mirror of https://github.com/opencv/opencv.git
Merge pull request #15214 from jumostedu:matchtemplmask
* imgproc: templmatch: Add support for mask for all methods Add support for masked template matching. Fix/scrub old implementation for masked matching, as it did partly not even really do a meaningful masking, and only supported limited template matching methods. Add documentation including formulas for masked matching. * imgproc: test: Add tests for masked template matching Test accuracy by comparing to naive implementation for one point. Test compatibility/correctness by comparing results without mask and with all ones mask. All tests are done for all methods, all supported depths, and for 1 and 3 channels. * imgproc: test: templmatch: Add test for crossCorr Add a test for the crossCorr function in templmatch.cpp. crossCorr() had to be added to exported functions to be testable. This test can maybe help to identify the problem with template matching on MacOSX. * fix: Fixed wrong evaluations of the MatExpr on Clang * fix: removed crossCorr from public interface. If it should be exported, it should be done as separate PR. Co-authored-by: Vadim Levin <vadim.levin@xperience.ai>pull/17317/head
parent
486de65067
commit
5b095dfcb6
4 changed files with 447 additions and 71 deletions
@ -0,0 +1,278 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
namespace opencv_test { namespace { |
||||
|
||||
CV_ENUM(MatchTemplType, CV_TM_CCORR, CV_TM_CCORR_NORMED, |
||||
CV_TM_SQDIFF, CV_TM_SQDIFF_NORMED, |
||||
CV_TM_CCOEFF, CV_TM_CCOEFF_NORMED) |
||||
|
||||
class Imgproc_MatchTemplateWithMask : public TestWithParam<std::tuple<MatType,MatType>> |
||||
{ |
||||
protected: |
||||
// Member functions inherited from ::testing::Test
|
||||
void SetUp() override; |
||||
|
||||
// Matrices for test calculations (always CV_32)
|
||||
Mat img_; |
||||
Mat templ_; |
||||
Mat mask_; |
||||
Mat templ_masked_; |
||||
Mat img_roi_masked_; |
||||
// Matrices for call to matchTemplate (have test type)
|
||||
Mat img_testtype_; |
||||
Mat templ_testtype_; |
||||
Mat mask_testtype_; |
||||
Mat result_; |
||||
|
||||
// Constants
|
||||
static const Size IMG_SIZE; |
||||
static const Size TEMPL_SIZE; |
||||
static const Point TEST_POINT; |
||||
}; |
||||
|
||||
// Arbitraryly chosen test constants
|
||||
const Size Imgproc_MatchTemplateWithMask::IMG_SIZE(160, 100); |
||||
const Size Imgproc_MatchTemplateWithMask::TEMPL_SIZE(21, 13); |
||||
const Point Imgproc_MatchTemplateWithMask::TEST_POINT(8, 9); |
||||
|
||||
void Imgproc_MatchTemplateWithMask::SetUp() |
||||
{ |
||||
int type = std::get<0>(GetParam()); |
||||
int type_mask = std::get<1>(GetParam()); |
||||
|
||||
// Matrices are created with the depth to test (for the call to matchTemplate()), but are also
|
||||
// converted to CV_32 for the test calculations, because matchTemplate() also only operates on
|
||||
// and returns CV_32.
|
||||
img_testtype_.create(IMG_SIZE, type); |
||||
templ_testtype_.create(TEMPL_SIZE, type); |
||||
mask_testtype_.create(TEMPL_SIZE, type_mask); |
||||
|
||||
randu(img_testtype_, 0, 10); |
||||
randu(templ_testtype_, 0, 10); |
||||
randu(mask_testtype_, 0, 5); |
||||
|
||||
img_testtype_.convertTo(img_, CV_32F); |
||||
templ_testtype_.convertTo(templ_, CV_32F); |
||||
mask_testtype_.convertTo(mask_, CV_32F); |
||||
if (CV_MAT_DEPTH(type_mask) == CV_8U) |
||||
{ |
||||
// CV_8U masks are interpreted as binary masks
|
||||
mask_.setTo(Scalar::all(1), mask_ != 0); |
||||
} |
||||
if (mask_.channels() != templ_.channels()) |
||||
{ |
||||
std::vector<Mat> mask_channels(templ_.channels(), mask_); |
||||
merge(mask_channels.data(), templ_.channels(), mask_); |
||||
} |
||||
|
||||
Rect roi(TEST_POINT, TEMPL_SIZE); |
||||
img_roi_masked_ = img_(roi).mul(mask_); |
||||
templ_masked_ = templ_.mul(mask_); |
||||
} |
||||
|
||||
TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplSQDIFF) |
||||
{ |
||||
matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_SQDIFF, mask_testtype_); |
||||
// Naive implementation for one point
|
||||
Mat temp = img_roi_masked_ - templ_masked_; |
||||
Scalar temp_s = sum(temp.mul(temp)); |
||||
double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; |
||||
|
||||
EXPECT_NEAR(val, result_.at<float>(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON); |
||||
} |
||||
|
||||
TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplSQDIFF_NORMED) |
||||
{ |
||||
matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_SQDIFF_NORMED, mask_testtype_); |
||||
// Naive implementation for one point
|
||||
Mat temp = img_roi_masked_ - templ_masked_; |
||||
Scalar temp_s = sum(temp.mul(temp)); |
||||
double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; |
||||
|
||||
// Normalization
|
||||
temp_s = sum(templ_masked_.mul(templ_masked_)); |
||||
double norm = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; |
||||
temp_s = sum(img_roi_masked_.mul(img_roi_masked_)); |
||||
norm *= temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; |
||||
norm = sqrt(norm); |
||||
val /= norm; |
||||
|
||||
EXPECT_NEAR(val, result_.at<float>(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON); |
||||
} |
||||
|
||||
TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCORR) |
||||
{ |
||||
matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_CCORR, mask_testtype_); |
||||
// Naive implementation for one point
|
||||
Scalar temp_s = sum(templ_masked_.mul(img_roi_masked_)); |
||||
double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; |
||||
|
||||
EXPECT_NEAR(val, result_.at<float>(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON); |
||||
} |
||||
|
||||
TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCORR_NORMED) |
||||
{ |
||||
matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_CCORR_NORMED, mask_testtype_); |
||||
// Naive implementation for one point
|
||||
Scalar temp_s = sum(templ_masked_.mul(img_roi_masked_)); |
||||
double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; |
||||
|
||||
// Normalization
|
||||
temp_s = sum(templ_masked_.mul(templ_masked_)); |
||||
double norm = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; |
||||
temp_s = sum(img_roi_masked_.mul(img_roi_masked_)); |
||||
norm *= temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; |
||||
norm = sqrt(norm); |
||||
val /= norm; |
||||
|
||||
EXPECT_NEAR(val, result_.at<float>(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON); |
||||
} |
||||
|
||||
TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCOEFF) |
||||
{ |
||||
matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_CCOEFF, mask_testtype_); |
||||
// Naive implementation for one point
|
||||
Scalar temp_s = sum(mask_); |
||||
for (int i = 0; i < 4; i++) |
||||
{ |
||||
if (temp_s[i] != 0.0) |
||||
temp_s[i] = 1.0 / temp_s[i]; |
||||
else |
||||
temp_s[i] = 1.0; |
||||
} |
||||
Mat temp = mask_.clone(); temp = temp_s; // Workaround to multiply Mat by Scalar
|
||||
Mat temp2 = mask_.clone(); temp2 = sum(templ_masked_); // Workaround to multiply Mat by Scalar
|
||||
Mat templx = templ_masked_ - mask_.mul(temp).mul(temp2); |
||||
temp2 = sum(img_roi_masked_); // Workaround to multiply Mat by Scalar
|
||||
Mat imgx = img_roi_masked_ - mask_.mul(temp).mul(temp2); |
||||
temp_s = sum(templx.mul(imgx)); |
||||
double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; |
||||
|
||||
EXPECT_NEAR(val, result_.at<float>(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON); |
||||
} |
||||
|
||||
TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCOEFF_NORMED) |
||||
{ |
||||
matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_CCOEFF_NORMED, mask_testtype_); |
||||
// Naive implementation for one point
|
||||
Scalar temp_s = sum(mask_); |
||||
for (int i = 0; i < 4; i++) |
||||
{ |
||||
if (temp_s[i] != 0.0) |
||||
temp_s[i] = 1.0 / temp_s[i]; |
||||
else |
||||
temp_s[i] = 1.0; |
||||
} |
||||
Mat temp = mask_.clone(); temp = temp_s; // Workaround to multiply Mat by Scalar
|
||||
Mat temp2 = mask_.clone(); temp2 = sum(templ_masked_); // Workaround to multiply Mat by Scalar
|
||||
Mat templx = templ_masked_ - mask_.mul(temp).mul(temp2); |
||||
temp2 = sum(img_roi_masked_); // Workaround to multiply Mat by Scalar
|
||||
Mat imgx = img_roi_masked_ - mask_.mul(temp).mul(temp2); |
||||
temp_s = sum(templx.mul(imgx)); |
||||
double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; |
||||
|
||||
// Normalization
|
||||
temp_s = sum(templx.mul(templx)); |
||||
double norm = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; |
||||
temp_s = sum(imgx.mul(imgx)); |
||||
norm *= temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3]; |
||||
norm = sqrt(norm); |
||||
val /= norm; |
||||
|
||||
EXPECT_NEAR(val, result_.at<float>(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(SingleChannelMask, Imgproc_MatchTemplateWithMask, |
||||
Combine( |
||||
Values(CV_32FC1, CV_32FC3, CV_8UC1, CV_8UC3), |
||||
Values(CV_32FC1, CV_8UC1))); |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MultiChannelMask, Imgproc_MatchTemplateWithMask, |
||||
Combine( |
||||
Values(CV_32FC3, CV_8UC3), |
||||
Values(CV_32FC3, CV_8UC3))); |
||||
|
||||
class Imgproc_MatchTemplateWithMask2 : public TestWithParam<std::tuple<MatType,MatType, |
||||
MatchTemplType>> |
||||
{ |
||||
protected: |
||||
// Member functions inherited from ::testing::Test
|
||||
void SetUp() override; |
||||
|
||||
// Data members
|
||||
Mat img_; |
||||
Mat templ_; |
||||
Mat mask_; |
||||
Mat result_withoutmask_; |
||||
Mat result_withmask_; |
||||
|
||||
// Constants
|
||||
static const Size IMG_SIZE; |
||||
static const Size TEMPL_SIZE; |
||||
}; |
||||
|
||||
// Arbitraryly chosen test constants
|
||||
const Size Imgproc_MatchTemplateWithMask2::IMG_SIZE(160, 100); |
||||
const Size Imgproc_MatchTemplateWithMask2::TEMPL_SIZE(21, 13); |
||||
|
||||
void Imgproc_MatchTemplateWithMask2::SetUp() |
||||
{ |
||||
int type = std::get<0>(GetParam()); |
||||
int type_mask = std::get<1>(GetParam()); |
||||
|
||||
img_.create(IMG_SIZE, type); |
||||
templ_.create(TEMPL_SIZE, type); |
||||
mask_.create(TEMPL_SIZE, type_mask); |
||||
|
||||
randu(img_, 0, 100); |
||||
randu(templ_, 0, 100); |
||||
|
||||
if (CV_MAT_DEPTH(type_mask) == CV_8U) |
||||
{ |
||||
// CV_8U implies binary mask, so all nonzero values should work
|
||||
randu(mask_, 1, 255); |
||||
} |
||||
else |
||||
{ |
||||
mask_ = Scalar(1, 1, 1, 1); |
||||
} |
||||
} |
||||
|
||||
TEST_P(Imgproc_MatchTemplateWithMask2, CompareWithAndWithoutMask) |
||||
{ |
||||
int method = std::get<2>(GetParam()); |
||||
|
||||
matchTemplate(img_, templ_, result_withmask_, method, mask_); |
||||
matchTemplate(img_, templ_, result_withoutmask_, method); |
||||
|
||||
// Get maximum result for relative error calculation
|
||||
double min_val, max_val; |
||||
minMaxLoc(abs(result_withmask_), &min_val, &max_val); |
||||
|
||||
// Get maximum of absolute diff for comparison
|
||||
double mindiff, maxdiff; |
||||
minMaxLoc(abs(result_withmask_ - result_withoutmask_), &mindiff, &maxdiff); |
||||
|
||||
EXPECT_LT(maxdiff, max_val*TEMPL_SIZE.area()*FLT_EPSILON); |
||||
} |
||||
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(SingleChannelMask, Imgproc_MatchTemplateWithMask2, |
||||
Combine( |
||||
Values(CV_32FC1, CV_32FC3, CV_8UC1, CV_8UC3), |
||||
Values(CV_32FC1, CV_8UC1), |
||||
Values(CV_TM_SQDIFF, CV_TM_SQDIFF_NORMED, CV_TM_CCORR, CV_TM_CCORR_NORMED, |
||||
CV_TM_CCOEFF, CV_TM_CCOEFF_NORMED))); |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MultiChannelMask, Imgproc_MatchTemplateWithMask2, |
||||
Combine( |
||||
Values(CV_32FC3, CV_8UC3), |
||||
Values(CV_32FC3, CV_8UC3), |
||||
Values(CV_TM_SQDIFF, CV_TM_SQDIFF_NORMED, CV_TM_CCORR, CV_TM_CCORR_NORMED, |
||||
CV_TM_CCOEFF, CV_TM_CCOEFF_NORMED))); |
||||
|
||||
}} // namespace
|
Loading…
Reference in new issue