& image);
+    virtual VideoWriter& operator << (const Mat& image);
+    CV_WRAP virtual void write(const Mat& image);
     
 protected:
     Ptr<CvVideoWriter> writer;
diff --git a/modules/highgui/src/cap.cpp b/modules/highgui/src/cap.cpp
index 1fff19294c..63e90528ff 100644
--- a/modules/highgui/src/cap.cpp
+++ b/modules/highgui/src/cap.cpp
@@ -408,6 +408,15 @@ bool VideoCapture::retrieve(Mat& image, int channel)
     }
     return true;
 }
+
+bool VideoCapture::read(Mat& image)
+{
+    if(!grab())
+        image.release();
+    else
+        retrieve(image);
+    return !image.empty();
+}
     
 VideoCapture& VideoCapture::operator >> (Mat& image)
 {
@@ -451,11 +460,16 @@ bool VideoWriter::isOpened() const
 {
     return !writer.empty();
 }    
-    
-VideoWriter& VideoWriter::operator << (const Mat& image)
+
+void VideoWriter::write(const Mat& image)
 {
     IplImage _img = image;
     cvWriteFrame(writer, &_img);
+}
+    
+VideoWriter& VideoWriter::operator << (const Mat& image)
+{
+    write(image);
     return *this;    
 }
 
diff --git a/modules/imgproc/include/opencv2/imgproc/imgproc.hpp b/modules/imgproc/include/opencv2/imgproc/imgproc.hpp
index 85c0bf8035..0d61a53633 100644
--- a/modules/imgproc/include/opencv2/imgproc/imgproc.hpp
+++ b/modules/imgproc/include/opencv2/imgproc/imgproc.hpp
@@ -459,23 +459,23 @@ CV_EXPORTS void cornerSubPix( const Mat& image, vector<Point2f>& corners,
                               TermCriteria criteria );
 
 //! finds the strong enough corners where the cornerMinEigenVal() or cornerHarris() report the local maxima
-CV_EXPORTS void goodFeaturesToTrack( const Mat& image, CV_OUT vector<Point2f>& corners,
+CV_EXPORTS_W void goodFeaturesToTrack( const Mat& image, CV_OUT vector<Point2f>& corners,
                                      int maxCorners, double qualityLevel, double minDistance,
                                      const Mat& mask=Mat(), int blockSize=3,
                                      bool useHarrisDetector=false, double k=0.04 );
 
 //! finds lines in the black-n-white image using the standard or pyramid Hough transform
-CV_EXPORTS void HoughLines( const Mat& image, CV_OUT vector<Vec2f>& lines,
+CV_EXPORTS_W void HoughLines( const Mat& image, CV_OUT vector<Vec2f>& lines,
                             double rho, double theta, int threshold,
                             double srn=0, double stn=0 );
 
 //! finds line segments in the black-n-white image using probabalistic Hough transform
-CV_EXPORTS void HoughLinesP( Mat& image, CV_OUT vector<Vec4i>& lines,
+CV_EXPORTS_W void HoughLinesP( Mat& image, CV_OUT vector<Vec4i>& lines,
                              double rho, double theta, int threshold,
                              double minLineLength=0, double maxLineGap=0 );
 
 //! finds circles in the grayscale image using 2+1 gradient Hough transform 
-CV_EXPORTS void HoughCircles( const Mat& image, CV_OUT vector<Vec3f>& circles,
+CV_EXPORTS_W void HoughCircles( const Mat& image, CV_OUT vector<Vec3f>& circles,
                               int method, double dp, double minDist,
                               double param1=100, double param2=100,
                               int minRadius=0, int maxRadius=0 );
@@ -716,13 +716,13 @@ enum { FLOODFILL_FIXED_RANGE = 1 << 16,
 
 //! fills the semi-uniform image region starting from the specified seed point
 CV_EXPORTS_W int floodFill( Mat& image,
-                          Point seedPoint, Scalar newVal, Rect* rect=0,
+                          Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
                           Scalar loDiff=Scalar(), Scalar upDiff=Scalar(),
                           int flags=4 );
 
 //! fills the semi-uniform image region and/or the mask starting from the specified seed point
 CV_EXPORTS_AS(floodFillMask) int floodFill( Mat& image, Mat& mask,
-                          Point seedPoint, Scalar newVal, Rect* rect=0,
+                          Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
                           Scalar loDiff=Scalar(), Scalar upDiff=Scalar(),
                           int flags=4 );
 
@@ -730,7 +730,7 @@ CV_EXPORTS_AS(floodFillMask) int floodFill( Mat& image, Mat& mask,
 CV_EXPORTS_W void cvtColor( const Mat& src, CV_OUT Mat& dst, int code, int dstCn=0 );
 
 //! raster image moments
-class CV_EXPORTS Moments
+class CV_EXPORTS_W_MAP Moments
 {
 public:
     //! the default constructor
@@ -744,11 +744,11 @@ public:
     operator CvMoments() const;
     
     //! spatial moments
-    double  m00, m10, m01, m20, m11, m02, m30, m21, m12, m03;
+    CV_PROP_RW double  m00, m10, m01, m20, m11, m02, m30, m21, m12, m03;
     //! central moments
-    double  mu20, mu11, mu02, mu30, mu21, mu12, mu03;
+    CV_PROP_RW double  mu20, mu11, mu02, mu30, mu21, mu12, mu03;
     //! central normalized moments
-    double  nu20, nu11, nu02, nu30, nu21, nu12, nu03;
+    CV_PROP_RW double  nu20, nu11, nu02, nu30, nu21, nu12, nu03;
 };
 
 //! computes moments of the rasterized shape or a vector of points
diff --git a/modules/ml/include/opencv2/ml/ml.hpp b/modules/ml/include/opencv2/ml/ml.hpp
index 66b9741f07..82141462df 100644
--- a/modules/ml/include/opencv2/ml/ml.hpp
+++ b/modules/ml/include/opencv2/ml/ml.hpp
@@ -188,7 +188,7 @@ CV_INLINE CvParamLattice cvDefaultParamLattice( void )
 #define CV_TRAIN_ERROR  0
 #define CV_TEST_ERROR   1
 
-class CV_EXPORTS_AS(StatModel) CvStatModel
+class CV_EXPORTS_W CvStatModel
 {
 public:
     CvStatModel();
@@ -217,7 +217,7 @@ protected:
 
 class CvMLData;
 
-struct CV_EXPORTS CvParamGrid
+struct CV_EXPORTS_W_MAP CvParamGrid
 {
     // SVM params type
     enum { SVM_C=0, SVM_GAMMA=1, SVM_P=2, SVM_NU=3, SVM_COEF=4, SVM_DEGREE=5 };
@@ -236,12 +236,12 @@ struct CV_EXPORTS CvParamGrid
     //CvParamGrid( int param_id );
     bool check() const;
 
-    double min_val;
-    double max_val;
-    double step;
+    CV_PROP_RW double min_val;
+    CV_PROP_RW double max_val;
+    CV_PROP_RW double step;
 };
 
-class CV_EXPORTS_AS(NormalBayesClassifier) CvNormalBayesClassifier : public CvStatModel
+class CV_EXPORTS_W CvNormalBayesClassifier : public CvStatModel
 {
 public:
     CV_WRAP CvNormalBayesClassifier();
@@ -262,7 +262,7 @@ public:
     CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
                        const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
                        bool update=false );
-    CV_WRAP virtual float predict( const cv::Mat& samples, cv::Mat* results=0 ) const;
+    CV_WRAP virtual float predict( const cv::Mat& samples, CV_OUT cv::Mat* results=0 ) const;
 #endif
     
     virtual void write( CvFileStorage* storage, const char* name ) const;
@@ -287,7 +287,7 @@ protected:
 \****************************************************************************************/
 
 // k Nearest Neighbors
-class CV_EXPORTS_AS(KNearest) CvKNearest : public CvStatModel
+class CV_EXPORTS_W CvKNearest : public CvStatModel
 {
 public:
 
@@ -312,9 +312,11 @@ public:
                        const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false,
                        int maxK=32, bool updateBase=false );    
     
-    CV_WRAP virtual float find_nearest( const cv::Mat& samples, int k, cv::Mat* results=0,
+    virtual float find_nearest( const cv::Mat& samples, int k, cv::Mat* results=0,
                                 const float** neighbors=0, cv::Mat* neighborResponses=0,
                                 cv::Mat* dist=0 ) const;
+    CV_WRAP virtual float find_nearest( const cv::Mat& samples, int k, CV_OUT cv::Mat& results,
+                                        CV_OUT cv::Mat& neighborResponses, CV_OUT cv::Mat& dists) const;
 #endif
     
     virtual void clear();
@@ -344,7 +346,7 @@ protected:
 \****************************************************************************************/
 
 // SVM training parameters
-struct CV_EXPORTS_AS_MAP CvSVMParams
+struct CV_EXPORTS_W_MAP CvSVMParams
 {
     CvSVMParams();
     CvSVMParams( int _svm_type, int _kernel_type,
@@ -352,17 +354,17 @@ struct CV_EXPORTS_AS_MAP CvSVMParams
                  double Cvalue, double _nu, double _p,
                  CvMat* _class_weights, CvTermCriteria _term_crit );
 
-    int         svm_type;
-    int         kernel_type;
-    double      degree; // for poly
-    double      gamma;  // for poly/rbf/sigmoid
-    double      coef0;  // for poly/sigmoid
+    CV_PROP_RW int         svm_type;
+    CV_PROP_RW int         kernel_type;
+    CV_PROP_RW double      degree; // for poly
+    CV_PROP_RW double      gamma;  // for poly/rbf/sigmoid
+    CV_PROP_RW double      coef0;  // for poly/sigmoid
 
-    double      C;  // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
-    double      nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
-    double      p; // for CV_SVM_EPS_SVR
+    CV_PROP_RW double      C;  // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
+    CV_PROP_RW double      nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
+    CV_PROP_RW double      p; // for CV_SVM_EPS_SVR
     CvMat*      class_weights; // for CV_SVM_C_SVC
-    CvTermCriteria term_crit; // termination criteria
+    CV_PROP_RW CvTermCriteria term_crit; // termination criteria
 };
 
 
@@ -507,7 +509,7 @@ struct CvSVMDecisionFunc
 
 
 // SVM model
-class CV_EXPORTS_AS(SVM) CvSVM : public CvStatModel
+class CV_EXPORTS_W CvSVM : public CvStatModel
 {
 public:
     // SVM type
@@ -554,18 +556,18 @@ public:
     CV_WRAP virtual bool train_auto( const cv::Mat& trainData, const cv::Mat& responses,
                             const cv::Mat& varIdx, const cv::Mat& sampleIdx, CvSVMParams params,
                             int k_fold = 10,
-                            CvParamGrid Cgrid      = get_default_grid(CvSVM::C),
-                            CvParamGrid gammaGrid  = get_default_grid(CvSVM::GAMMA),
-                            CvParamGrid pGrid      = get_default_grid(CvSVM::P),
-                            CvParamGrid nuGrid     = get_default_grid(CvSVM::NU),
-                            CvParamGrid coeffGrid  = get_default_grid(CvSVM::COEF),
-                            CvParamGrid degreeGrid = get_default_grid(CvSVM::DEGREE) );
+                            CvParamGrid Cgrid      = CvSVM::get_default_grid(CvSVM::C),
+                            CvParamGrid gammaGrid  = CvSVM::get_default_grid(CvSVM::GAMMA),
+                            CvParamGrid pGrid      = CvSVM::get_default_grid(CvSVM::P),
+                            CvParamGrid nuGrid     = CvSVM::get_default_grid(CvSVM::NU),
+                            CvParamGrid coeffGrid  = CvSVM::get_default_grid(CvSVM::COEF),
+                            CvParamGrid degreeGrid = CvSVM::get_default_grid(CvSVM::DEGREE) );
     CV_WRAP virtual float predict( const cv::Mat& sample, bool returnDFVal=false ) const;    
 #endif
     
     CV_WRAP virtual int get_support_vector_count() const;
     virtual const float* get_support_vector(int i) const;
-    CV_WRAP virtual CvSVMParams get_params() const { return params; };
+    virtual CvSVMParams get_params() const { return params; };
     CV_WRAP virtual void clear();
 
     static CvParamGrid get_default_grid( int param_id );
@@ -608,7 +610,7 @@ protected:
 *                              Expectation - Maximization                                *
 \****************************************************************************************/
 
-struct CV_EXPORTS_AS_MAP CvEMParams
+struct CV_EXPORTS_W_MAP CvEMParams
 {
     CvEMParams() : nclusters(10), cov_mat_type(1/*CvEM::COV_MAT_DIAGONAL*/),
         start_step(0/*CvEM::START_AUTO_STEP*/), probs(0), weights(0), means(0), covs(0)
@@ -624,18 +626,18 @@ struct CV_EXPORTS_AS_MAP CvEMParams
                 probs(_probs), weights(_weights), means(_means), covs(_covs), term_crit(_term_crit)
     {}
 
-    int nclusters;
-    int cov_mat_type;
-    int start_step;
+    CV_PROP_RW int nclusters;
+    CV_PROP_RW int cov_mat_type;
+    CV_PROP_RW int start_step;
     const CvMat* probs;
     const CvMat* weights;
     const CvMat* means;
     const CvMat** covs;
-    CvTermCriteria term_crit;
+    CV_PROP_RW CvTermCriteria term_crit;
 };
 
 
-class CV_EXPORTS_AS(EM) CvEM : public CvStatModel
+class CV_EXPORTS_W CvEM : public CvStatModel
 {
 public:
     // Type of covariation matrices
@@ -659,23 +661,33 @@ public:
 
 #ifndef SWIG
     CV_WRAP CvEM( const cv::Mat& samples, const cv::Mat& sampleIdx=cv::Mat(),
-         CvEMParams params=CvEMParams(), cv::Mat* labels=0 );
+                  CvEMParams params=CvEMParams() );
+    
+    CV_WRAP virtual bool train( const cv::Mat& samples,
+                                const cv::Mat& sampleIdx=cv::Mat(),
+                                CvEMParams params=CvEMParams(),
+                                CV_OUT cv::Mat* labels=0 );
     
-    CV_WRAP virtual bool train( const cv::Mat& samples, const cv::Mat& sampleIdx=cv::Mat(),
-                       CvEMParams params=CvEMParams(), cv::Mat* labels=0 );
+    CV_WRAP virtual float predict( const cv::Mat& sample, CV_OUT cv::Mat* probs=0 ) const;
     
-    CV_WRAP virtual float predict( const cv::Mat& sample, cv::Mat* probs ) const;
+    CV_WRAP int  getNClusters() const;
+    CV_WRAP cv::Mat  getMeans()     const;
+    CV_WRAP void getCovs(CV_OUT std::vector<cv::Mat>& covs)      const;
+    CV_WRAP cv::Mat  getWeights()   const;
+    CV_WRAP cv::Mat  getProbs()     const;
+    
+    CV_WRAP inline double getLikelihood() const { return log_likelihood;     };
 #endif
     
     CV_WRAP virtual void clear();
 
-    CV_WRAP int           get_nclusters() const;
-    CV_WRAP const CvMat*  get_means()     const;
-    CV_WRAP const CvMat** get_covs()      const;
-    CV_WRAP const CvMat*  get_weights()   const;
-    CV_WRAP const CvMat*  get_probs()     const;
+    int           get_nclusters() const;
+    const CvMat*  get_means()     const;
+    const CvMat** get_covs()      const;
+    const CvMat*  get_weights()   const;
+    const CvMat*  get_probs()     const;
 
-    CV_WRAP inline double         get_log_likelihood     () const { return log_likelihood;     };
+    inline double         get_log_likelihood     () const { return log_likelihood;     };
     
 //    inline const CvMat *  get_log_weight_div_det () const { return log_weight_div_det; };
 //    inline const CvMat *  get_inv_eigen_values   () const { return inv_eigen_values;   };
@@ -771,16 +783,16 @@ struct CvDTreeNode
 };
 
 
-struct CV_EXPORTS_AS_MAP CvDTreeParams
+struct CV_EXPORTS_W_MAP CvDTreeParams
 {
-    int   max_categories;
-    int   max_depth;
-    int   min_sample_count;
-    int   cv_folds;
-    bool  use_surrogates;
-    bool  use_1se_rule;
-    bool  truncate_pruned_tree;
-    float regression_accuracy;
+    CV_PROP_RW int   max_categories;
+    CV_PROP_RW int   max_depth;
+    CV_PROP_RW int   min_sample_count;
+    CV_PROP_RW int   cv_folds;
+    CV_PROP_RW bool  use_surrogates;
+    CV_PROP_RW bool  use_1se_rule;
+    CV_PROP_RW bool  truncate_pruned_tree;
+    CV_PROP_RW float regression_accuracy;
     const float* priors;
 
     CvDTreeParams() : max_categories(10), max_depth(INT_MAX), min_sample_count(10),
@@ -914,7 +926,7 @@ namespace cv
     struct ForestTreeBestSplitFinder;
 }
 
-class CV_EXPORTS_AS(DTree) CvDTree : public CvStatModel
+class CV_EXPORTS_W CvDTree : public CvStatModel
 {
 public:
     CV_WRAP CvDTree();
@@ -945,9 +957,10 @@ public:
     
     CV_WRAP virtual CvDTreeNode* predict( const cv::Mat& sample, const cv::Mat& missingDataMask=cv::Mat(),
                                   bool preprocessedInput=false ) const;
+    CV_WRAP virtual cv::Mat getVarImportance();
 #endif
     
-    CV_WRAP virtual const CvMat* get_var_importance();
+    virtual const CvMat* get_var_importance();
     CV_WRAP virtual void clear();
 
     virtual void read( CvFileStorage* fs, CvFileNode* node );
@@ -1047,12 +1060,12 @@ protected:
 };
 
 
-struct CV_EXPORTS_AS_MAP CvRTParams : public CvDTreeParams
+struct CV_EXPORTS_W_MAP CvRTParams : public CvDTreeParams
 {
     //Parameters for the forest
-    bool calc_var_importance; // true <=> RF processes variable importance
-    int nactive_vars;
-    CvTermCriteria term_crit;
+    CV_PROP_RW bool calc_var_importance; // true <=> RF processes variable importance
+    CV_PROP_RW int nactive_vars;
+    CV_PROP_RW CvTermCriteria term_crit;
 
     CvRTParams() : CvDTreeParams( 5, 10, 0, false, 10, 0, false, false, 0 ),
         calc_var_importance(false), nactive_vars(0)
@@ -1077,7 +1090,7 @@ struct CV_EXPORTS_AS_MAP CvRTParams : public CvDTreeParams
 };
 
 
-class CV_EXPORTS_AS(RTrees) CvRTrees : public CvStatModel
+class CV_EXPORTS_W CvRTrees : public CvStatModel
 {
 public:
     CV_WRAP CvRTrees();
@@ -1100,11 +1113,12 @@ public:
                        CvRTParams params=CvRTParams() );
     CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
     CV_WRAP virtual float predict_prob( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
+    CV_WRAP virtual cv::Mat getVarImportance();
 #endif
     
     CV_WRAP virtual void clear();
 
-    CV_WRAP virtual const CvMat* get_var_importance();
+    virtual const CvMat* get_var_importance();
     virtual float get_proximity( const CvMat* sample1, const CvMat* sample2,
         const CvMat* missing1 = 0, const CvMat* missing2 = 0 ) const;
     
@@ -1176,7 +1190,7 @@ protected:
     virtual void split_node_data( CvDTreeNode* n );
 };
 
-class CV_EXPORTS_AS(ERTrees) CvERTrees : public CvRTrees
+class CV_EXPORTS_W CvERTrees : public CvRTrees
 {
 public:
     CV_WRAP CvERTrees();
@@ -1203,12 +1217,12 @@ protected:
 *                                   Boosted tree classifier                              *
 \****************************************************************************************/
 
-struct CV_EXPORTS_AS_MAP CvBoostParams : public CvDTreeParams
+struct CV_EXPORTS_W_MAP CvBoostParams : public CvDTreeParams
 {
-    int boost_type;
-    int weak_count;
-    int split_criteria;
-    double weight_trim_rate;
+    CV_PROP_RW int boost_type;
+    CV_PROP_RW int weak_count;
+    CV_PROP_RW int split_criteria;
+    CV_PROP_RW double weight_trim_rate;
 
     CvBoostParams();
     CvBoostParams( int boost_type, int weak_count, double weight_trim_rate,
@@ -1265,7 +1279,7 @@ protected:
 };
 
 
-class CV_EXPORTS_AS(Boost) CvBoost : public CvStatModel
+class CV_EXPORTS_W CvBoost : public CvStatModel
 {
 public:
     // Boosting type
@@ -1313,8 +1327,8 @@ public:
                        bool update=false );
     
     CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
-                          cv::Mat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ,
-                          bool rawMode=false, bool returnSum=false ) const;
+                                   const cv::Range& slice=cv::Range::all(), bool rawMode=false,
+                                   bool returnSum=false ) const;
 #endif
     
     virtual float calc_error( CvMLData* _data, int type , std::vector<float> *resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
@@ -1382,12 +1396,12 @@ protected:
 //                       Each tree prediction is multiplied on shrinkage value.
 
 
-struct CV_EXPORTS_AS_MAP CvGBTreesParams : public CvDTreeParams
+struct CV_EXPORTS_W_MAP CvGBTreesParams : public CvDTreeParams
 {
-    int weak_count;
-    int loss_function_type;
-    float subsample_portion;
-    float shrinkage;
+    CV_PROP_RW int weak_count;
+    CV_PROP_RW int loss_function_type;
+    CV_PROP_RW float subsample_portion;
+    CV_PROP_RW float shrinkage;
 
     CvGBTreesParams();
     CvGBTreesParams( int loss_function_type, int weak_count, float shrinkage,
@@ -1442,7 +1456,7 @@ struct CV_EXPORTS_AS_MAP CvGBTreesParams : public CvDTreeParams
 
 
 
-class CV_EXPORTS_AS(GBTrees) CvGBTrees : public CvStatModel
+class CV_EXPORTS_W CvGBTrees : public CvStatModel
 {
 public:
 
@@ -1523,7 +1537,7 @@ public:
     // OUTPUT
     // RESULT
     */
-    CV_WRAP CvGBTrees( const CvMat* trainData, int tflag,
+    CvGBTrees( const CvMat* trainData, int tflag,
              const CvMat* responses, const CvMat* varIdx=0,
              const CvMat* sampleIdx=0, const CvMat* varType=0,
              const CvMat* missingDataMask=0,
@@ -1575,7 +1589,7 @@ public:
     // RESULT
     // Error state.
     */
-    CV_WRAP virtual bool train( const CvMat* trainData, int tflag,
+    virtual bool train( const CvMat* trainData, int tflag,
              const CvMat* responses, const CvMat* varIdx=0,
              const CvMat* sampleIdx=0, const CvMat* varType=0,
              const CvMat* missingDataMask=0,
@@ -1631,7 +1645,7 @@ public:
     // RESULT
     // Predicted value.
     */
-    CV_WRAP virtual float predict( const CvMat* sample, const CvMat* missing=0,
+    virtual float predict( const CvMat* sample, const CvMat* missing=0,
             CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ,
             int k=-1 ) const;
 
@@ -1702,7 +1716,25 @@ public:
     */
     virtual void read( CvFileStorage* fs, CvFileNode* node );
 
+    
+    // new-style C++ interface
+    CV_WRAP CvGBTrees( const cv::Mat& trainData, int tflag,
+              const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
+              const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
+              const cv::Mat& missingDataMask=cv::Mat(),
+              CvGBTreesParams params=CvGBTreesParams() );
+    
+    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
+                       const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
+                       const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
+                       const cv::Mat& missingDataMask=cv::Mat(),
+                       CvGBTreesParams params=CvGBTreesParams(),
+                       bool update=false );
 
+    CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
+                           const cv::Range& slice = cv::Range::all(),
+                           int k=-1 ) const;
+    
 protected:
 
     /*
@@ -1893,7 +1925,7 @@ protected:
 
 /////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////
 
-struct CV_EXPORTS_AS_MAP CvANN_MLP_TrainParams
+struct CV_EXPORTS_W_MAP CvANN_MLP_TrainParams
 {
     CvANN_MLP_TrainParams();
     CvANN_MLP_TrainParams( CvTermCriteria term_crit, int train_method,
@@ -1902,29 +1934,29 @@ struct CV_EXPORTS_AS_MAP CvANN_MLP_TrainParams
 
     enum { BACKPROP=0, RPROP=1 };
 
-    CvTermCriteria term_crit;
-    int train_method;
+    CV_PROP_RW CvTermCriteria term_crit;
+    CV_PROP_RW int train_method;
 
     // backpropagation parameters
-    double bp_dw_scale, bp_moment_scale;
+    CV_PROP_RW double bp_dw_scale, bp_moment_scale;
 
     // rprop parameters
-    double rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max;
+    CV_PROP_RW double rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max;
 };
 
 
-class CV_EXPORTS_AS(ANN_MLP) CvANN_MLP : public CvStatModel
+class CV_EXPORTS_W CvANN_MLP : public CvStatModel
 {
 public:
     CV_WRAP CvANN_MLP();
     CvANN_MLP( const CvMat* layerSizes,
-               int activateFunc=SIGMOID_SYM,
+               int activateFunc=CvANN_MLP::SIGMOID_SYM,
                double fparam1=0, double fparam2=0 );
 
     virtual ~CvANN_MLP();
 
     virtual void create( const CvMat* layerSizes,
-                         int activateFunc=SIGMOID_SYM,
+                         int activateFunc=CvANN_MLP::SIGMOID_SYM,
                          double fparam1=0, double fparam2=0 );
     
     virtual int train( const CvMat* inputs, const CvMat* outputs,
@@ -1935,11 +1967,11 @@ public:
     
 #ifndef SWIG
     CV_WRAP CvANN_MLP( const cv::Mat& layerSizes,
-              int activateFunc=SIGMOID_SYM,
+              int activateFunc=CvANN_MLP::SIGMOID_SYM,
               double fparam1=0, double fparam2=0 );
     
     CV_WRAP virtual void create( const cv::Mat& layerSizes,
-                        int activateFunc=SIGMOID_SYM,
+                        int activateFunc=CvANN_MLP::SIGMOID_SYM,
                         double fparam1=0, double fparam2=0 );    
     
     CV_WRAP virtual int train( const cv::Mat& inputs, const cv::Mat& outputs,
diff --git a/modules/ml/src/ann_mlp.cpp b/modules/ml/src/ann_mlp.cpp
index a98adec0d0..9638b4b36e 100644
--- a/modules/ml/src/ann_mlp.cpp
+++ b/modules/ml/src/ann_mlp.cpp
@@ -1501,6 +1501,17 @@ void CvANN_MLP::read( CvFileStorage* fs, CvFileNode* node )
 
 using namespace cv;
 
+CvANN_MLP::CvANN_MLP( const Mat& _layer_sizes, int _activ_func,
+                      double _f_param1, double _f_param2 )
+{
+    layer_sizes = wbuf = 0;
+    min_val = max_val = min_val1 = max_val1 = 0.;
+    weights = 0;
+    rng = cvRNG(-1);
+    default_model_name = "my_nn";
+    create( _layer_sizes, _activ_func, _f_param1, _f_param2 );
+}
+
 void CvANN_MLP::create( const Mat& _layer_sizes, int _activ_func,
                        double _f_param1, double _f_param2 )
 {
diff --git a/modules/ml/src/boost.cpp b/modules/ml/src/boost.cpp
index 675a6e4a3b..a8ca92aff3 100644
--- a/modules/ml/src/boost.cpp
+++ b/modules/ml/src/boost.cpp
@@ -2138,11 +2138,10 @@ CvBoost::train( const Mat& _train_data, int _tflag,
 
 float
 CvBoost::predict( const Mat& _sample, const Mat& _missing,
-                 Mat* weak_responses, CvSlice slice,
-                 bool raw_mode, bool return_sum ) const
+                  const Range& slice, bool raw_mode, bool return_sum ) const
 {
-    CvMat sample = _sample, mmask = _missing, wr, *pwr = 0;
-    if( weak_responses )
+    CvMat sample = _sample, mmask = _missing;
+    /*if( weak_responses )
     {
         int weak_count = cvSliceLength( slice, weak );
         if( weak_count >= weak->total )
@@ -2156,8 +2155,10 @@ CvBoost::predict( const Mat& _sample, const Mat& _missing,
               weak_responses->cols + weak_responses->rows - 1 == weak_count) )
             weak_responses->create(weak_count, 1, CV_32FC1);
         pwr = &(wr = *weak_responses);
-    }
-    return predict(&sample, &mmask, pwr, slice, raw_mode, return_sum);
+    }*/
+    return predict(&sample, _missing.empty() ? &mmask : 0, 0,
+                   slice == Range::all() ? CV_WHOLE_SEQ : cvSlice(slice.start, slice.end),
+                   raw_mode, return_sum);
 }
 
 /* End of file. */
diff --git a/modules/ml/src/em.cpp b/modules/ml/src/em.cpp
index e5fd09bd97..755cd3ab48 100644
--- a/modules/ml/src/em.cpp
+++ b/modules/ml/src/em.cpp
@@ -1109,14 +1109,13 @@ const CvMat* CvEM::get_probs() const
 
 using namespace cv;
 
-CvEM::CvEM( const Mat& samples, const Mat& sample_idx,
-           CvEMParams params, Mat* labels )
+CvEM::CvEM( const Mat& samples, const Mat& sample_idx, CvEMParams params )
 {
     means = weights = probs = inv_eigen_values = log_weight_div_det = 0;
     covs = cov_rotate_mats = 0;
     
     // just invoke the train() method
-    train(samples, sample_idx, params, labels);
+    train(samples, sample_idx, params);
 }    
 
 bool CvEM::train( const Mat& _samples, const Mat& _sample_idx,
@@ -1154,5 +1153,33 @@ CvEM::predict( const Mat& _sample, Mat* _probs ) const
     return predict(&sample, pprobs);
 }
 
+int CvEM::getNClusters() const
+{
+    return params.nclusters;
+}
+
+Mat CvEM::getMeans() const
+{
+    return Mat(means);
+}
+
+void CvEM::getCovs(vector<Mat>& _covs) const
+{
+    int i, n = params.nclusters;
+    _covs.resize(n);
+    for( i = 0; i < n; i++ )
+        _covs[i] = Mat(covs[i]);
+}
+
+Mat CvEM::getWeights() const
+{
+    return Mat(weights);
+}
+
+Mat CvEM::getProbs() const
+{
+    return Mat(probs);
+}
+
 
 /* End of file. */
diff --git a/modules/ml/src/gbt.cpp b/modules/ml/src/gbt.cpp
index 20bd3c24c6..9ee4ffd4a4 100644
--- a/modules/ml/src/gbt.cpp
+++ b/modules/ml/src/gbt.cpp
@@ -1040,3 +1040,49 @@ CvGBTrees::calc_error( CvMLData* _data, int type, std::vector<float> *resp )
     return err;
 
 }
+
+
+CvGBTrees::CvGBTrees( const cv::Mat& trainData, int tflag,
+          const cv::Mat& responses, const cv::Mat& varIdx,
+          const cv::Mat& sampleIdx, const cv::Mat& varType,
+          const cv::Mat& missingDataMask,
+          CvGBTreesParams params )
+{
+    data = 0;
+    weak = 0;
+    default_model_name = "my_boost_tree";
+    orig_response = sum_response = sum_response_tmp = 0;
+    weak_eval = subsample_train = subsample_test = 0;
+    missing = sample_idx = 0;
+    class_labels = 0;
+    class_count = 1;
+    delta = 0.0f;
+    
+    clear();
+    
+    train(trainData, tflag, responses, varIdx, sampleIdx, varType, missingDataMask, params, false);
+}
+
+bool CvGBTrees::train( const cv::Mat& trainData, int tflag,
+                   const cv::Mat& responses, const cv::Mat& varIdx,
+                   const cv::Mat& sampleIdx, const cv::Mat& varType,
+                   const cv::Mat& missingDataMask,
+                   CvGBTreesParams params,
+                   bool update )
+{
+    CvMat _trainData = trainData, _responses = responses;
+    CvMat _varIdx = varIdx, _sampleIdx = sampleIdx, _varType = _varType;
+    CvMat _missingDataMask = missingDataMask;
+    
+    return train(&_trainData, tflag, &_responses, varIdx.empty() ? &_varIdx : 0,
+          sampleIdx.empty() ? &_sampleIdx : 0, varType.empty() ? &_varType : 0,
+          missingDataMask.empty() ? &_missingDataMask : 0, params, update);
+}
+
+float CvGBTrees::predict( const cv::Mat& sample, const cv::Mat& missing,
+                          const cv::Range& slice, int k ) const
+{
+    CvMat _sample = sample, _missing = missing;
+    return predict(&_sample, missing.empty() ? &_missing : 0, 0,
+                   slice==cv::Range::all() ? CV_WHOLE_SEQ : cvSlice(slice.start, slice.end), k);
+}
diff --git a/modules/ml/src/knearest.cpp b/modules/ml/src/knearest.cpp
index a7750468ae..e930c3fe54 100644
--- a/modules/ml/src/knearest.cpp
+++ b/modules/ml/src/knearest.cpp
@@ -452,5 +452,12 @@ float CvKNearest::find_nearest( const Mat& _samples, int k, Mat* _results,
     return find_nearest(&s, k, presults, _neighbors, pnresponses, pdist );
 }
 
+
+float CvKNearest::find_nearest( const cv::Mat& samples, int k, CV_OUT cv::Mat& results,
+                                CV_OUT cv::Mat& neighborResponses, CV_OUT cv::Mat& dists) const
+{
+    return find_nearest(samples, k, &results, 0, &neighborResponses, &dists);
+}
+
 /* End of file */
 
diff --git a/modules/ml/src/nbayes.cpp b/modules/ml/src/nbayes.cpp
index cb5c30fe6a..5b636bacaa 100644
--- a/modules/ml/src/nbayes.cpp
+++ b/modules/ml/src/nbayes.cpp
@@ -567,6 +567,26 @@ void CvNormalBayesClassifier::read( CvFileStorage* fs, CvFileNode* root_node )
 
 using namespace cv;
 
+CvNormalBayesClassifier::CvNormalBayesClassifier( const Mat& _train_data, const Mat& _responses,
+                                    const Mat& _var_idx, const Mat& _sample_idx )
+{
+    var_count = var_all = 0;
+    var_idx = 0;
+    cls_labels = 0;
+    count = 0;
+    sum = 0;
+    productsum = 0;
+    avg = 0;
+    inv_eigen_values = 0;
+    cov_rotate_mats = 0;
+    c = 0;
+    default_model_name = "my_nb";
+    
+    CvMat tdata = _train_data, responses = _responses, vidx = _var_idx, sidx = _sample_idx;
+    train(&tdata, &responses, vidx.data.ptr ? &vidx : 0,
+                 sidx.data.ptr ? &sidx : 0);
+}
+
 bool CvNormalBayesClassifier::train( const Mat& _train_data, const Mat& _responses,
                                     const Mat& _var_idx, const Mat& _sample_idx, bool update )
 {
diff --git a/modules/ml/src/rtrees.cpp b/modules/ml/src/rtrees.cpp
index f2331275a4..1cff51cd69 100644
--- a/modules/ml/src/rtrees.cpp
+++ b/modules/ml/src/rtrees.cpp
@@ -837,5 +837,9 @@ float CvRTrees::predict_prob( const Mat& _sample, const Mat& _missing) const
     return predict_prob(&sample, mmask.data.ptr ? &mmask : 0);
 }
 
+Mat CvRTrees::getVarImportance()
+{
+    return Mat(get_var_importance());
+}
 
 // End of file.
diff --git a/modules/ml/src/svm.cpp b/modules/ml/src/svm.cpp
index 8c32655f16..0761e7ad9d 100644
--- a/modules/ml/src/svm.cpp
+++ b/modules/ml/src/svm.cpp
@@ -1985,6 +1985,21 @@ float CvSVM::predict( const CvMat* sample, bool returnDFVal ) const
 }
 
 
+CvSVM::CvSVM( const Mat& _train_data, const Mat& _responses,
+              const Mat& _var_idx, const Mat& _sample_idx, CvSVMParams _params )
+{
+    decision_func = 0;
+    class_labels = 0;
+    class_weights = 0;
+    storage = 0;
+    var_idx = 0;
+    kernel = 0;
+    solver = 0;
+    default_model_name = "my_svm";
+    
+    train( _train_data, _responses, _var_idx, _sample_idx, _params );
+}
+
 bool CvSVM::train( const Mat& _train_data, const Mat& _responses,
                   const Mat& _var_idx, const Mat& _sample_idx, CvSVMParams _params )
 {
diff --git a/modules/ml/src/tree.cpp b/modules/ml/src/tree.cpp
index 03344a48f0..04a71c2db0 100644
--- a/modules/ml/src/tree.cpp
+++ b/modules/ml/src/tree.cpp
@@ -4074,4 +4074,9 @@ void CvDTree::read( CvFileStorage* fs, CvFileNode* node, CvDTreeTrainData* _data
     __END__;
 }
 
+Mat CvDTree::getVarImportance()
+{
+    return Mat(get_var_importance());
+}
+
 /* End of file. */
diff --git a/modules/objdetect/include/opencv2/objdetect/objdetect.hpp b/modules/objdetect/include/opencv2/objdetect/objdetect.hpp
index 6fbb51892f..e4f1f426a1 100644
--- a/modules/objdetect/include/opencv2/objdetect/objdetect.hpp
+++ b/modules/objdetect/include/opencv2/objdetect/objdetect.hpp
@@ -363,12 +363,13 @@ public:
     
     CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
     	cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
-    	histogramNormType(L2Hys), L2HysThreshold(0.2), gammaCorrection(true)
+        histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true)
     {}
     
     CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
                   Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
-                  int _histogramNormType=L2Hys, double _L2HysThreshold=0.2, bool _gammaCorrection=false)
+                  int _histogramNormType=HOGDescriptor::L2Hys,
+                  double _L2HysThreshold=0.2, bool _gammaCorrection=false)
     : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
     nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
     histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
diff --git a/modules/python/CMakeLists.txt b/modules/python/CMakeLists.txt
index acf2acb6c7..b537123dc2 100644
--- a/modules/python/CMakeLists.txt
+++ b/modules/python/CMakeLists.txt
@@ -18,14 +18,33 @@ include_directories(
     "${CMAKE_SOURCE_DIR}/modules/legacy/include"
     "${CMAKE_SOURCE_DIR}/modules/contrib/include"
     )
-    
+
 include_directories(${CMAKE_CURRENT_BINARY_DIR})
 
+set(opencv_hdrs "${CMAKE_SOURCE_DIR}/modules/core/include/opencv2/core/core.hpp"
+    "${CMAKE_SOURCE_DIR}/modules/imgproc/include/opencv2/imgproc/imgproc.hpp"
+    "${CMAKE_SOURCE_DIR}/modules/video/include/opencv2/video/background_segm.hpp"
+    "${CMAKE_SOURCE_DIR}/modules/video/include/opencv2/video/tracking.hpp"
+    "${CMAKE_SOURCE_DIR}/modules/highgui/include/opencv2/highgui/highgui.hpp"
+    "${CMAKE_SOURCE_DIR}/modules/ml/include/opencv2/ml/ml.hpp"
+    "${CMAKE_SOURCE_DIR}/modules/features2d/include/opencv2/features2d/features2d.hpp"
+    "${CMAKE_SOURCE_DIR}/modules/calib3d/include/opencv2/calib3d/calib3d.hpp"
+    "${CMAKE_SOURCE_DIR}/modules/objdetect/include/opencv2/objdetect/objdetect.hpp"
+    "${CMAKE_SOURCE_DIR}/modules/python/opencv_extra_api.hpp")
+
+set(generated_hdrs
+        "${CMAKE_CURRENT_BINARY_DIR}/pyopencv_generated_funcs.h"
+        "${CMAKE_CURRENT_BINARY_DIR}/pyopencv_generated_func_tab.h"
+        "${CMAKE_CURRENT_BINARY_DIR}/pyopencv_generated_types.h"
+        "${CMAKE_CURRENT_BINARY_DIR}/pyopencv_generated_type_reg.h"
+        "${CMAKE_CURRENT_BINARY_DIR}/pyopencv_generated_const_reg.h")
+
 if(MSVC)
     set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /W3")
 endif()
 
 file(GLOB lib_srcs "*.cpp")
+file(GLOB lib_hdrs "*.h")
 
 add_custom_command(
    OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/generated0.i
@@ -35,8 +54,16 @@ add_custom_command(
    DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/gen.py
    )
 
+add_custom_command(
+  OUTPUT ${generated_hdrs}
+  COMMAND ${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/gen2.py ${CMAKE_CURRENT_BINARY_DIR} ${opencv_hdrs}
+  DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/gen2.py
+  DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/hdr_parser.py
+  DEPENDS ${opencv_hdrs}
+  )
+
 set(the_target "opencv_python")
-add_library(${the_target} ${lib_srcs} ${lib_hdrs} ${lib_int_hdrs} ${CMAKE_CURRENT_BINARY_DIR}/generated0.i)
+add_library(${the_target} ${lib_srcs} ${lib_hdrs} ${lib_int_hdrs} ${CMAKE_CURRENT_BINARY_DIR}/generated0.i opencv2x.h opencv_extra_api.hpp ${generated_hdrs})
 target_link_libraries(${the_target} ${PYTHON_LIBRARIES} opencv_core opencv_imgproc opencv_video opencv_ml opencv_features2d opencv_highgui opencv_calib3d opencv_objdetect opencv_legacy opencv_contrib)
     
 set_target_properties(${the_target} PROPERTIES PREFIX "")
diff --git a/modules/python/cv.cpp b/modules/python/cv.cpp
index 8243d535f7..23a56a1389 100644
--- a/modules/python/cv.cpp
+++ b/modules/python/cv.cpp
@@ -3848,20 +3848,13 @@ static int zero = 0;
 #include "generated0.i"
 
 #include "opencv2x.h"
+#include "pyopencv_generated_types.h"
+#include "pyopencv_generated_funcs.h"
 
 static PyMethodDef methods[] = {
 
 #if PYTHON_USE_NUMPY
     {"fromarray", (PyCFunction)pycvfromarray, METH_KEYWORDS, "fromarray(array) -> cvmatnd"},
-  
-    {"absdiff", (PyCFunction)cv::pyopencv_absdiff, METH_KEYWORDS, "absdiff(src1,src2,dst=None) -> dst"},    
-    {"add", (PyCFunction)cv::pyopencv_add, METH_KEYWORDS, "add(src1,src2,dst=None,mask=None) -> dst"},
-    {"bitwise_and", (PyCFunction)cv::pyopencv_and, METH_KEYWORDS, "bitwise_and(src1,src2,dst=None,mask=None) -> dst"},
-    {"bitwise_or", (PyCFunction)cv::pyopencv_or, METH_KEYWORDS, "bitwise_or(src1,src2,dst=None,mask=None) -> dst"},
-    {"bitwise_xor", (PyCFunction)cv::pyopencv_xor, METH_KEYWORDS, "bitwise_xor(src1,src2,dst=None,mask=None) -> dst"},
-    {"max", (PyCFunction)cv::pyopencv_max, METH_KEYWORDS, "max(src1,src2,dst=None) -> dst"},
-    {"min", (PyCFunction)cv::pyopencv_min, METH_KEYWORDS, "min(src1,src2,dst=None) -> dst"},
-    {"subtract", (PyCFunction)cv::pyopencv_subtract, METH_KEYWORDS, "subtract(src1,src2,dst=None,mask=None) -> dst"},
 #endif
 
   //{"CalcOpticalFlowFarneback", (PyCFunction)pycvCalcOpticalFlowFarneback, METH_KEYWORDS, "CalcOpticalFlowFarneback(prev, next, flow, pyr_scale=0.5, levels=3, win_size=15, iterations=3, poly_n=7, poly_sigma=1.5, flags=0) -> None"},
@@ -3872,6 +3865,7 @@ static PyMethodDef methods[] = {
   {"temp_test", temp_test, METH_VARARGS},
 
 #include "generated1.i"
+#include "pyopencv_generated_func_tab.h"
 
   {NULL, NULL},
 };
@@ -3887,7 +3881,8 @@ static int to_ok(PyTypeObject *to)
   return (PyType_Ready(to) == 0);
 }
 
-#define MKTYPE(NAME)  do { NAME##_specials(); if (!to_ok(&NAME##_Type)) return; } while (0)
+#define MKTYPE(NAME)  NAME##_specials(); if (!to_ok(&NAME##_Type)) return
+#define MKTYPE2(NAME) pyopencv_##NAME##_specials(); if (!to_ok(&pyopencv_##NAME##_Type)) return
 
 using namespace cv;
 
@@ -3923,6 +3918,7 @@ void initcv()
   MKTYPE(memtrack);
 
 #include "generated4.i"
+#include "pyopencv_generated_type_reg.h"
 
   m = Py_InitModule(MODULESTR"", methods);
   d = PyModule_GetDict(m);
@@ -3944,6 +3940,7 @@ void initcv()
 
 #define PUBLISH(I) PyDict_SetItemString(d, #I, PyInt_FromLong(I))
 #define PUBLISHU(I) PyDict_SetItemString(d, #I, PyLong_FromUnsignedLong(I))
+#define PUBLISH2(I, value) PyDict_SetItemString(d, #I, PyLong_FromLong(value))
 
   PUBLISHU(IPL_DEPTH_8U);
   PUBLISHU(IPL_DEPTH_8S);
@@ -4018,6 +4015,7 @@ void initcv()
   PUBLISH(GC_EVAL);
 
 #include "generated2.i"
+#include "pyopencv_generated_const_reg.h"
 
 #if 0
   {
diff --git a/modules/python/gen2.py b/modules/python/gen2.py
index f17c64d897..22e4adef8c 100644
--- a/modules/python/gen2.py
+++ b/modules/python/gen2.py
@@ -1,13 +1,13 @@
-import opencv_parser, sys, re, cStringIO
+import hdr_parser, sys, re, os, cStringIO
 from string import Template
 
 gen_template_check_self = Template("""    if(!PyObject_TypeCheck(self, &pyopencv_${name}_Type))
-        return failmsg("Incorrect type of self (must be '${name}' or its derivative)");
-    $cname* _self_ = ((pyopencv_${name}_t*)self)->v;
+        return failmsgp("Incorrect type of self (must be '${name}' or its derivative)");
+    $cname* _self_ = ${amp}((pyopencv_${name}_t*)self)->v;
 """)
 
 gen_template_call_constructor = Template("""self = PyObject_NEW(pyopencv_${name}_t, &pyopencv_${name}_Type);
-        if(self) ERRWRAP2(self->v = new $cname""")
+        if(self) ERRWRAP2(self->v = $op$cname""")
 
 gen_template_parse_args = Template("""const char* keywords[] = { $kw_list, NULL };
     if( PyArg_ParseTupleAndKeywords(args, kw, "$fmtspec", (char**)keywords, $parse_arglist)$code_cvt )""")
@@ -16,37 +16,88 @@ gen_template_func_body = Template("""$code_decl
     $code_parse
     {
         $code_fcall;
-        return $code_retval;
+        $code_ret;
     }
 """)
 
-gen_template_set_prop_from_map = Template("""
-    if( PyMapping_HasKeyString(src, "$propname") )
+gen_template_simple_type_decl = Template("""
+struct pyopencv_${name}_t
+{
+    PyObject_HEAD
+    ${cname} v;
+};
+
+static PyTypeObject pyopencv_${name}_Type =
+{
+    PyObject_HEAD_INIT(&PyType_Type)
+    0,
+    MODULESTR".$wname",
+    sizeof(pyopencv_${name}_t),
+};
+
+static void pyopencv_${name}_dealloc(PyObject* self)
+{
+    PyObject_Del(self);
+}
+
+static PyObject* pyopencv_from(const ${cname}& r)
+{
+    pyopencv_${name}_t *m = PyObject_NEW(pyopencv_${name}_t, &pyopencv_${name}_Type);
+    m->v = r;
+    return (PyObject*)m;
+}
+
+static bool pyopencv_to(PyObject* src, ${cname}& dst, const char* name="<unknown>")
+{
+    if( src == NULL or src == Py_None )
+        return true;
+    if(!PyObject_TypeCheck(src, &pyopencv_${name}_Type))
     {
-        tmp = PyMapping_GetItemString(src, "$propname");
-        ok = tmp && pyopencv_to_$proptype(tmp, dst.$propname);
-        Py_DECREF(tmp);
-        if(!ok) return false;
-    }""")
+        failmsg("Expected ${cname} for argument '%s'", name);
+        return false;
+    }
+    dst = ((pyopencv_${name}_t*)src)->v;
+    return true;
+}
+""")
 
-gen_template_decl_type = Template("""
-/*
-  $cname is the OpenCV C struct
-  pyopencv_${name}_t is the Python object
-*/
 
+gen_template_type_decl = Template("""
 struct pyopencv_${name}_t
 {
     PyObject_HEAD
     ${cname}* v;
 };
 
+static PyTypeObject pyopencv_${name}_Type =
+{
+    PyObject_HEAD_INIT(&PyType_Type)
+    0,
+    MODULESTR".$wname",
+    sizeof(pyopencv_${name}_t),
+};
+
 static void pyopencv_${name}_dealloc(PyObject* self)
 {
     delete ((pyopencv_${name}_t*)self)->v;
     PyObject_Del(self);
 }
+""")
+
+gen_template_map_type_cvt = Template("""
+static bool pyopencv_to(PyObject* src, ${cname}& dst, const char* name="<unknown>");
+""")
 
+gen_template_set_prop_from_map = Template("""
+    if( PyMapping_HasKeyString(src, (char*)"$propname") )
+    {
+        tmp = PyMapping_GetItemString(src, (char*)"$propname");
+        ok = tmp && pyopencv_to(tmp, dst.$propname);
+        Py_DECREF(tmp);
+        if(!ok) return false;
+    }""")
+
+gen_template_type_impl = Template("""
 static PyObject* pyopencv_${name}_repr(PyObject* self)
 {
     char str[1000];
@@ -69,14 +120,6 @@ ${methods_inits}
     {NULL,          NULL}
 };
 
-static PyTypeObject pyopencv_${name}_Type =
-{
-    PyObject_HEAD_INIT(&PyType_Type)
-    0,
-    MODULESTR".$wname",
-    sizeof(pyopencv_${name}_t),
-};
-
 static void pyopencv_${name}_specials(void)
 {
     pyopencv_${name}_Type.tp_base = ${baseptr};
@@ -85,32 +128,13 @@ static void pyopencv_${name}_specials(void)
     pyopencv_${name}_Type.tp_getset = pyopencv_${name}_getseters;
     pyopencv_${name}_Type.tp_methods = pyopencv_${name}_methods;${extra_specials}
 }
-
-static PyObject* pyopencv_from_${name}_ptr(<$cname>* r)
-{
-    pyopencv_${name}_t *m = PyObject_NEW(pyopencv_${name}_t, &pyopencv_${name}_Type);
-    m->v = r;
-    return (PyObject*)m;
-}
-
-static bool pyopencv_to_${name}_ptr(PyObject* src, <$cname>*& dst, const char* name="")
-{
-    if( src == NULL or src == Py_None )
-    {
-        dst = 0;
-        return true;
-    }
-    if(!PyObject_TypeCheck(src, &pyopencv_${name}_Type))
-        return failmsg("Expected ${cname} for argument '%s'", name);
-    dst = ((pyopencv_${name}_t*)src)->v;
-    return true;
-}
 """)
 
+
 gen_template_get_prop = Template("""
 static PyObject* pyopencv_${name}_get_${member}(pyopencv_${name}_t* p, void *closure)
 {
-    return pyopencv_from_${membertype}(p->v->${member});
+    return pyopencv_from(p->v${access}${member});
 }
 """)
 
@@ -122,7 +146,7 @@ static int pyopencv_${name}_set_${member}(pyopencv_${name}_t* p, PyObject *value
         PyErr_SetString(PyExc_TypeError, "Cannot delete the ${member} attribute");
         return -1;
     }
-    return pyopencv_to_${membertype}(value, p->v->${member}) ? 0 : -1;
+    return pyopencv_to(value, p->v${access}${member}) ? 0 : -1;
 }
 """)
 
@@ -133,16 +157,16 @@ gen_template_rw_prop_init = Template("""
     {(char*)"${member}", (getter)pyopencv_${name}_get_${member}, (setter)pyopencv_${name}_set_${member}, (char*)"${member}", NULL},""")
 
 simple_argtype_mapping = {
-    "bool": ("bool", "b", "pyopencv_from_bool", "0"),
-    "int": ("int", "i", "pyopencv_from_int", "0"),
-    "float": ("float", "f", "pyopencv_from_float", "0.f"),
-    "double": ("double", "d", "pyopencv_from_double", "0"),
-    "c_string": ("char*", "s", "pyopencv_from_c_string", '""')
+    "bool": ("bool", "b", "0"),
+    "int": ("int", "i", "0"),
+    "float": ("float", "f", "0.f"),
+    "double": ("double", "d", "0"),
+    "c_string": ("char*", "s", '""')
 }
 
 class ClassProp(object):
     def __init__(self, decl):
-        self.tp = decl[0]
+        self.tp = decl[0].replace("*", "_ptr")
         self.name = decl[1]
         self.readonly = True
         if "/RW" in decl[3]:
@@ -153,6 +177,7 @@ class ClassInfo(object):
         self.cname = name.replace(".", "::")
         self.name = self.wname = re.sub(r"^cv\.", "", name)
         self.ismap = False
+        self.issimple = False
         self.methods = {}
         self.props = []
         self.consts = {}
@@ -170,52 +195,61 @@ class ClassInfo(object):
                     customname = True
                 elif m == "/Map":
                     self.ismap = True
+                elif m == "/Simple":
+                    self.issimple = True
             self.props = [ClassProp(p) for p in decl[3]]
         
         if not customname and self.wname.startswith("Cv"):
             self.wname = self.wname[2:]
         
-    def gen_map_code(self):
-        code = "static bool pyopencv_to_%s(PyObject* src, %s& dst)\n{\n    PyObject* tmp;\n    bool ok;\n" % (self.name, self.cname)
+    def gen_map_code(self, all_classes):
+        code = "static bool pyopencv_to(PyObject* src, %s& dst, const char* name)\n{\n    PyObject* tmp;\n    bool ok;\n" % (self.cname)
         code += "".join([gen_template_set_prop_from_map.substitute(propname=p.name,proptype=p.tp) for p in self.props])
-        code += "\n    return true;\n}"
+        if self.bases:
+            code += "\n    return pyopencv_to(src, (%s&)dst, name);\n}\n" % all_classes[self.bases[0]].cname
+        else:
+            code += "\n    return true;\n}\n"
         return code
         
     def gen_code(self, all_classes):
         if self.ismap:
-            return self.gen_map_code()
+            return self.gen_map_code(all_classes)
         
-        getset_code = ""
-        getset_inits = ""
+        getset_code = cStringIO.StringIO()
+        getset_inits = cStringIO.StringIO()
         
         sorted_props = [(p.name, p) for p in self.props]
         sorted_props.sort()
         
+        access_op = "->"
+        if self.issimple:
+            access_op = "."
+        
         for pname, p in sorted_props:
-            getset_code += gen_template_get_prop.substitute(name=self.name, member=pname, membertype=p.tp)
+            getset_code.write(gen_template_get_prop.substitute(name=self.name, member=pname, membertype=p.tp, access=access_op))
             if p.readonly:
-                getset_inits += gen_template_prop_init.substitute(name=self.name, member=pname)
+                getset_inits.write(gen_template_prop_init.substitute(name=self.name, member=pname))
             else:
-                getset_code += gen_template_set_prop.substitute(name=self.name, member=pname, membertype=p.tp)
-                getset_inits += gen_template_rw_prop_init.substitute(name=self.name, member=pname)
+                getset_code.write(gen_template_set_prop.substitute(name=self.name, member=pname, membertype=p.tp, access=access_op))
+                getset_inits.write(gen_template_rw_prop_init.substitute(name=self.name, member=pname))
                 
-        methods_code = ""
-        methods_inits = ""
+        methods_code = cStringIO.StringIO()
+        methods_inits = cStringIO.StringIO()
         
         sorted_methods = self.methods.items()
         sorted_methods.sort()
         
         for mname, m in sorted_methods:
-            methods_code += m.gen_code(all_classes)
-            methods_inits += m.get_tab_entry()
+            methods_code.write(m.gen_code(all_classes))
+            methods_inits.write(m.get_tab_entry())
         
         baseptr = "NULL"
         if self.bases and all_classes.has_key(self.bases[0]):
             baseptr = "&pyopencv_" + all_classes[self.bases[0]].name + "_Type"
         
-        code = gen_template_decl_type.substitute(name=self.name, wname=self.wname, cname=self.cname,
-            getset_code=getset_code, getset_inits=getset_inits,
-            methods_code=methods_code, methods_inits=methods_inits,
+        code = gen_template_type_impl.substitute(name=self.name, wname=self.wname, cname=self.cname,
+            getset_code=getset_code.getvalue(), getset_inits=getset_inits.getvalue(),
+            methods_code=methods_code.getvalue(), methods_inits=methods_inits.getvalue(),
             baseptr=baseptr, extra_specials="")
         
         return code
@@ -258,13 +292,16 @@ class ArgInfo(object):
         self.py_outputarg = False
         
     def isbig(self):
-        return self.tp == "Mat" or self.tp.startswith("vector")
+        return self.tp == "Mat" or self.tp == "vector_Mat"# or self.tp.startswith("vector")
 
 
 class FuncVariant(object):
-    def __init__(self, name, decl, isconstructor):
-        self.name = name
+    def __init__(self, classname, name, decl, isconstructor):
+        self.classname = classname
+        self.name = self.wname = name
         self.isconstructor = isconstructor
+        if self.isconstructor and self.wname.startswith("Cv"):
+            self.wname = self.wname[2:]
         self.rettype = decl[1]
         if self.rettype == "void":
             self.rettype = ""
@@ -303,7 +340,7 @@ class FuncVariant(object):
         # the list of output parameters. Also includes input/output parameters.
         outlist = []
         
-        firstoptarg = 0
+        firstoptarg = 1000000
         argno = -1
         for a in self.args:
             argno += 1
@@ -317,8 +354,8 @@ class FuncVariant(object):
                 continue
             if not a.defval:
                 arglist.append((a.name, argno))
-                firstoptarg = argno+1
             else:
+                firstoptarg = min(firstoptarg, len(arglist))
                 # if there are some array output parameters before the first default parameter, they
                 # are added as optional parameters before the first optional parameter
                 if outarr_list:
@@ -327,7 +364,10 @@ class FuncVariant(object):
                 arglist.append((a.name, argno))
                 
         if outarr_list:
+            firstoptarg = min(firstoptarg, len(arglist))
             arglist += outarr_list
+        firstoptarg = min(firstoptarg, len(arglist))
+        
         noptargs = len(arglist) - firstoptarg
         argnamelist = [aname for aname, argno in arglist]
         argstr = ", ".join(argnamelist[:firstoptarg])
@@ -338,13 +378,17 @@ class FuncVariant(object):
         elif self.isconstructor:
             assert outlist == []
             outlist = [("self", -1)]
-        if outlist:
+        if self.isconstructor:
+            classname = self.classname
+            if classname.startswith("Cv"):
+                classname=classname[2:]
+            outstr = "<%s object>" % (classname,)
+        elif outlist:
             outstr = ", ".join([o[0] for o in outlist])
-        elif self.isconstructor:
-            outstr = self.classname + " object"
         else:
             outstr = "None"
-        self.py_docstring = "%s(%s) -> %s" % (self.name, argstr, outstr)
+            
+        self.py_docstring = "%s(%s) -> %s" % (self.wname, argstr, outstr)
         self.py_noptargs = noptargs
         self.py_arglist = arglist
         for aname, argno in arglist:
@@ -364,14 +408,17 @@ class FuncInfo(object):
         self.variants = []
     
     def add_variant(self, decl):
-        self.variants.append(FuncVariant(self.name, decl, self.isconstructor))
+        self.variants.append(FuncVariant(self.classname, self.name, decl, self.isconstructor))
         
     def get_wrapper_name(self):
+        name = self.name
         if self.classname:
-            cn = self.classname + "_"
+            classname = self.classname + "_"
+            if "[" in name:
+                name = "getelem"
         else:
-            cn = ""
-        return "pyopencv_" + cn + self.name
+            classname = ""
+        return "pyopencv_" + classname + name
     
     def get_wrapper_prototype(self):
         full_fname = self.get_wrapper_name()
@@ -395,11 +442,11 @@ class FuncInfo(object):
         # Instead of ClassName(args ...) -> object or ClassName() -> object
         # we write ClassName([args ...]) -> object
         if have_empty_constructor and len(self.variants) == 2:
-            idx = self.variants[1].arglist != []
+            idx = self.variants[1].py_arglist != []
             docstring_list = ["[" + self.variants[idx].py_docstring + "]"]
-                        
+            
         return Template('    {"$py_funcname", (PyCFunction)$wrap_funcname, METH_KEYWORDS, "$py_docstring"},\n'
-                        ).substitute(py_funcname = self.name, wrap_funcname=self.get_wrapper_name(),
+                        ).substitute(py_funcname = self.variants[0].wname, wrap_funcname=self.get_wrapper_name(),
                                      py_docstring = "  or  ".join(docstring_list))
         
     def gen_code(self, all_classes):
@@ -414,7 +461,10 @@ class FuncInfo(object):
         if self.classname:
             selfinfo = all_classes[self.classname]
             if not self.isconstructor:
-                code += gen_template_check_self.substitute(name=selfinfo.name, cname=selfinfo.cname)
+                amp = ""
+                if selfinfo.issimple:
+                    amp = "&"
+                code += gen_template_check_self.substitute(name=selfinfo.name, cname=selfinfo.cname, amp=amp)
                 fullname = selfinfo.wname + "." + fullname
 
         all_code_variants = []
@@ -427,7 +477,10 @@ class FuncInfo(object):
 
             if self.isconstructor:
                 code_decl += "    pyopencv_%s_t* self = 0;\n" % selfinfo.name
-                code_fcall = gen_template_call_constructor.substitute(name=selfinfo.name, cname=selfinfo.cname)
+                op = "new "
+                if selfinfo.issimple:
+                    op = ""
+                code_fcall = gen_template_call_constructor.substitute(name=selfinfo.name, cname=selfinfo.cname, op=op)
             else:
                 code_fcall = "ERRWRAP2( "
                 if v.rettype:
@@ -459,22 +512,24 @@ class FuncInfo(object):
                     print "Error: type with star: a.tp=%s, tp=%s, tp1=%s" % (a.tp, tp, tp1)
                     sys.exit(-1)
 
-                amapping = simple_argtype_mapping.get(tp, (tp, "O", "pyopencv_from_" + tp1, defval0))
+                amapping = simple_argtype_mapping.get(tp, (tp, "O", defval0))
                 all_cargs.append(amapping)
                 if a.py_inputarg:
                     if amapping[1] == "O":
                         code_decl += "    PyObject* pyobj_%s = NULL;\n" % (a.name,)
                         parse_arglist.append("pyobj_" + a.name)
-                        code_cvt_list.append("pyopencv_to_%s(pyobj_%s, %s)" % (tp1, a.name, a.name))
+                        code_cvt_list.append("pyopencv_to(pyobj_%s, %s)" % (a.name, a.name))
                     else:
                         parse_arglist.append(a.name)
 
                 defval = a.defval
                 if not defval:
-                    defval = amapping[3]
+                    defval = amapping[2]
                 # "tp arg = tp();" is equivalent to "tp arg;" in the case of complex types
                 if defval == tp + "()" and amapping[1] == "O":
                     defval = ""
+                if a.outputarg and not a.inputarg:
+                    defval = ""
                 if defval:
                     code_decl += "    %s %s=%s;\n" % (amapping[0], a.name, defval)
                 else:
@@ -496,7 +551,7 @@ class FuncInfo(object):
             if v.rettype:
                 tp = v.rettype
                 tp1 = tp.replace("*", "_ptr")
-                amapping = simple_argtype_mapping.get(tp, (tp, "O", "pyopencv_from_" + tp1, "0"))
+                amapping = simple_argtype_mapping.get(tp, (tp, "O", "0"))
                 all_cargs.append(amapping)
 
             if v.args:
@@ -519,13 +574,13 @@ class FuncInfo(object):
                 code_parse = "if(PyObject_Size(args) == 0 && PyObject_Size(kw) == 0)"
 
             if len(v.py_outlist) == 0:
-                code_retval = "Py_RETURN_NONE"
+                code_ret = "Py_RETURN_NONE"
             elif len(v.py_outlist) == 1:
                 if self.isconstructor:
-                    code_retval = "self"
+                    code_ret = "return (PyObject*)self"
                 else:
                     aname, argno = v.py_outlist[0]
-                    code_retval = "%s(%s)" % (all_cargs[argno][2], aname)
+                    code_ret = "return pyopencv_from(%s)" % (aname,)
             else:
                 # ther is more than 1 return parameter; form the tuple out of them
                 fmtspec = "N"*len(v.py_outlist)
@@ -533,11 +588,11 @@ class FuncInfo(object):
                 for aname, argno in v.py_outlist:
                     amapping = all_cargs[argno]
                     backcvt_arg_list.append("%s(%s)" % (amapping[2], aname))
-                code_retval = "Py_BuildTuple(\"(%s)\", %s)" % \
-                    (fmtspec, ", ".join([all_cargs[argno][2] + "(" + aname + ")" for aname, argno in v.py_outlist]))                    
+                code_ret = "return Py_BuildValue(\"(%s)\", %s)" % \
+                    (fmtspec, ", ".join(["pyopencv_from(" + aname + ")" for aname, argno in v.py_outlist]))                    
 
             all_code_variants.append(gen_template_func_body.substitute(code_decl=code_decl,
-                code_parse=code_parse, code_fcall=code_fcall, code_retval=code_retval))
+                code_parse=code_parse, code_fcall=code_fcall, code_ret=code_ret))
 
         if len(all_code_variants)==1:
             # if the function/method has only 1 signature, then just put it
@@ -559,7 +614,7 @@ class PythonWrapperGenerator(object):
         self.consts = {}
         self.code_types = cStringIO.StringIO()
         self.code_funcs = cStringIO.StringIO()
-        self.code_functab = cStringIO.StringIO()
+        self.code_func_tab = cStringIO.StringIO()
         self.code_type_reg = cStringIO.StringIO()
         self.code_const_reg = cStringIO.StringIO()
 
@@ -629,28 +684,41 @@ class PythonWrapperGenerator(object):
         f.write(buf.getvalue())
         f.close()
             
-    def gen(self, api_list, output_path):
+    def gen(self, srcfiles, output_path):
         self.clear()
+        parser = hdr_parser.CppHeaderParser()
         
-        # step 1: scan the list of declarations and build more descriptive maps of classes, consts, functions
-        for decl in api_list:
-            name = decl[0]
-            if name.startswith("struct") or name.startswith("class"):
-                # class/struct
-                p = name.find(" ")
-                stype = name[:p]
-                name = name[p+1:].strip()
-                self.add_class(stype, name, decl)
-            elif name.startswith("const"):
-                # constant
-                self.add_const(name.replace("const ", "").strip(), decl)
-            else:
-                # function
-                self.add_func(decl)
+        # step 1: scan the headers and build more descriptive maps of classes, consts, functions
+        for hdr in srcfiles:
+            decls = parser.parse(hdr)
+            for decl in decls:
+                name = decl[0]
+                if name.startswith("struct") or name.startswith("class"):
+                    # class/struct
+                    p = name.find(" ")
+                    stype = name[:p]
+                    name = name[p+1:].strip()
+                    self.add_class(stype, name, decl)
+                elif name.startswith("const"):
+                    # constant
+                    self.add_const(name.replace("const ", "").strip(), decl)
+                else:
+                    # function
+                    self.add_func(decl)
         
         # step 2: generate code for the classes and their methods
         classlist = self.classes.items()
         classlist.sort()
+        for name, classinfo in classlist:
+            if classinfo.ismap:
+                self.code_types.write(gen_template_map_type_cvt.substitute(name=name, cname=classinfo.cname))
+            else:
+                if classinfo.issimple:
+                    templ = gen_template_simple_type_decl
+                else:
+                    templ = gen_template_type_decl
+                self.code_types.write(templ.substitute(name=name, wname=classinfo.wname, cname=classinfo.cname))
+        
         for name, classinfo in classlist:
             code = classinfo.gen_code(self.classes)
             self.code_types.write(code)
@@ -663,6 +731,7 @@ class PythonWrapperGenerator(object):
         for name, func in funclist:
             code = func.gen_code(self.classes)
             self.code_funcs.write(code)
+            self.code_func_tab.write(func.get_tab_entry())
             
         # step 4: generate the code for constants
         constlist = self.consts.items()
@@ -672,18 +741,19 @@ class PythonWrapperGenerator(object):
             
         # That's it. Now save all the files
         self.save(output_path, "pyopencv_generated_funcs.h", self.code_funcs)
-        self.save(output_path, "pyopencv_generated_func_tab.h", self.code_functab)
+        self.save(output_path, "pyopencv_generated_func_tab.h", self.code_func_tab)
         self.save(output_path, "pyopencv_generated_const_reg.h", self.code_const_reg)
         self.save(output_path, "pyopencv_generated_types.h", self.code_types)
         self.save(output_path, "pyopencv_generated_type_reg.h", self.code_type_reg)
 
-def generate_all():
-    decls = opencv_parser.parse_all()
-    generator = PythonWrapperGenerator()
-    generator.gen(decls, "/Users/vp/tmp")
-    
 if __name__ == "__main__":
-    generate_all()
+    srcfiles = hdr_parser.opencv_hdr_list
+    dstdir = "/Users/vp/tmp"
+    if len(sys.argv) > 2:
+        dstdir = sys.argv[1]
+        srcfiles = sys.argv[2:]
+    generator = PythonWrapperGenerator()
+    generator.gen(srcfiles, dstdir)
 
     
     
diff --git a/modules/python/hdr_parser.py b/modules/python/hdr_parser.py
index 4a72b1ffe4..043f3a83cd 100755
--- a/modules/python/hdr_parser.py
+++ b/modules/python/hdr_parser.py
@@ -1,19 +1,17 @@
 import os, sys, re
 
+# the list only for debugging. The real list, used in the real OpenCV build, is specified in CMakeLists.txt
 opencv_hdr_list = [
 "../core/include/opencv2/core/core.hpp",
-#"../core/include/opencv2/core/core_c.h",
 "../ml/include/opencv2/ml/ml.hpp",
 "../imgproc/include/opencv2/imgproc/imgproc.hpp",
-#"../imgproc/include/opencv2/imgproc/imgproc_c.h",
 "../calib3d/include/opencv2/calib3d/calib3d.hpp",
 "../features2d/include/opencv2/features2d/features2d.hpp",
 "../video/include/opencv2/video/tracking.hpp",
 "../video/include/opencv2/video/background_segm.hpp",
 "../objdetect/include/opencv2/objdetect/objdetect.hpp",
 "../highgui/include/opencv2/highgui/highgui.hpp",
-#"../highgui/include/opencv2/highgui/highgui_c.h",
-"opencv_api_extra.hpp",
+"opencv_extra_api.hpp",
 ]
 
 """
@@ -40,7 +38,6 @@ class CppHeaderParser(object):
         return s
     
     def get_macro_arg(self, arg_str, npos):
-        
         npos2 = npos3 = arg_str.find("(", npos)
         if npos2 < 0:
             print "Error: no arguments for the macro at %d" % (self.lineno,)
@@ -226,9 +223,12 @@ class CppHeaderParser(object):
         """
         l = decl_str
         modlist = []
-        if "CV_EXPORTS_AS_MAP" in l:
-            l = l.replace("CV_EXPORTS_AS_MAP", "")
+        if "CV_EXPORTS_W_MAP" in l:
+            l = l.replace("CV_EXPORTS_W_MAP", "")
             modlist.append("/Map")
+        if "CV_EXPORTS_W_SIMPLE" in l:
+            l = l.replace("CV_EXPORTS_W_SIMPLE", "")
+            modlist.append("/Simple")
         npos = l.find("CV_EXPORTS_AS")
         if npos >= 0:
             macro_arg, npos3 = self.get_macro_arg(l, npos)
@@ -258,6 +258,7 @@ class CppHeaderParser(object):
             ("CV_WRAP" in decl_str) or ("CV_WRAP_AS" in decl_str)):
             return []
         
+        top = self.block_stack[-1]
         func_modlist = []
         
         npos = decl_str.find("CV_EXPORTS_AS")
@@ -270,6 +271,7 @@ class CppHeaderParser(object):
             arg, npos3 = self.get_macro_arg(decl_str, npos)
             func_modlist.append("="+arg)
             decl_str = decl_str[:npos] + decl_str[npos3+1:]
+            
         # filter off some common prefixes, which are meaningless for Python wrappers.
         # note that we do not strip "static" prefix, which does matter;
         # it means class methods, not instance methods
@@ -277,7 +279,7 @@ class CppHeaderParser(object):
             ("CV_EXPORTS_W", ""), ("CV_EXPORTS", ""), ("CV_WRAP ", " "), ("static CV_INLINE", ""), ("CV_INLINE", "")]).strip()
 
         static_method = False
-        context = self.block_stack[-1][0]
+        context = top[0]
         if decl_str.startswith("static") and (context == "class" or context == "struct"):
             decl_str = decl_str[len("static"):].lstrip()
             static_method = True
@@ -306,7 +308,7 @@ class CppHeaderParser(object):
         rettype, funcname, modlist, argno = self.parse_arg(decl_start, -1)
                 
         if argno >= 0:
-            classname = self.block_stack[-1][1]
+            classname = top[1]
             if rettype == classname or rettype == "~" + classname:
                 rettype, funcname = "", rettype
             else:
@@ -492,7 +494,7 @@ class CppHeaderParser(object):
         if (context == "struct" or context == "class") and end_token == ";" and stmt:
             # looks like it's member declaration; append the members to the class declaration
             class_decl = stack_top[self.CLASS_DECL]
-            if ("CV_PROP" in stmt) or (class_decl and ("/Map" in class_decl[2])):
+            if ("CV_PROP" in stmt): # or (class_decl and ("/Map" in class_decl[2])):
                 var_modlist = []
                 if "CV_PROP_RW" in stmt:
                     var_modlist.append("/RW")
@@ -656,28 +658,10 @@ class CppHeaderParser(object):
                 else:
                     print
 
-def parse_all():
+if __name__ == '__main__':
     parser = CppHeaderParser()
     decls = [] 
     for hname in opencv_hdr_list:
         decls += parser.parse(hname)
-    return decls
-
-if __name__ == '__main__':
-    parser = CppHeaderParser()
-    decls = parse_all()
-    if 0:
-        pass
-    elif 1:
-        CppHeaderParser().print_decls(decls)
-        print len(decls)
-    else:
-        fcounts = {}
-        for f in decls:
-            fname = f[0]
-            fcounts[fname] = fcounts.get(fname, []) + [f]
-        items = fcounts.items()
-        items.sort()
-        for fname, flist in items:
-            if len(flist) > 1:
-                parser.print_decls(flist)
+    parser.print_decls(decls)
+    print len(decls)
diff --git a/modules/python/opencv2x.h b/modules/python/opencv2x.h
index 31148ab65d..9a3825a259 100644
--- a/modules/python/opencv2x.h
+++ b/modules/python/opencv2x.h
@@ -2,9 +2,15 @@
 #define OPENCV2X_PYTHON_WRAPPERS
 
 #include "opencv2/core/core.hpp"
-
-namespace cv
-{
+#include "opencv2/imgproc/imgproc.hpp"
+#include "opencv2/calib3d/calib3d.hpp"
+#include "opencv2/ml/ml.hpp"
+#include "opencv2/features2d/features2d.hpp"
+#include "opencv2/objdetect/objdetect.hpp"
+#include "opencv2/video/tracking.hpp"
+#include "opencv2/video/background_segm.hpp"
+#include "opencv2/highgui/highgui.hpp"
+#include "opencv_extra_api.hpp"
 
 #define ERRWRAP2(expr) \
 try \
@@ -17,6 +23,37 @@ catch (const cv::Exception &e) \
     return 0; \
 }
 
+using namespace cv;
+
+typedef vector<uchar> vector_uchar;
+typedef vector<int> vector_int;
+typedef vector<float> vector_float;
+typedef vector<double> vector_double;
+typedef vector<Point> vector_Point;
+typedef vector<Point2f> vector_Point2f;
+typedef vector<Vec2f> vector_Vec2f;
+typedef vector<Vec3f> vector_Vec3f;
+typedef vector<Vec4i> vector_Vec4i;
+typedef vector<Rect> vector_Rect;
+typedef vector<KeyPoint> vector_KeyPoint;
+typedef vector<Mat> vector_Mat;
+typedef vector<vector<Point> > vector_vector_Point;
+typedef vector<vector<Point2f> > vector_vector_Point2f;
+typedef vector<vector<Point3f> > vector_vector_Point3f;
+
+static PyObject* failmsgp(const char *fmt, ...)
+{
+  char str[1000];
+
+  va_list ap;
+  va_start(ap, fmt);
+  vsnprintf(str, sizeof(str), fmt, ap);
+  va_end(ap);
+
+  PyErr_SetString(PyExc_TypeError, str);
+  return 0;
+}
+
 static size_t REFCOUNT_OFFSET = (size_t)&(((PyObject*)0)->ob_refcnt) +
     (0x12345678 != *(const size_t*)"\x78\x56\x34\x12\0\0\0\0\0")*sizeof(int);
 
@@ -40,7 +77,6 @@ public:
                   uchar*& datastart, uchar*& data, size_t* step)
     {
         static int ncalls = 0;
-        printf("NumpyAllocator::allocate: %d\n", ncalls++);
         
         int depth = CV_MAT_DEPTH(type);
         int cn = CV_MAT_CN(type);
@@ -65,7 +101,7 @@ public:
             CV_Error_(CV_StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
         refcount = refcountFromPyObject(o);
         npy_intp* _strides = PyArray_STRIDES(o);
-        for( i = 0; i < dims-1; i++ )
+        for( i = 0; i < dims - (cn > 1); i++ )
             step[i] = (size_t)_strides[i];
         datastart = data = (uchar*)PyArray_DATA(o);
     }
@@ -73,11 +109,11 @@ public:
     void deallocate(int* refcount, uchar* datastart, uchar* data)
     {
         static int ncalls = 0;
-        printf("NumpyAllocator::deallocate: %d\n", ncalls++);
         
         if( !refcount )
             return;
         PyObject* o = pyObjectFromRefcount(refcount);
+        Py_INCREF(o);
         Py_DECREF(o);
     }
 };
@@ -86,16 +122,21 @@ NumpyAllocator g_numpyAllocator;
     
 enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 };
 
-static int pyobjToMat(const PyObject* o, Mat& m, const char* name = "<unknown>", bool allowND=true)
+static int pyopencv_to(const PyObject* o, Mat& m, const char* name = "<unknown>", bool allowND=true)
 {
     static int call_idx = 0;
-    printf("pyobjToMatND: %d\n", call_idx++);
     
-    if( !PyArray_Check(o) ) {
-        if( o == Py_None )
-            return ARG_NONE;
+    if(!o || o == Py_None)
+    {
+        if( !m.data )
+            m.allocator = &g_numpyAllocator;
+        return true;
+    }
+        
+    if( !PyArray_Check(o) )
+    {
         failmsg("%s is not a numpy array", name);
-        return -1;
+        return false;
     }
     
     int typenum = PyArray_TYPE(o);
@@ -108,18 +149,18 @@ static int pyobjToMat(const PyObject* o, Mat& m, const char* name = "<unknown>",
     if( type < 0 )
     {
         failmsg("%s data type = %d is not supported", name, typenum);
-        return -1;
+        return false;
     }
     
     int ndims = PyArray_NDIM(o);
     if(ndims >= CV_MAX_DIM)
     {
         failmsg("%s dimensionality (=%d) is too high", name, ndims);
-        return -1;
+        return false;
     }
     
     int size[CV_MAX_DIM+1];
-    size_t step[CV_MAX_DIM+1], elemsize = CV_ELEM_SIZE(type);
+    size_t step[CV_MAX_DIM+1], elemsize = CV_ELEM_SIZE1(type);
     const npy_intp* _sizes = PyArray_DIMS(o);
     const npy_intp* _strides = PyArray_STRIDES(o);
     
@@ -135,64 +176,55 @@ static int pyobjToMat(const PyObject* o, Mat& m, const char* name = "<unknown>",
         ndims++;
     }
     
-    m = Mat(ndims, size, type, PyArray_DATA(o), step);
+    if( ndims == 3 && size[2] <= CV_CN_MAX && step[1] == elemsize*size[2] )
+    {
+        ndims--;
+        type |= CV_MAKETYPE(0, size[2]);
+    }
     
-    if (!allowND)
+    if( ndims > 2 && !allowND )
     {
-        if( ndims <= 2 )
-            ;
-        else if( ndims == 3 )
-        {
-            if( size[2] > CV_CN_MAX || step[1] != elemsize*size[2] )
-            {
-                failmsg("%s is not contiguous, thus it can not be interpreted as image", name);
-                return -1;
-            }
-            m.dims--;
-            m.flags = (m.flags & ~CV_MAT_TYPE_MASK) | CV_MAKETYPE(type, size[2]);
-        }
-        else
-        {
-            failmsg("%s is not contiguous or has more than 3 dimensions, thus it can not be interpreted as image", name);
-            return -1;
-        }
+        failmsg("%s has more than 2 dimensions", name);
+        return false;
     }
     
+    m = Mat(ndims, size, type, PyArray_DATA(o), step);
+    
     if( m.data )
     {
         m.refcount = refcountFromPyObject(o);
-        ++*m.refcount; // protect the original numpy array from deallocation
-                       // (since Mat destructor will decrement the reference counter)
+        m.addref(); // protect the original numpy array from deallocation
+                    // (since Mat destructor will decrement the reference counter)
     };
     m.allocator = &g_numpyAllocator;
-    return ARG_MAT;
+    return true;
 }
 
-static void makeEmptyMat(Mat& m)
+static PyObject* pyopencv_from(const Mat& m)
 {
-    m = Mat();
-    m.allocator = &g_numpyAllocator;
-}
-
-static int pyobjToMat(const PyObject* o, Mat& m, const char* name = "<unknown>")
-{
-    Mat temp;
-    int code = pyobjToMat(o, temp, name, false);
-    if(code > 0)
-        m = Mat(temp);
-    return code;
+    Mat temp, *p = (Mat*)&m;
+    if(!p->refcount || p->allocator != &g_numpyAllocator)
+    {
+        pyopencv_to(Py_None, temp);
+        m.copyTo(temp);
+        p = &temp;
+    }
+    p->addref();
+    return pyObjectFromRefcount(p->refcount);
 }
 
-static int pyobjToScalar(PyObject *o, Scalar& s, const char *name = "<unknown>")
+static bool pyopencv_to(PyObject *o, Scalar& s, const char *name = "<unknown>")
 {
+    if(!o || o == Py_None)
+        return true;
     if (PySequence_Check(o)) {
         PyObject *fi = PySequence_Fast(o, name);
         if (fi == NULL)
-            return -1;
+            return false;
         if (4 < PySequence_Fast_GET_SIZE(fi))
         {
             failmsg("Scalar value for argument '%s' is longer than 4", name);
-            return -1;
+            return false;
         }
         for (Py_ssize_t i = 0; i < PySequence_Fast_GET_SIZE(fi); i++) {
             PyObject *item = PySequence_Fast_GET_ITEM(fi, i);
@@ -200,7 +232,7 @@ static int pyobjToScalar(PyObject *o, Scalar& s, const char *name = "<unknown>")
                 s[i] = PyFloat_AsDouble(item);
             } else {
                 failmsg("Scalar value for argument '%s' is not numeric", name);
-                return -1;
+                return false;
             }
         }
         Py_DECREF(fi);
@@ -209,148 +241,456 @@ static int pyobjToScalar(PyObject *o, Scalar& s, const char *name = "<unknown>")
             s[0] = PyFloat_AsDouble(o);
         } else {
             failmsg("Scalar value for argument '%s' is not numeric", name);
-            return -1;
+            return false;
         }
     }
-    return ARG_SCALAR;
+    return true;
 }
 
+static inline PyObject* pyopencv_from(const Scalar& src)
+{
+    return Py_BuildValue("(dddd)", src[0], src[1], src[2], src[3]);
+}
 
-static int pyobjToMatOrScalar(PyObject* obj, Mat& m, Scalar& s, const char* name, bool allowND)
+static PyObject* pyopencv_from(bool value)
 {
-    if( PyArray_Check(obj) || (obj == Py_None))
-        return pyobjToMat(obj, m, name, allowND);
+    return PyBool_FromLong(value);
+}
+
+static bool pyopencv_to(PyObject* obj, bool& value, const char* name = "<unknown>")
+{
+    if(!obj || obj == Py_None)
+        return true;
+    int _val = PyObject_IsTrue(obj);
+    if(_val < 0)
+        return false;
+    value = _val > 0;
+    return true;
+}
+
+static PyObject* pyopencv_from(size_t value)
+{
+    return PyLong_FromUnsignedLong((unsigned long)value);
+}
 
-    return pyobjToScalar(obj, s, name);
+static PyObject* pyopencv_from(int value)
+{
+    return PyInt_FromLong(value);
 }
 
-static void pyc_add_mm(const Mat& a, const Mat& b, Mat& c, const Mat& mask) { add(a, b, c, mask); }
-static void pyc_add_ms(const Mat& a, const Scalar& s, Mat& c, const Mat& mask, bool) { add(a, s, c, mask); }
-static void pyc_subtract_mm(const Mat& a, const Mat& b, Mat& c, const Mat& mask) { subtract(a, b, c, mask); }
-static void pyc_subtract_ms(const Mat& a, const Scalar& s, Mat& c, const Mat& mask, bool rev)
+static bool pyopencv_to(PyObject* obj, int& value, const char* name = "<unknown>")
 {
-    if( !rev )
-        subtract(a, s, c, mask);
+    if(!obj || obj == Py_None)
+        return true;
+    value = (int)PyInt_AsLong(obj);
+    return value != -1 || !PyErr_Occurred();
+}
+
+static PyObject* pyopencv_from(double value)
+{
+    return PyFloat_FromDouble(value);
+}
+
+static bool pyopencv_to(PyObject* obj, double& value, const char* name = "<unknown>")
+{
+    if(!obj || obj == Py_None)
+        return true;
+    if(PyInt_CheckExact(obj))
+        value = (double)PyInt_AS_LONG(obj);
     else
-        subtract(s, a, c, mask);
+        value = PyFloat_AsDouble(obj);
+    return !PyErr_Occurred();
 }
 
-static void pyc_and_mm(const Mat& a, const Mat& b, Mat& c, const Mat& mask) { bitwise_and(a, b, c, mask); }
-static void pyc_and_ms(const Mat& a, const Scalar& s, Mat& c, const Mat& mask, bool) { bitwise_and(a, s, c, mask); }
-static void pyc_or_mm(const Mat& a, const Mat& b, Mat& c, const Mat& mask) { bitwise_or(a, b, c, mask); }
-static void pyc_or_ms(const Mat& a, const Scalar& s, Mat& c, const Mat& mask, bool) { bitwise_or(a, s, c, mask); }
-static void pyc_xor_mm(const Mat& a, const Mat& b, Mat& c, const Mat& mask) { bitwise_xor(a, b, c, mask); }
-static void pyc_xor_ms(const Mat& a, const Scalar& s, Mat& c, const Mat& mask, bool) { bitwise_xor(a, s, c, mask); }
-static void pyc_absdiff_mm(const Mat& a, const Mat& b, Mat& c, const Mat&) { absdiff(a, b, c); }
-static void pyc_absdiff_ms(const Mat& a, const Scalar& s, Mat& c, const Mat&, bool) { absdiff(a, s, c); }
-static void pyc_min_mm(const Mat& a, const Mat& b, Mat& c, const Mat&) { min(a, b, c); }
-static void pyc_min_ms(const Mat& a, const Scalar& s, Mat& c, const Mat&, bool)
+static PyObject* pyopencv_from(float value)
 {
-    CV_Assert( s.isReal() );
-    min(a, s[0], c);
+    return PyFloat_FromDouble(value);
 }
-static void pyc_max_mm(const Mat& a, const Mat& b, Mat& c, const Mat&) { max(a, b, c); }
-static void pyc_max_ms(const Mat& a, const Scalar& s, Mat& c, const Mat&, bool)
+
+static bool pyopencv_to(PyObject* obj, float& value, const char* name = "<unknown>")
 {
-    CV_Assert( s.isReal() );
-    max(a, s[0], c);
+    if(!obj || obj == Py_None)
+        return true;
+    if(PyInt_CheckExact(obj))
+        value = (float)PyInt_AS_LONG(obj);
+    else
+        value = (float)PyFloat_AsDouble(obj);
+    return !PyErr_Occurred();
 }
 
-typedef void (*BinaryOp)(const Mat& a, const Mat& b, Mat& c, const Mat& mask);
-typedef void (*BinaryOpS)(const Mat& a, const Scalar& s, Mat& c, const Mat& mask, bool rev);
+static PyObject* pyopencv_from(const string& value)
+{
+    return PyString_FromString(value.empty() ? "" : value.c_str());
+}
 
-static PyObject *pyopencv_binary_op(PyObject* args, PyObject* kw, BinaryOp binOp, BinaryOpS binOpS, bool supportMask)
+static bool pyopencv_to(PyObject* obj, string& value, const char* name = "<unknown>")
 {
-    PyObject *pysrc1 = 0, *pysrc2 = 0, *pydst = 0, *pymask = 0;
-    Mat src1, src2, dst, mask;
-    Scalar alpha, beta;
-    
-    if( supportMask )
+    if(!obj || obj == Py_None)
+        return true;
+    char* str = PyString_AsString(obj);
+    if(!str)
+        return false;
+    value = string(str);
+    return true;
+}
+
+static inline bool pyopencv_to(PyObject* obj, Size& sz, const char* name = "<unknown>")
+{
+    if(!obj || obj == Py_None)
+        return true;
+    return PyArg_Parse(obj, "ii", &sz.width, &sz.height) > 0;
+}
+
+static inline PyObject* pyopencv_from(const Size& sz)
+{
+    return Py_BuildValue("(ii)", sz.width, sz.height);
+}
+
+static inline bool pyopencv_to(PyObject* obj, Rect& r, const char* name = "<unknown>")
+{
+    if(!obj || obj == Py_None)
+        return true;
+    return PyArg_Parse(obj, "iiii", &r.x, &r.y, &r.width, &r.height) > 0;
+}
+
+static inline PyObject* pyopencv_from(const Rect& r)
+{
+    return Py_BuildValue("(iiii)", r.x, r.y, r.width, r.height);
+}
+
+static inline bool pyopencv_to(PyObject* obj, Range& r, const char* name = "<unknown>")
+{
+    if(!obj || obj == Py_None)
+        return true;
+    if(PyObject_Size(obj) == 0)
     {
-        const char *keywords[] = { "src1", "src2", "dst", "mask", 0 };
-        if( !PyArg_ParseTupleAndKeywords(args, kw, "OO|OO", (char**)keywords,
-                                        &pysrc1, &pysrc2, &pydst, &pymask))
-            return 0;
+        r = Range::all();
+        return true;
     }
-    else
+    return PyArg_Parse(obj, "ii", &r.start, &r.end) > 0;
+}
+
+static inline PyObject* pyopencv_from(const Range& r)
+{
+    return Py_BuildValue("(ii)", r.start, r.end);
+}
+
+static inline bool pyopencv_to(PyObject* obj, CvSlice& r, const char* name = "<unknown>")
+{
+    if(!obj || obj == Py_None)
+        return true;
+    if(PyObject_Size(obj) == 0)
+    {
+        r = CV_WHOLE_SEQ;
+        return true;
+    }
+    return PyArg_Parse(obj, "ii", &r.start_index, &r.end_index) > 0;
+}
+                                                
+static inline PyObject* pyopencv_from(const CvSlice& r)
+{
+    return Py_BuildValue("(ii)", r.start_index, r.end_index);
+}                                                    
+                                                    
+static inline bool pyopencv_to(PyObject* obj, Point& p, const char* name = "<unknown>")
+{
+    if(!obj || obj == Py_None)
+        return true;
+    if(PyComplex_CheckExact(obj))
+    {
+        Py_complex c = PyComplex_AsCComplex(obj);
+        p.x = saturate_cast<int>(c.real);
+        p.y = saturate_cast<int>(c.imag);
+        return true;
+    }
+    return PyArg_Parse(obj, "ii", &p.x, &p.y) > 0;
+}
+
+static inline bool pyopencv_to(PyObject* obj, Point2f& p, const char* name = "<unknown>")
+{
+    if(!obj || obj == Py_None)
+        return true;
+    if(PyComplex_CheckExact(obj))
     {
-        const char *keywords[] = { "src1", "src2", "dst", 0 };
-        if( !PyArg_ParseTupleAndKeywords(args, kw, "OO|O", (char**)keywords,
-                                         &pysrc1, &pysrc2, &pydst))
-            return 0;
+        Py_complex c = PyComplex_AsCComplex(obj);
+        p.x = saturate_cast<float>(c.real);
+        p.y = saturate_cast<float>(c.imag);
+        return true;
+    }
+    return PyArg_Parse(obj, "ff", &p.x, &p.y) > 0;
+}
+
+static inline PyObject* pyopencv_from(const Point& p)
+{
+    return Py_BuildValue("(ii)", p.x, p.y);
+}
+
+static inline PyObject* pyopencv_from(const Point2f& p)
+{
+    return Py_BuildValue("(dd)", p.x, p.y);
+}
+
+static inline bool pyopencv_to(PyObject* obj, Vec3d& v, const char* name = "<unknown>")
+{
+    if(!obj)
+        return true;
+    return PyArg_Parse(obj, "ddd", &v[0], &v[1], &v[2]) > 0;
+}
+
+static inline PyObject* pyopencv_from(const Vec3d& v)
+{
+    return Py_BuildValue("(ddd)", v[0], v[1], v[2]);
+}
+
+static inline PyObject* pyopencv_from(const Point2d& p)
+{
+    return Py_BuildValue("(dd)", p.x, p.y);
+}
+
+template<typename _Tp> struct pyopencvVecConverter
+{
+    static bool to(PyObject* obj, vector<_Tp>& value, const char* name="<unknown>")
+    {
+        typedef typename DataType<_Tp>::channel_type _Cp;
+        if(!obj)
+            return true;
+        if (PyArray_Check(obj))
+        {
+            Mat m;
+            pyopencv_to(obj, m, name);
+            m.copyTo(value);
+        }
+        if (!PySequence_Check(obj))
+            return false;
+        PyObject *seq = PySequence_Fast(obj, name);
+        if (seq == NULL)
+            return false;
+        int i, j, n = (int)PySequence_Fast_GET_SIZE(seq);
+        value.resize(n);
+        
+        int type = DataType<_Tp>::type;
+        int depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type);
+        PyObject** items = PySequence_Fast_ITEMS(seq);
+        
+        for( i = 0; i < n; i++ )
+        {
+            PyObject* item = items[i];
+            PyObject* seq_i = 0;
+            PyObject** items_i = &item;
+            _Cp* data = (_Cp*)&value[i];
+            
+            if( channels == 2 && PyComplex_CheckExact(item) )
+            {
+                Py_complex c = PyComplex_AsCComplex(obj);
+                data[0] = saturate_cast<_Cp>(c.real);
+                data[1] = saturate_cast<_Cp>(c.imag);
+                continue;
+            }
+            if( channels > 1 )
+            {
+                if( PyArray_Check(obj))
+                {
+                    Mat src;
+                    pyopencv_to(obj, src, name);
+                    if( src.dims != 2 || src.channels() != 1 ||
+                       ((src.cols != 1 || src.rows != channels) &&
+                        (src.cols != channels || src.rows != 1)))
+                        break;
+                    Mat dst(src.rows, src.cols, depth, data);
+                    src.convertTo(dst, type);
+                    if( dst.data != (uchar*)data )
+                        break;
+                    continue;
+                }
+                
+                seq_i = PySequence_Fast(item, name);
+                if( !seq_i || (int)PySequence_Fast_GET_SIZE(seq_i) != channels )
+                {
+                    Py_XDECREF(seq_i);
+                    break;
+                }
+                items_i = PySequence_Fast_ITEMS(seq_i);
+            }
+            
+            for( j = 0; j < channels; j++ )
+            {
+                PyObject* item_ij = items_i[j];
+                if( PyInt_Check(item_ij))
+                {
+                    int v = PyInt_AsLong(item_ij);
+                    if( v == -1 && PyErr_Occurred() )
+                        break;
+                    data[j] = saturate_cast<_Cp>(v);
+                }
+                else if( PyFloat_Check(item_ij))
+                {
+                    double v = PyFloat_AsDouble(item_ij);
+                    if( PyErr_Occurred() )
+                        break;
+                    data[j] = saturate_cast<_Cp>(v);
+                }
+                else
+                    break;
+            }
+            Py_XDECREF(seq_i);
+            if( j < channels )
+                break;
+        }
+        Py_DECREF(seq);
+        return i == n;
     }
     
-    int code_src1 = pysrc1 ? pyobjToMatOrScalar(pysrc1, src1, alpha, "src1", true) : -1;
-    int code_src2 = pysrc2 ? pyobjToMatOrScalar(pysrc2, src2, beta, "src2", true) : -1;
-    int code_dst = pydst ? pyobjToMat(pydst, dst, "dst", true) : 0;
-    int code_mask = pymask ? pyobjToMat(pymask, mask, "mask", true) : 0;
+    static PyObject* from(const vector<_Tp>& value)
+    {
+        if(value.empty())
+            return PyTuple_New(0);
+        Mat src((int)value.size(), DataType<_Tp>::channels, DataType<_Tp>::depth, (uchar*)&value[0]);
+        return pyopencv_from(src);
+    }
+};
+
+
+template<typename _Tp> static inline bool pyopencv_to(PyObject* obj, vector<_Tp>& value, const char* name="<unknown>")
+{
+    return pyopencvVecConverter<_Tp>::to(obj, value, name);
+}
+
+template<typename _Tp> static inline PyObject* pyopencv_from(const vector<_Tp>& value)
+{
+    return pyopencvVecConverter<_Tp>::from(value);
+}
+
+static PyObject* pyopencv_from(const KeyPoint&);
+static bool pyopencv_from(PyObject*,KeyPoint&,const char*);
+
+template<typename _Tp> static inline bool pyopencv_to_generic_vec(PyObject* obj, vector<_Tp>& value, const char* name="<unknown>")
+{
+    if (!PySequence_Check(obj))
+        return false;
+    PyObject *seq = PySequence_Fast(obj, name);
+    if (seq == NULL)
+        return false;
+    int i, n = (int)PySequence_Fast_GET_SIZE(seq);
+    value.resize(n);
     
-    if( code_src1 < 0 || code_src2 < 0 || code_dst < 0 || code_mask < 0 )
-        return 0;
+    PyObject** items = PySequence_Fast_ITEMS(seq);
     
-    if( code_src1 == ARG_SCALAR && code_src2 == ARG_SCALAR )
+    for( i = 0; i < n; i++ )
+    {
+        PyObject* item = items[i];
+        if(!pyopencv_to(item, value[i], name))
+            break;
+    }
+    Py_DECREF(seq);
+    return i == n;
+}
+
+template<typename _Tp> static inline PyObject* pyopencv_from_generic_vec(const vector<_Tp>& value)
+{
+    int i, n = (int)value.size();
+    PyObject* seq = PyTuple_New(n);
+    for( i = 0; i < n; i++ )
+    {        
+        PyObject* item = pyopencv_from(value[i]);
+        if(!item)
+            break;
+        PyTuple_SET_ITEM(seq, i, item);
+    }
+    if( i < n )
     {
-        failmsg("Both %s and %s are scalars", "src1", "src2");
+        Py_DECREF(seq);
         return 0;
     }
+    return seq;
+}
+
+
+template<typename _Tp> struct pyopencvVecConverter<vector<_Tp> >
+{
+    static bool to(PyObject* obj, vector<vector<_Tp> >& value, const char* name="<unknown>")
+    {
+        return pyopencv_to_generic_vec(obj, value, name);
+    }
     
-    if( code_dst == 0 )
-        makeEmptyMat(dst);
-    
-    ERRWRAP2(code_src1 != ARG_SCALAR && code_src2 != ARG_SCALAR ? binOp(src1, src2, dst, mask) :
-             code_src1 != ARG_SCALAR ? binOpS(src2, alpha, dst, mask, true) : binOpS(src1, beta, dst, mask, false));
-    
-    PyObject* result = pyObjectFromRefcount(dst.refcount);
-    int D = PyArray_NDIM(result);
-    const npy_intp* sz = PyArray_DIMS(result);
-    
-    printf("Result: check = %d, ndims = %d, size = (%d x %d), typenum=%d\n", PyArray_Check(result),
-           D, (int)sz[0], D >= 2 ? (int)sz[1] : 1, PyArray_TYPE(result));
+    static PyObject* from(const vector<vector<_Tp> >& value)
+    {
+        return pyopencv_from_generic_vec(value);
+    }
+};
+
+template<> struct pyopencvVecConverter<Mat>
+{
+    static bool to(PyObject* obj, vector<Mat>& value, const char* name="<unknown>")
+    {
+        return pyopencv_to_generic_vec(obj, value, name);
+    }
     
-    //Py_INCREF(result);
-    return result;
-}
+    static PyObject* from(const vector<Mat>& value)
+    {
+        return pyopencv_from_generic_vec(value);
+    }
+};
 
-static PyObject* pyopencv_add(PyObject* self, PyObject* args, PyObject* kw)
+template<> struct pyopencvVecConverter<KeyPoint>
 {
-    return pyopencv_binary_op(args, kw, pyc_add_mm, pyc_add_ms, true);
-}
+    static bool to(PyObject* obj, vector<KeyPoint>& value, const char* name="<unknown>")
+    {
+        return pyopencv_to_generic_vec(obj, value, name);
+    }
+    
+    static PyObject* from(const vector<KeyPoint>& value)
+    {
+        return pyopencv_from_generic_vec(value);
+    }
+};
+
 
-static PyObject* pyopencv_subtract(PyObject* self, PyObject* args, PyObject* kw)
+static inline bool pyopencv_to(PyObject *obj, CvTermCriteria& dst, const char *name="<unknown>")
 {
-    return pyopencv_binary_op(args, kw, pyc_subtract_mm, pyc_subtract_ms, true);
+    if(!obj)
+        return true;
+    return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.max_iter, &dst.epsilon) > 0;
 }
 
-static PyObject* pyopencv_and(PyObject* self, PyObject* args, PyObject* kw)
+static inline PyObject* pyopencv_from(const CvTermCriteria& src)
 {
-    return pyopencv_binary_op(args, kw, pyc_and_mm, pyc_and_ms, true);
+    return Py_BuildValue("(iid)", src.type, src.max_iter, src.epsilon);
 }
 
-static PyObject* pyopencv_or(PyObject* self, PyObject* args, PyObject* kw)
+static inline bool pyopencv_to(PyObject *obj, TermCriteria& dst, const char *name="<unknown>")
 {
-    return pyopencv_binary_op(args, kw, pyc_or_mm, pyc_or_ms, true);
+    if(!obj)
+        return true;
+    return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.maxCount, &dst.epsilon) > 0;
 }
 
-static PyObject* pyopencv_xor(PyObject* self, PyObject* args, PyObject* kw)
+static inline PyObject* pyopencv_from(const TermCriteria& src)
 {
-    return pyopencv_binary_op(args, kw, pyc_xor_mm, pyc_xor_ms, true);
+    return Py_BuildValue("(iid)", src.type, src.maxCount, src.epsilon);
 }
 
-static PyObject* pyopencv_absdiff(PyObject* self, PyObject* args, PyObject* kw)
+static inline bool pyopencv_to(PyObject *obj, RotatedRect& dst, const char *name="<unknown>")
 {
-    return pyopencv_binary_op(args, kw, pyc_absdiff_mm, pyc_absdiff_ms, true);
+    if(!obj)
+        return true;
+    return PyArg_ParseTuple(obj, "(ff)(ff)f", &dst.center.x, &dst.center.y, &dst.size.width, &dst.size.height, &dst.angle) > 0;
 }
 
-static PyObject* pyopencv_min(PyObject* self, PyObject* args, PyObject* kw)
+static inline PyObject* pyopencv_from(const RotatedRect& src)
 {
-    return pyopencv_binary_op(args, kw, pyc_min_mm, pyc_min_ms, true);
+    return Py_BuildValue("((ff)(ff)f)", src.center.x, src.center.y, src.size.width, src.size.height, src.angle);
 }
 
-static PyObject* pyopencv_max(PyObject* self, PyObject* args, PyObject* kw)
+static inline PyObject* pyopencv_from(const Moments& m)
 {
-    return pyopencv_binary_op(args, kw, pyc_max_mm, pyc_max_ms, true);
+    return Py_BuildValue("{s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d}",
+                         "m00", m.m00, "m10", m.m10, "m01", m.m01,
+                         "m20", m.m20, "m11", m.m11, "m02", m.m02,
+                         "m30", m.m30, "m21", m.m21, "m12", m.m12, "m03", m.m03,
+                         "mu20", m.mu20, "mu11", m.mu11, "mu02", m.mu02,
+                         "mu30", m.mu30, "mu21", m.mu21, "mu12", m.mu12, "mu03", m.mu03,
+                         "nu20", m.nu20, "nu11", m.nu11, "nu02", m.nu02,
+                         "nu30", m.nu30, "nu21", m.nu21, "nu12", m.nu12, "mu03", m.nu03);
 }
 
-}
-    
 #endif
diff --git a/modules/python/opencv_api_extra.hpp b/modules/python/opencv_extra_api.hpp
similarity index 73%
rename from modules/python/opencv_api_extra.hpp
rename to modules/python/opencv_extra_api.hpp
index 781cd2df85..62f5efc98e 100644
--- a/modules/python/opencv_api_extra.hpp
+++ b/modules/python/opencv_extra_api.hpp
@@ -3,6 +3,7 @@
 
 #include "opencv2/core/core.hpp"
 #include "opencv2/imgproc/imgproc.hpp"
+#include "opencv2/imgproc/imgproc_c.h"
 #include "opencv2/calib3d/calib3d.hpp"
 
 namespace cv
@@ -29,13 +30,19 @@ CV_WRAP_AS(getCPUTickCount) static inline double getCPUTickCount_()
     return (double)getCPUTickCount();
 }
 
+CV_WRAP void randShuffle(const Mat& src, CV_OUT Mat& dst, double iterFactor=1.)
+{
+    src.copyTo(dst);
+    randShuffle(dst, iterFactor, 0);
+}
+
 CV_WRAP static inline void SVDecomp(const Mat& src, CV_OUT Mat& w, CV_OUT Mat& u, CV_OUT Mat& vt, int flags=0 )
 {
     SVD::compute(src, w, u, vt, flags);
 }
 
-CV_WRAP static inline void SVDBackSubst( const Mat& w, const Mat& u, const Mat& vt,
-                                         const Mat& rhs, CV_OUT Mat& dst )
+CV_WRAP static inline void SVBackSubst( const Mat& w, const Mat& u, const Mat& vt,
+                                        const Mat& rhs, CV_OUT Mat& dst )
 {
     SVD::backSubst(w, u, vt, rhs, dst);
 }
@@ -53,10 +60,8 @@ CV_WRAP static inline bool eigen(const Mat& src, bool computeEigenvectors,
                                  CV_OUT Mat& eigenvalues, CV_OUT Mat& eigenvectors,
                                  int lowindex=-1, int highindex=-1)
 {
-    if(computeEigenvectors)
-        eigen(src, eigenvalues, eigenvectors, lowindex, highindex);
-    else
-        eigen(src, eigenvalues, lowindex, highindex);
+    return computeEigenvectors ? eigen(src, eigenvalues, eigenvectors, lowindex, highindex) :
+                                eigen(src, eigenvalues, lowindex, highindex);
 }
 
 CV_WRAP static inline void fillConvexPoly(Mat& img, const Mat& points,
@@ -82,10 +87,10 @@ CV_WRAP static inline void fillPoly(Mat& img, const vector<Mat>& pts,
     {
         const Mat& p = pts[i];
         CV_Assert(p.checkVector(2, CV_32S) >= 0);
-        ptsptr[i] = (const Point*)p.data;
+        ptsptr[i] = (Point*)p.data;
         npts[i] = p.rows*p.cols*p.channels()/2;
     }
-    fillPoly(img, ptsptr, npts, (int)pts.size(), color, lineType, shift, offset);
+    fillPoly(img, (const Point**)ptsptr, npts, (int)pts.size(), color, lineType, shift, offset);
 }
 
 CV_WRAP static inline void polylines(Mat& img, const vector<Mat>& pts,
@@ -103,12 +108,41 @@ CV_WRAP static inline void polylines(Mat& img, const vector<Mat>& pts,
     {
         const Mat& p = pts[i];
         CV_Assert(p.checkVector(2, CV_32S) >= 0);
-        ptsptr[i] = (const Point*)p.data;
+        ptsptr[i] = (Point*)p.data;
         npts[i] = p.rows*p.cols*p.channels()/2;
     }
-    polylines(img, ptsptr, npts, (int)pts.size(), isClosed, color, thickness, lineType, shift);
+    polylines(img, (const Point**)ptsptr, npts, (int)pts.size(), isClosed, color, thickness, lineType, shift);
 }
 
+CV_WRAP static inline void PCACompute(const Mat& data, CV_OUT Mat& mean,
+                                      CV_OUT Mat& eigenvectors, int maxComponents=0)
+{
+    PCA pca;
+    pca.mean = mean;
+    pca.eigenvectors = eigenvectors;
+    pca(data, Mat(), 0, maxComponents);
+    pca.mean.copyTo(mean);
+    pca.eigenvectors.copyTo(eigenvectors);
+}
+    
+CV_WRAP static inline void PCAProject(const Mat& data, const Mat& mean,
+                                      const Mat& eigenvectors, CV_OUT Mat& result)
+{
+    PCA pca;
+    pca.mean = mean;
+    pca.eigenvectors = eigenvectors;
+    pca.project(data, result);
+}
+
+CV_WRAP static inline void PCABackProject(const Mat& data, const Mat& mean,
+                                          const Mat& eigenvectors, CV_OUT Mat& result)
+{
+    PCA pca;
+    pca.mean = mean;
+    pca.eigenvectors = eigenvectors;
+    pca.backProject(data, result);
+}    
+
 /////////////////////////// imgproc /////////////////////////////////
 
 CV_WRAP static inline void HuMoments(const Moments& m, CV_OUT vector<double>& hu)
@@ -142,9 +176,8 @@ CV_WRAP static inline void calcHist( const vector<Mat>& images, const vector<int
     float* _ranges[CV_MAX_DIM];
     if( rsz > 0 )
     {
-        _all_ranges = _ranges;
-        for( int i = 0; i < rsz/2; i++ )
-            _ranges[i] = &ranges[i*2];
+        for( i = 0; i < rsz/2; i++ )
+            _ranges[i] = (float*)&ranges[i*2];
     }
     calcHist(&images[0], (int)images.size(), csz ? &channels[0] : 0,
             mask, hist, dims, &histSize[0], rsz ? (const float**)_ranges : 0,
@@ -164,11 +197,10 @@ CV_WRAP void calcBackProject( const vector<Mat>& images, const vector<int>& chan
     float* _ranges[CV_MAX_DIM];
     if( rsz > 0 )
     {
-        _all_ranges = _ranges;
-        for( int i = 0; i < rsz/2; i++ )
-            _ranges[i] = &ranges[i*2];
+        for( i = 0; i < rsz/2; i++ )
+            _ranges[i] = (float*)&ranges[i*2];
     }
-    calcHist(&images[0], (int)images.size(), csz ? &channels[0] : 0,
+    calcBackProject(&images[0], (int)images.size(), csz ? &channels[0] : 0,
         hist, dst, rsz ? (const float**)_ranges : 0, scale, true);
 }
 
@@ -283,17 +315,17 @@ CV_WRAP static inline void approxPolyDP( const Mat& curve,
     if( curve.depth() == CV_32S )
     {
         vector<Point> result;
-        approxyPolyDP(curve, result, epsilon, closed);
+        approxPolyDP(curve, result, epsilon, closed);
         Mat(result).copyTo(approxCurve);
     }
     else if( curve.depth() == CV_32F )
     {
         vector<Point2f> result;
-        approxyPolyDP(curve, result, epsilon, closed);
+        approxPolyDP(curve, result, epsilon, closed);
         Mat(result).copyTo(approxCurve);
     }
     else
-        CV_Error(CV_StsUnsupportedFormat, "")
+        CV_Error(CV_StsUnsupportedFormat, "");
 }
 
 
@@ -319,22 +351,28 @@ CV_WRAP static inline void convexHull( const Mat& points, CV_OUT Mat& hull, bool
     }
 }
 
-CV_WRAP static inline void fitLine( const Mat& points, CV_OUT CV_CUSTOM_CARRAY(points) float* line,
+CV_WRAP static inline void fitLine( const Mat& points, CV_OUT vector<float>& line,
                       int distType, double param, double reps, double aeps )
 {
     if(points.channels() == 2 || points.cols == 2)
-        fitLine(points, *(Vec4f*)line, distType, param, reps, aeps);
+    {
+        line.resize(4);
+        fitLine(points, *(Vec4f*)&line[0], distType, param, reps, aeps);
+    }
     else
-        fitLine(points, *(Vec6f*)line, distType, param, reps, aeps);
+    {
+        line.resize(6);
+        fitLine(points, *(Vec6f*)&line[0], distType, param, reps, aeps);
+    }
 }
 
 CV_WRAP static inline int estimateAffine3D( const Mat& from, const Mat& to,
                               CV_OUT Mat& dst, CV_OUT Mat& outliers,
                               double param1 = 3.0, double param2 = 0.99 )
 {
-    vector<int> outliers_vec;
+    vector<uchar> outliers_vec;
     int res = estimateAffine3D(from, to, dst, outliers_vec, param1, param2);
-    outliers_vec.copyTo(outliers);
+    Mat(outliers_vec).copyTo(outliers);
     return res;
 }
 
@@ -350,89 +388,11 @@ CV_WRAP static inline void cornerSubPix( const Mat& image, Mat& corners,
         return;
         
     CvMat _image = image;
-    cvCornerSubPix(&_image, (CvPoint2D32f*)corners.data, n, winSize, zeroZone, criteria);
-}
-
-CV_WRAP static inline void goodFeaturesToTrack( const Mat& image, CV_OUT Mat& corners,
-                                     int maxCorners, double qualityLevel, double minDistance,
-                                     const Mat& mask=Mat(), int blockSize=3,
-                                     bool useHarrisDetector=false, double k=0.04 )
-{
-    vector<Point2f> corners_vec;
-    goodFeaturesToTrack(image, corners_vec, maxCorners, qualityLevel,
-                        minDistance, mask, blockSize, useHarrisDetector, k);
-    Mat(corners_vec).copyTo(corners);
-}
-
-CV_WRAP static inline void HoughLines( const Mat& image, CV_OUT Mat& lines,
-                                       double rho, double theta, int threshold,
-                                       double srn=0, double stn=0 )
-{
-    vector<Vec2f>& lines_vec;
-    HoughLines(image, lines_vec, rho, theta, threshold, srn, stn);
-    Mat(lines_vec).copyTo(lines);
-}
-
-CV_WRAP static inline void HoughLinesP( Mat& image, CV_OUT Mat& lines,
-                                        double rho, double theta, int threshold,
-                                        double minLineLength=0, double maxLineGap=0 )
-{
-    vector<Vec4i>& lines_vec;
-    HoughLinesP(image, lines_vec, rho, theta, threshold, minLineLength, maxLineGap);
-    Mat(lines_vec).copyTo(lines);
+    cvFindCornerSubPix(&_image, (CvPoint2D32f*)corners.data, n, winSize, zeroZone, criteria);
 }
 
-CV_WRAP static inline void HoughCircles( const Mat& image, CV_OUT vector<Vec3f>& circles,
-                                         int method, double dp, double minDist,
-                                         double param1=100, double param2=100,
-                                         int minRadius=0, int maxRadius=0 )
-{
-    vector<Vec3f>& circles_vec;
-    HoughCircles(image, circles_vec, method, dp, minDist, param1, param2, minRadius, maxRadius);
-    Mat(circles_vec).copyTo(circles);
-}
-
-
 /////////////////////////////// calib3d ///////////////////////////////////////////
 
-CV_WRAP static inline bool findChessboardCorners( const Mat& image, Size patternSize,
-                                       CV_OUT Mat& corners,
-                                       int flags=CALIB_CB_ADAPTIVE_THRESH+
-                                              CALIB_CB_NORMALIZE_IMAGE )
-{
-    vector<Point2f> corners_vec;
-    bool res = findChessboardCorners(image, patternSize, corners_vec, flags);
-    corners_vec.copyTo(corners);
-    return res;
-}
-
-
-CV_WRAP static inline void projectPoints( const Mat& objectPoints,
-                               const Mat& rvec, const Mat& tvec,
-                               const Mat& cameraMatrix,
-                               const Mat& distCoeffs,
-                               CV_OUT Mat& imagePoints )
-{
-    vector<Point2f> imgpt;
-    projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs, imgpt);
-    Mat(imgpt).copyTo(imagePoints);
-}
-
-CV_WRAP static inline void projectPointsJ( const Mat& objectPoints,
-                               const Mat& rvec, const Mat& tvec,
-                               const Mat& cameraMatrix,
-                               const Mat& distCoeffs,
-                               CV_OUT Mat& imagePoints,
-                               CV_OUT Mat& dpdrot, CV_OUT Mat& dpdt, CV_OUT Mat& dpdf,
-                               CV_OUT Mat& dpdc, CV_OUT Mat& dpddist,
-                               double aspectRatio=0 )
-{
-    vector<Point2f> imgpt;
-    projectPoints(objectPoints, rvec, tvec, cameraMatri, distCoeffs, imgpt,
-        dpdrot, dpdt, dpdf, dpdc, dpddist, aspectRatio);
-    Mat(imgpt).copyTo(imagePoints);
-}
-
 CV_WRAP static inline void convertPointsHomogeneous( const Mat& src, CV_OUT Mat& dst )
 {
     int n;
@@ -441,12 +401,12 @@ CV_WRAP static inline void convertPointsHomogeneous( const Mat& src, CV_OUT Mat&
     else if( (n = src.checkVector(3)) >= 0 )
         dst.create(n, 3, src.depth());
     else
-        CV_Assert(CV_StsBadSize, "");
+        CV_Error(CV_StsBadSize, "");
     CvMat _src = src, _dst = dst;
-    cvConvertHomogeneous(&_src, &_dst);
+    cvConvertPointsHomogeneous(&_src, &_dst);
 }
 
-
+/*
 //! initializes camera matrix from a few 3D points and the corresponding projections.
 CV_WRAP static inline Mat initCameraMatrix2D( const vector<Mat>& objectPoints,
                                    const vector<Mat>& imagePoints,
@@ -472,7 +432,7 @@ CV_WRAP static inline double calibrateCamera( const vector<Mat>& objectPoints,
     vector<vector<Point2f> > _imagePoints;
     mv2vv(objectPoints, _objectPoints);
     mv2vv(imagePoints, _imagePoints);
-    return calibrateCamera(_objectPoints, _imagePoints, imageSize, cameraMatrix, distCoeffs, rvec, tvecs, flags);
+    return calibrateCamera(_objectPoints, _imagePoints, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, flags);
 }
 
 
@@ -493,12 +453,11 @@ CV_WRAP static inline double stereoCalibrate( const vector<Mat>& objectPoints,
     mv2vv(objectPoints, _objectPoints);
     mv2vv(imagePoints1, _imagePoints1);
     mv2vv(imagePoints2, _imagePoints2);
-    return stereoCalibrate(_objectPoints, _imagePoints1, _imagePoints2, cameraMatrix1, cameraMatrix2,
-                            imageSize, R, T, E, F, criteria, flags);
+    return stereoCalibrate(_objectPoints, _imagePoints1, _imagePoints2, cameraMatrix1, distCoeffs1,
+                            cameraMatrix2, distCoeffs2, imageSize, R, T, E, F, criteria, flags);
 }
-    
 
-CV_WRAP static float rectify3Collinear( const Mat& cameraMatrix1, const Mat& distCoeffs1,
+CV_WRAP static inline float rectify3Collinear( const Mat& cameraMatrix1, const Mat& distCoeffs1,
                      const Mat& cameraMatrix2, const Mat& distCoeffs2,
                      const Mat& cameraMatrix3, const Mat& distCoeffs3,
                      const vector<Mat>& imgpt1, const vector<Mat>& imgpt3,
@@ -520,6 +479,8 @@ CV_WRAP static float rectify3Collinear( const Mat& cameraMatrix1, const Mat& dis
                             R12, T12, R13, T13, R1, R2, R3, P1, P2, P3,
                             Q, alpha, newImgSize, roi1, roi2, flags);
 }
+*/
+ 
+}
 
-
-}
\ No newline at end of file
+#endif