Apply to KMeansIndex KMeanspp the same modification as in HierarchicalClusteringIndex

pull/2016/head
Pierre-Emmanuel Viel 11 years ago
parent 45e0e5f8e9
commit 5aeeaa6fce
  1. 11
      modules/flann/include/opencv2/flann/kmeans_index.h

@ -211,6 +211,7 @@ public:
for (int i = 0; i < n; i++) {
closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
closestDistSq[i] *= closestDistSq[i];
currentPot += closestDistSq[i];
}
@ -236,7 +237,10 @@ public:
// Compute the new potential
double newPot = 0;
for (int i = 0; i < n; i++) newPot += std::min( distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols), closestDistSq[i] );
for (int i = 0; i < n; i++) {
DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
newPot += std::min( dist*dist, closestDistSq[i] );
}
// Store the best result
if ((bestNewPot < 0)||(newPot < bestNewPot)) {
@ -248,7 +252,10 @@ public:
// Add the appropriate center
centers[centerCount] = indices[bestNewIndex];
currentPot = bestNewPot;
for (int i = 0; i < n; i++) closestDistSq[i] = std::min( distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols), closestDistSq[i] );
for (int i = 0; i < n; i++) {
DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols);
closestDistSq[i] = std::min( dist*dist, closestDistSq[i] );
}
}
centers_length = centerCount;

Loading…
Cancel
Save