|
|
|
@ -211,6 +211,7 @@ public: |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) { |
|
|
|
|
closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); |
|
|
|
|
closestDistSq[i] *= closestDistSq[i]; |
|
|
|
|
currentPot += closestDistSq[i]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -236,7 +237,10 @@ public: |
|
|
|
|
|
|
|
|
|
// Compute the new potential
|
|
|
|
|
double newPot = 0; |
|
|
|
|
for (int i = 0; i < n; i++) newPot += std::min( distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols), closestDistSq[i] ); |
|
|
|
|
for (int i = 0; i < n; i++) { |
|
|
|
|
DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); |
|
|
|
|
newPot += std::min( dist*dist, closestDistSq[i] ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Store the best result
|
|
|
|
|
if ((bestNewPot < 0)||(newPot < bestNewPot)) { |
|
|
|
@ -248,7 +252,10 @@ public: |
|
|
|
|
// Add the appropriate center
|
|
|
|
|
centers[centerCount] = indices[bestNewIndex]; |
|
|
|
|
currentPot = bestNewPot; |
|
|
|
|
for (int i = 0; i < n; i++) closestDistSq[i] = std::min( distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols), closestDistSq[i] ); |
|
|
|
|
for (int i = 0; i < n; i++) { |
|
|
|
|
DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols); |
|
|
|
|
closestDistSq[i] = std::min( dist*dist, closestDistSq[i] ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
centers_length = centerCount; |
|
|
|
|