Merge pull request #12219 from alalek:fix_assert_messages

pull/12267/head
Alexander Alekhin 7 years ago
commit 5ac9a2a7d0
  1. 36
      modules/core/include/opencv2/core/base.hpp
  2. 2
      modules/core/include/opencv2/core/cvdef.h
  3. 38
      modules/core/src/matmul.cpp
  4. 2
      modules/dnn/include/opencv2/dnn/shape_utils.hpp
  5. 2
      modules/dnn/src/caffe/caffe_importer.cpp
  6. 16
      modules/dnn/src/dnn.cpp
  7. 2
      modules/dnn/src/layers/batch_norm_layer.cpp
  8. 13
      modules/dnn/src/layers/convolution_layer.cpp
  9. 6
      modules/dnn/src/layers/crop_and_resize_layer.cpp
  10. 2
      modules/dnn/src/layers/eltwise_layer.cpp
  11. 6
      modules/dnn/src/layers/padding_layer.cpp
  12. 9
      modules/dnn/src/layers/pooling_layer.cpp
  13. 5
      modules/dnn/src/layers/prior_box_layer.cpp
  14. 2
      modules/dnn/src/layers/reshape_layer.cpp
  15. 6
      modules/dnn/src/layers/resize_layer.cpp
  16. 12
      modules/dnn/src/layers/scale_layer.cpp
  17. 4
      modules/dnn/src/nms.cpp
  18. 6
      modules/dnn/src/tensorflow/tf_graph_simplifier.cpp
  19. 25
      modules/dnn/src/tensorflow/tf_importer.cpp
  20. 4
      modules/dnn/src/torch/torch_importer.cpp
  21. 2
      modules/dnn/test/test_layers.cpp
  22. 2
      modules/highgui/src/window_w32.cpp
  23. 9
      samples/dnn/classification.cpp
  24. 2
      samples/dnn/custom_layers.hpp
  25. 9
      samples/dnn/segmentation.cpp
  26. 15
      samples/dnn/text_detection.cpp

@ -444,7 +444,13 @@ for example:
*/ */
#define CV_Error_( code, args ) cv::error( code, cv::format args, CV_Func, __FILE__, __LINE__ ) #define CV_Error_( code, args ) cv::error( code, cv::format args, CV_Func, __FILE__, __LINE__ )
#define CV_Assert_1( expr ) if(!!(expr)) ; else cv::error( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ ) /** @brief Checks a condition at runtime and throws exception if it fails
The macros CV_Assert (and CV_DbgAssert(expr)) evaluate the specified expression. If it is 0, the macros
raise an error (see cv::error). The macro CV_Assert checks the condition in both Debug and Release
configurations while CV_DbgAssert is only retained in the Debug configuration.
*/
#define CV_Assert( expr ) do { if(!!(expr)) ; else cv::error( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ ); } while(0)
//! @cond IGNORED //! @cond IGNORED
#define CV__ErrorNoReturn( code, msg ) cv::errorNoReturn( code, msg, CV_Func, __FILE__, __LINE__ ) #define CV__ErrorNoReturn( code, msg ) cv::errorNoReturn( code, msg, CV_Func, __FILE__, __LINE__ )
@ -454,8 +460,8 @@ for example:
#define CV_Error CV__ErrorNoReturn #define CV_Error CV__ErrorNoReturn
#undef CV_Error_ #undef CV_Error_
#define CV_Error_ CV__ErrorNoReturn_ #define CV_Error_ CV__ErrorNoReturn_
#undef CV_Assert_1 #undef CV_Assert
#define CV_Assert_1( expr ) if(!!(expr)) ; else cv::errorNoReturn( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ ) #define CV_Assert( expr ) do { if(!!(expr)) ; else cv::errorNoReturn( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ ); } while(0)
#else #else
// backward compatibility // backward compatibility
#define CV_ErrorNoReturn CV__ErrorNoReturn #define CV_ErrorNoReturn CV__ErrorNoReturn
@ -465,6 +471,13 @@ for example:
#endif // CV_STATIC_ANALYSIS #endif // CV_STATIC_ANALYSIS
//! @cond IGNORED
#ifdef OPENCV_FORCE_MULTIARG_ASSERT_CHECK
#define CV_Assert_1( expr ) do { if(!!(expr)) ; else cv::error( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ ); } while(0)
#else
#define CV_Assert_1 CV_Assert
#endif
#define CV_Assert_2( expr1, expr2 ) CV_Assert_1(expr1); CV_Assert_1(expr2) #define CV_Assert_2( expr1, expr2 ) CV_Assert_1(expr1); CV_Assert_1(expr2)
#define CV_Assert_3( expr1, expr2, expr3 ) CV_Assert_2(expr1, expr2); CV_Assert_1(expr3) #define CV_Assert_3( expr1, expr2, expr3 ) CV_Assert_2(expr1, expr2); CV_Assert_1(expr3)
#define CV_Assert_4( expr1, expr2, expr3, expr4 ) CV_Assert_3(expr1, expr2, expr3); CV_Assert_1(expr4) #define CV_Assert_4( expr1, expr2, expr3, expr4 ) CV_Assert_3(expr1, expr2, expr3); CV_Assert_1(expr4)
@ -475,21 +488,18 @@ for example:
#define CV_Assert_9( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9 ) CV_Assert_8(expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8 ); CV_Assert_1(expr9) #define CV_Assert_9( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9 ) CV_Assert_8(expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8 ); CV_Assert_1(expr9)
#define CV_Assert_10( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9, expr10 ) CV_Assert_9(expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9 ); CV_Assert_1(expr10) #define CV_Assert_10( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9, expr10 ) CV_Assert_9(expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9 ); CV_Assert_1(expr10)
#define CV_VA_NUM_ARGS_HELPER(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, N, ...) N #define CV_Assert_N(...) do { __CV_CAT(CV_Assert_, __CV_VA_NUM_ARGS(__VA_ARGS__)) (__VA_ARGS__); } while(0)
#define CV_VA_NUM_ARGS(...) CV_VA_NUM_ARGS_HELPER(__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
/** @brief Checks a condition at runtime and throws exception if it fails #ifdef OPENCV_FORCE_MULTIARG_ASSERT_CHECK
#undef CV_Assert
The macros CV_Assert (and CV_DbgAssert(expr)) evaluate the specified expression. If it is 0, the macros #define CV_Assert CV_Assert_N
raise an error (see cv::error). The macro CV_Assert checks the condition in both Debug and Release #endif
configurations while CV_DbgAssert is only retained in the Debug configuration. //! @endcond
*/
#define CV_Assert(...) do { CVAUX_CONCAT(CV_Assert_, CV_VA_NUM_ARGS(__VA_ARGS__)) (__VA_ARGS__); } while(0)
/** replaced with CV_Assert(expr) in Debug configuration */
#if defined _DEBUG || defined CV_STATIC_ANALYSIS #if defined _DEBUG || defined CV_STATIC_ANALYSIS
# define CV_DbgAssert(expr) CV_Assert(expr) # define CV_DbgAssert(expr) CV_Assert(expr)
#else #else
/** replaced with CV_Assert(expr) in Debug configuration */
# define CV_DbgAssert(expr) # define CV_DbgAssert(expr)
#endif #endif

@ -79,6 +79,8 @@ namespace cv { namespace debug_build_guard { } using namespace debug_build_guard
#define __CV_CAT(x, y) __CV_CAT_(x, y) #define __CV_CAT(x, y) __CV_CAT_(x, y)
#endif #endif
#define __CV_VA_NUM_ARGS_HELPER(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, N, ...) N
#define __CV_VA_NUM_ARGS(...) __CV_VA_NUM_ARGS_HELPER(__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
// undef problematic defines sometimes defined by system headers (windows.h in particular) // undef problematic defines sometimes defined by system headers (windows.h in particular)
#undef small #undef small

@ -796,7 +796,7 @@ static bool ocl_gemm( InputArray matA, InputArray matB, double alpha,
int depth = matA.depth(), cn = matA.channels(); int depth = matA.depth(), cn = matA.channels();
int type = CV_MAKETYPE(depth, cn); int type = CV_MAKETYPE(depth, cn);
CV_Assert( type == matB.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) ); CV_Assert_N( type == matB.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) );
const ocl::Device & dev = ocl::Device::getDefault(); const ocl::Device & dev = ocl::Device::getDefault();
bool doubleSupport = dev.doubleFPConfig() > 0; bool doubleSupport = dev.doubleFPConfig() > 0;
@ -1555,7 +1555,7 @@ void cv::gemm( InputArray matA, InputArray matB, double alpha,
Size a_size = A.size(), d_size; Size a_size = A.size(), d_size;
int len = 0, type = A.type(); int len = 0, type = A.type();
CV_Assert( type == B.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) ); CV_Assert_N( type == B.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) );
switch( flags & (GEMM_1_T|GEMM_2_T) ) switch( flags & (GEMM_1_T|GEMM_2_T) )
{ {
@ -1583,7 +1583,7 @@ void cv::gemm( InputArray matA, InputArray matB, double alpha,
if( !C.empty() ) if( !C.empty() )
{ {
CV_Assert( C.type() == type, CV_Assert_N( C.type() == type,
(((flags&GEMM_3_T) == 0 && C.rows == d_size.height && C.cols == d_size.width) || (((flags&GEMM_3_T) == 0 && C.rows == d_size.height && C.cols == d_size.width) ||
((flags&GEMM_3_T) != 0 && C.rows == d_size.width && C.cols == d_size.height))); ((flags&GEMM_3_T) != 0 && C.rows == d_size.width && C.cols == d_size.height)));
} }
@ -2457,7 +2457,7 @@ void cv::calcCovarMatrix( const Mat* data, int nsamples, Mat& covar, Mat& _mean,
{ {
CV_INSTRUMENT_REGION() CV_INSTRUMENT_REGION()
CV_Assert( data, nsamples > 0 ); CV_Assert_N( data, nsamples > 0 );
Size size = data[0].size(); Size size = data[0].size();
int sz = size.width * size.height, esz = (int)data[0].elemSize(); int sz = size.width * size.height, esz = (int)data[0].elemSize();
int type = data[0].type(); int type = data[0].type();
@ -2480,7 +2480,7 @@ void cv::calcCovarMatrix( const Mat* data, int nsamples, Mat& covar, Mat& _mean,
for( int i = 0; i < nsamples; i++ ) for( int i = 0; i < nsamples; i++ )
{ {
CV_Assert( data[i].size() == size, data[i].type() == type ); CV_Assert_N( data[i].size() == size, data[i].type() == type );
if( data[i].isContinuous() ) if( data[i].isContinuous() )
memcpy( _data.ptr(i), data[i].ptr(), sz*esz ); memcpy( _data.ptr(i), data[i].ptr(), sz*esz );
else else
@ -2516,7 +2516,7 @@ void cv::calcCovarMatrix( InputArray _src, OutputArray _covar, InputOutputArray
int i = 0; int i = 0;
for(std::vector<cv::Mat>::iterator each = src.begin(); each != src.end(); ++each, ++i ) for(std::vector<cv::Mat>::iterator each = src.begin(); each != src.end(); ++each, ++i )
{ {
CV_Assert( (*each).size() == size, (*each).type() == type ); CV_Assert_N( (*each).size() == size, (*each).type() == type );
Mat dataRow(size.height, size.width, type, _data.ptr(i)); Mat dataRow(size.height, size.width, type, _data.ptr(i));
(*each).copyTo(dataRow); (*each).copyTo(dataRow);
} }
@ -2595,7 +2595,7 @@ double cv::Mahalanobis( InputArray _v1, InputArray _v2, InputArray _icovar )
AutoBuffer<double> buf(len); AutoBuffer<double> buf(len);
double result = 0; double result = 0;
CV_Assert( type == v2.type(), type == icovar.type(), CV_Assert_N( type == v2.type(), type == icovar.type(),
sz == v2.size(), len == icovar.rows && len == icovar.cols ); sz == v2.size(), len == icovar.rows && len == icovar.cols );
sz.width *= v1.channels(); sz.width *= v1.channels();
@ -2888,7 +2888,7 @@ void cv::mulTransposed( InputArray _src, OutputArray _dst, bool ata,
if( !delta.empty() ) if( !delta.empty() )
{ {
CV_Assert( delta.channels() == 1, CV_Assert_N( delta.channels() == 1,
(delta.rows == src.rows || delta.rows == 1), (delta.rows == src.rows || delta.rows == 1),
(delta.cols == src.cols || delta.cols == 1)); (delta.cols == src.cols || delta.cols == 1));
if( delta.type() != dtype ) if( delta.type() != dtype )
@ -3291,7 +3291,7 @@ double Mat::dot(InputArray _mat) const
Mat mat = _mat.getMat(); Mat mat = _mat.getMat();
int cn = channels(); int cn = channels();
DotProdFunc func = getDotProdFunc(depth()); DotProdFunc func = getDotProdFunc(depth());
CV_Assert( mat.type() == type(), mat.size == size, func != 0 ); CV_Assert_N( mat.type() == type(), mat.size == size, func != 0 );
if( isContinuous() && mat.isContinuous() ) if( isContinuous() && mat.isContinuous() )
{ {
@ -3327,7 +3327,7 @@ CV_IMPL void cvGEMM( const CvArr* Aarr, const CvArr* Barr, double alpha,
if( Carr ) if( Carr )
C = cv::cvarrToMat(Carr); C = cv::cvarrToMat(Carr);
CV_Assert( (D.rows == ((flags & CV_GEMM_A_T) == 0 ? A.rows : A.cols)), CV_Assert_N( (D.rows == ((flags & CV_GEMM_A_T) == 0 ? A.rows : A.cols)),
(D.cols == ((flags & CV_GEMM_B_T) == 0 ? B.cols : B.rows)), (D.cols == ((flags & CV_GEMM_B_T) == 0 ? B.cols : B.rows)),
D.type() == A.type() ); D.type() == A.type() );
@ -3350,7 +3350,7 @@ cvTransform( const CvArr* srcarr, CvArr* dstarr,
m = _m; m = _m;
} }
CV_Assert( dst.depth() == src.depth(), dst.channels() == m.rows ); CV_Assert_N( dst.depth() == src.depth(), dst.channels() == m.rows );
cv::transform( src, dst, m ); cv::transform( src, dst, m );
} }
@ -3360,7 +3360,7 @@ cvPerspectiveTransform( const CvArr* srcarr, CvArr* dstarr, const CvMat* mat )
{ {
cv::Mat m = cv::cvarrToMat(mat), src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); cv::Mat m = cv::cvarrToMat(mat), src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( dst.type() == src.type(), dst.channels() == m.rows-1 ); CV_Assert_N( dst.type() == src.type(), dst.channels() == m.rows-1 );
cv::perspectiveTransform( src, dst, m ); cv::perspectiveTransform( src, dst, m );
} }
@ -3370,7 +3370,7 @@ CV_IMPL void cvScaleAdd( const CvArr* srcarr1, CvScalar scale,
{ {
cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
CV_Assert( src1.size == dst.size, src1.type() == dst.type() ); CV_Assert_N( src1.size == dst.size, src1.type() == dst.type() );
cv::scaleAdd( src1, scale.val[0], cv::cvarrToMat(srcarr2), dst ); cv::scaleAdd( src1, scale.val[0], cv::cvarrToMat(srcarr2), dst );
} }
@ -3380,7 +3380,7 @@ cvCalcCovarMatrix( const CvArr** vecarr, int count,
CvArr* covarr, CvArr* avgarr, int flags ) CvArr* covarr, CvArr* avgarr, int flags )
{ {
cv::Mat cov0 = cv::cvarrToMat(covarr), cov = cov0, mean0, mean; cv::Mat cov0 = cv::cvarrToMat(covarr), cov = cov0, mean0, mean;
CV_Assert( vecarr != 0, count >= 1 ); CV_Assert_N( vecarr != 0, count >= 1 );
if( avgarr ) if( avgarr )
mean = mean0 = cv::cvarrToMat(avgarr); mean = mean0 = cv::cvarrToMat(avgarr);
@ -3460,7 +3460,7 @@ cvCalcPCA( const CvArr* data_arr, CvArr* avg_arr, CvArr* eigenvals, CvArr* eigen
int ecount0 = evals0.cols + evals0.rows - 1; int ecount0 = evals0.cols + evals0.rows - 1;
int ecount = evals.cols + evals.rows - 1; int ecount = evals.cols + evals.rows - 1;
CV_Assert( (evals0.cols == 1 || evals0.rows == 1), CV_Assert_N( (evals0.cols == 1 || evals0.rows == 1),
ecount0 <= ecount, ecount0 <= ecount,
evects0.cols == evects.cols, evects0.cols == evects.cols,
evects0.rows == ecount0 ); evects0.rows == ecount0 );
@ -3491,12 +3491,12 @@ cvProjectPCA( const CvArr* data_arr, const CvArr* avg_arr,
int n; int n;
if( mean.rows == 1 ) if( mean.rows == 1 )
{ {
CV_Assert(dst.cols <= evects.rows, dst.rows == data.rows); CV_Assert_N(dst.cols <= evects.rows, dst.rows == data.rows);
n = dst.cols; n = dst.cols;
} }
else else
{ {
CV_Assert(dst.rows <= evects.rows, dst.cols == data.cols); CV_Assert_N(dst.rows <= evects.rows, dst.cols == data.cols);
n = dst.rows; n = dst.rows;
} }
pca.eigenvectors = evects.rowRange(0, n); pca.eigenvectors = evects.rowRange(0, n);
@ -3522,12 +3522,12 @@ cvBackProjectPCA( const CvArr* proj_arr, const CvArr* avg_arr,
int n; int n;
if( mean.rows == 1 ) if( mean.rows == 1 )
{ {
CV_Assert(data.cols <= evects.rows, dst.rows == data.rows); CV_Assert_N(data.cols <= evects.rows, dst.rows == data.rows);
n = data.cols; n = data.cols;
} }
else else
{ {
CV_Assert(data.rows <= evects.rows, dst.cols == data.cols); CV_Assert_N(data.rows <= evects.rows, dst.cols == data.cols);
n = data.rows; n = data.rows;
} }
pca.eigenvectors = evects.rowRange(0, n); pca.eigenvectors = evects.rowRange(0, n);

@ -209,7 +209,7 @@ inline Range clamp(const Range& r, int axisSize)
{ {
Range clamped(std::max(r.start, 0), Range clamped(std::max(r.start, 0),
r.end > 0 ? std::min(r.end, axisSize) : axisSize + r.end + 1); r.end > 0 ? std::min(r.end, axisSize) : axisSize + r.end + 1);
CV_Assert(clamped.start < clamped.end, clamped.end <= axisSize); CV_Assert_N(clamped.start < clamped.end, clamped.end <= axisSize);
return clamped; return clamped;
} }

@ -359,7 +359,7 @@ public:
{ {
if (!layerParams.get<bool>("use_global_stats", true)) if (!layerParams.get<bool>("use_global_stats", true))
{ {
CV_Assert(layer.bottom_size() == 1, layer.top_size() == 1); CV_Assert_N(layer.bottom_size() == 1, layer.top_size() == 1);
LayerParams mvnParams; LayerParams mvnParams;
mvnParams.set("eps", layerParams.get<float>("eps", 1e-5)); mvnParams.set("eps", layerParams.get<float>("eps", 1e-5));

@ -134,7 +134,7 @@ void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalef
if (ddepth == CV_8U) if (ddepth == CV_8U)
{ {
CV_CheckEQ(scalefactor, 1.0, "Scaling is not supported for CV_8U blob depth"); CV_CheckEQ(scalefactor, 1.0, "Scaling is not supported for CV_8U blob depth");
CV_Assert(mean_ == Scalar(), "Mean subtraction is not supported for CV_8U blob depth"); CV_Assert(mean_ == Scalar() && "Mean subtraction is not supported for CV_8U blob depth");
} }
std::vector<Mat> images; std::vector<Mat> images;
@ -451,8 +451,8 @@ struct DataLayer : public Layer
{ {
double scale = scaleFactors[i]; double scale = scaleFactors[i];
Scalar& mean = means[i]; Scalar& mean = means[i];
CV_Assert(mean == Scalar() || inputsData[i].size[1] <= 4, CV_Assert(mean == Scalar() || inputsData[i].size[1] <= 4);
outputs[i].type() == CV_32F); CV_CheckTypeEQ(outputs[i].type(), CV_32FC1, "");
bool singleMean = true; bool singleMean = true;
for (int j = 1; j < std::min(4, inputsData[i].size[1]) && singleMean; ++j) for (int j = 1; j < std::min(4, inputsData[i].size[1]) && singleMean; ++j)
@ -569,7 +569,7 @@ struct DataLayer : public Layer
void finalize(const std::vector<Mat*>&, std::vector<Mat>& outputs) CV_OVERRIDE void finalize(const std::vector<Mat*>&, std::vector<Mat>& outputs) CV_OVERRIDE
{ {
CV_Assert(outputs.size() == scaleFactors.size(), outputs.size() == means.size(), CV_Assert_N(outputs.size() == scaleFactors.size(), outputs.size() == means.size(),
inputsData.size() == outputs.size()); inputsData.size() == outputs.size());
skip = true; skip = true;
for (int i = 0; skip && i < inputsData.size(); ++i) for (int i = 0; skip && i < inputsData.size(); ++i)
@ -1237,7 +1237,7 @@ struct Net::Impl
void initHalideBackend() void initHalideBackend()
{ {
CV_TRACE_FUNCTION(); CV_TRACE_FUNCTION();
CV_Assert(preferableBackend == DNN_BACKEND_HALIDE, haveHalide()); CV_Assert_N(preferableBackend == DNN_BACKEND_HALIDE, haveHalide());
// Iterator to current layer. // Iterator to current layer.
MapIdToLayerData::iterator it = layers.begin(); MapIdToLayerData::iterator it = layers.begin();
@ -1330,7 +1330,7 @@ struct Net::Impl
void initInfEngineBackend() void initInfEngineBackend()
{ {
CV_TRACE_FUNCTION(); CV_TRACE_FUNCTION();
CV_Assert(preferableBackend == DNN_BACKEND_INFERENCE_ENGINE, haveInfEngine()); CV_Assert_N(preferableBackend == DNN_BACKEND_INFERENCE_ENGINE, haveInfEngine());
#ifdef HAVE_INF_ENGINE #ifdef HAVE_INF_ENGINE
MapIdToLayerData::iterator it; MapIdToLayerData::iterator it;
Ptr<InfEngineBackendNet> net; Ptr<InfEngineBackendNet> net;
@ -1827,7 +1827,7 @@ struct Net::Impl
// To prevent memory collisions (i.e. when input of // To prevent memory collisions (i.e. when input of
// [conv] and output of [eltwise] is the same blob) // [conv] and output of [eltwise] is the same blob)
// we allocate a new blob. // we allocate a new blob.
CV_Assert(ld.outputBlobs.size() == 1, ld.outputBlobsWrappers.size() == 1); CV_Assert_N(ld.outputBlobs.size() == 1, ld.outputBlobsWrappers.size() == 1);
ld.outputBlobs[0] = ld.outputBlobs[0].clone(); ld.outputBlobs[0] = ld.outputBlobs[0].clone();
ld.outputBlobsWrappers[0] = wrap(ld.outputBlobs[0]); ld.outputBlobsWrappers[0] = wrap(ld.outputBlobs[0]);
@ -1984,7 +1984,7 @@ struct Net::Impl
} }
// Layers that refer old input Mat will refer to the // Layers that refer old input Mat will refer to the
// new data but the same Mat object. // new data but the same Mat object.
CV_Assert(curr_output.data == output_slice.data, oldPtr == &curr_output); CV_Assert_N(curr_output.data == output_slice.data, oldPtr == &curr_output);
} }
ld.skip = true; ld.skip = true;
printf_(("\toptimized out Concat layer %s\n", concatLayer->name.c_str())); printf_(("\toptimized out Concat layer %s\n", concatLayer->name.c_str()));

@ -48,7 +48,7 @@ public:
float varMeanScale = 1.f; float varMeanScale = 1.f;
if (!hasWeights && !hasBias && blobs.size() > 2 && useGlobalStats) { if (!hasWeights && !hasBias && blobs.size() > 2 && useGlobalStats) {
CV_Assert(blobs.size() == 3, blobs[2].type() == CV_32F); CV_Assert(blobs.size() == 3); CV_CheckTypeEQ(blobs[2].type(), CV_32FC1, "");
varMeanScale = blobs[2].at<float>(0); varMeanScale = blobs[2].at<float>(0);
if (varMeanScale != 0) if (varMeanScale != 0)
varMeanScale = 1/varMeanScale; varMeanScale = 1/varMeanScale;

@ -349,8 +349,8 @@ public:
// (conv(I) + b1 ) * w + b2 // (conv(I) + b1 ) * w + b2
// means to replace convolution's weights to [w*conv(I)] and bias to [b1 * w + b2] // means to replace convolution's weights to [w*conv(I)] and bias to [b1 * w + b2]
const int outCn = weightsMat.size[0]; const int outCn = weightsMat.size[0];
CV_Assert(!weightsMat.empty(), biasvec.size() == outCn + 2, CV_Assert_N(!weightsMat.empty(), biasvec.size() == outCn + 2,
w.empty() || outCn == w.total(), b.empty() || outCn == b.total()); w.empty() || outCn == w.total(), b.empty() || outCn == b.total());
if (!w.empty()) if (!w.empty())
{ {
@ -512,13 +512,14 @@ public:
Size kernel, Size pad, Size stride, Size dilation, Size kernel, Size pad, Size stride, Size dilation,
const ActivationLayer* activ, int ngroups, int nstripes ) const ActivationLayer* activ, int ngroups, int nstripes )
{ {
CV_Assert( input.dims == 4 && output.dims == 4, CV_Assert_N(
input.dims == 4 && output.dims == 4,
input.size[0] == output.size[0], input.size[0] == output.size[0],
weights.rows == output.size[1], weights.rows == output.size[1],
weights.cols == (input.size[1]/ngroups)*kernel.width*kernel.height, weights.cols == (input.size[1]/ngroups)*kernel.width*kernel.height,
input.type() == output.type(), input.type() == output.type(),
input.type() == weights.type(), input.type() == weights.type(),
input.type() == CV_32F, input.type() == CV_32FC1,
input.isContinuous(), input.isContinuous(),
output.isContinuous(), output.isContinuous(),
biasvec.size() == (size_t)output.size[1]+2); biasvec.size() == (size_t)output.size[1]+2);
@ -1009,8 +1010,8 @@ public:
name.c_str(), inputs[0]->size[0], inputs[0]->size[1], inputs[0]->size[2], inputs[0]->size[3], name.c_str(), inputs[0]->size[0], inputs[0]->size[1], inputs[0]->size[2], inputs[0]->size[3],
kernel.width, kernel.height, pad.width, pad.height, kernel.width, kernel.height, pad.width, pad.height,
stride.width, stride.height, dilation.width, dilation.height);*/ stride.width, stride.height, dilation.width, dilation.height);*/
CV_Assert(inputs.size() == (size_t)1, inputs[0]->size[1] % blobs[0].size[1] == 0, CV_Assert_N(inputs.size() == (size_t)1, inputs[0]->size[1] % blobs[0].size[1] == 0,
outputs.size() == 1, inputs[0]->data != outputs[0].data); outputs.size() == 1, inputs[0]->data != outputs[0].data);
int ngroups = inputs[0]->size[1]/blobs[0].size[1]; int ngroups = inputs[0]->size[1]/blobs[0].size[1];
CV_Assert(outputs[0].size[1] % ngroups == 0); CV_Assert(outputs[0].size[1] % ngroups == 0);

@ -14,7 +14,7 @@ class CropAndResizeLayerImpl CV_FINAL : public CropAndResizeLayer
public: public:
CropAndResizeLayerImpl(const LayerParams& params) CropAndResizeLayerImpl(const LayerParams& params)
{ {
CV_Assert(params.has("width"), params.has("height")); CV_Assert_N(params.has("width"), params.has("height"));
outWidth = params.get<float>("width"); outWidth = params.get<float>("width");
outHeight = params.get<float>("height"); outHeight = params.get<float>("height");
} }
@ -24,7 +24,7 @@ public:
std::vector<MatShape> &outputs, std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE std::vector<MatShape> &internals) const CV_OVERRIDE
{ {
CV_Assert(inputs.size() == 2, inputs[0].size() == 4); CV_Assert_N(inputs.size() == 2, inputs[0].size() == 4);
if (inputs[0][0] != 1) if (inputs[0][0] != 1)
CV_Error(Error::StsNotImplemented, ""); CV_Error(Error::StsNotImplemented, "");
outputs.resize(1, MatShape(4)); outputs.resize(1, MatShape(4));
@ -56,7 +56,7 @@ public:
const int inpWidth = inp.size[3]; const int inpWidth = inp.size[3];
const int inpSpatialSize = inpHeight * inpWidth; const int inpSpatialSize = inpHeight * inpWidth;
const int outSpatialSize = outHeight * outWidth; const int outSpatialSize = outHeight * outWidth;
CV_Assert(inp.isContinuous(), out.isContinuous()); CV_Assert_N(inp.isContinuous(), out.isContinuous());
for (int b = 0; b < boxes.rows; ++b) for (int b = 0; b < boxes.rows; ++b)
{ {

@ -139,7 +139,7 @@ public:
const std::vector<float>& coeffs, EltwiseOp op, const std::vector<float>& coeffs, EltwiseOp op,
const ActivationLayer* activ, int nstripes) const ActivationLayer* activ, int nstripes)
{ {
CV_Assert(1 < dst.dims && dst.dims <= 4, dst.type() == CV_32F, dst.isContinuous()); CV_Check(dst.dims, 1 < dst.dims && dst.dims <= 4, ""); CV_CheckTypeEQ(dst.type(), CV_32FC1, ""); CV_Assert(dst.isContinuous());
CV_Assert(coeffs.empty() || coeffs.size() == (size_t)nsrcs); CV_Assert(coeffs.empty() || coeffs.size() == (size_t)nsrcs);
for( int i = 0; i > nsrcs; i++ ) for( int i = 0; i > nsrcs; i++ )

@ -38,7 +38,7 @@ public:
{ {
paddings[i].first = paddingsParam.get<int>(i * 2); // Pad before. paddings[i].first = paddingsParam.get<int>(i * 2); // Pad before.
paddings[i].second = paddingsParam.get<int>(i * 2 + 1); // Pad after. paddings[i].second = paddingsParam.get<int>(i * 2 + 1); // Pad after.
CV_Assert(paddings[i].first >= 0, paddings[i].second >= 0); CV_Assert_N(paddings[i].first >= 0, paddings[i].second >= 0);
} }
} }
@ -127,8 +127,8 @@ public:
const int padBottom = outHeight - dstRanges[2].end; const int padBottom = outHeight - dstRanges[2].end;
const int padLeft = dstRanges[3].start; const int padLeft = dstRanges[3].start;
const int padRight = outWidth - dstRanges[3].end; const int padRight = outWidth - dstRanges[3].end;
CV_Assert(padTop < inpHeight, padBottom < inpHeight, CV_CheckLT(padTop, inpHeight, ""); CV_CheckLT(padBottom, inpHeight, "");
padLeft < inpWidth, padRight < inpWidth); CV_CheckLT(padLeft, inpWidth, ""); CV_CheckLT(padRight, inpWidth, "");
for (size_t n = 0; n < inputs[0]->size[0]; ++n) for (size_t n = 0; n < inputs[0]->size[0]; ++n)
{ {

@ -216,15 +216,15 @@ public:
switch (type) switch (type)
{ {
case MAX: case MAX:
CV_Assert(inputs.size() == 1, outputs.size() == 2); CV_Assert_N(inputs.size() == 1, outputs.size() == 2);
maxPooling(*inputs[0], outputs[0], outputs[1]); maxPooling(*inputs[0], outputs[0], outputs[1]);
break; break;
case AVE: case AVE:
CV_Assert(inputs.size() == 1, outputs.size() == 1); CV_Assert_N(inputs.size() == 1, outputs.size() == 1);
avePooling(*inputs[0], outputs[0]); avePooling(*inputs[0], outputs[0]);
break; break;
case ROI: case PSROI: case ROI: case PSROI:
CV_Assert(inputs.size() == 2, outputs.size() == 1); CV_Assert_N(inputs.size() == 2, outputs.size() == 1);
roiPooling(*inputs[0], *inputs[1], outputs[0]); roiPooling(*inputs[0], *inputs[1], outputs[0]);
break; break;
default: default:
@ -311,7 +311,8 @@ public:
Size stride, Size pad, bool avePoolPaddedArea, int poolingType, float spatialScale, Size stride, Size pad, bool avePoolPaddedArea, int poolingType, float spatialScale,
bool computeMaxIdx, int nstripes) bool computeMaxIdx, int nstripes)
{ {
CV_Assert(src.isContinuous(), dst.isContinuous(), CV_Assert_N(
src.isContinuous(), dst.isContinuous(),
src.type() == CV_32F, src.type() == dst.type(), src.type() == CV_32F, src.type() == dst.type(),
src.dims == 4, dst.dims == 4, src.dims == 4, dst.dims == 4,
((poolingType == ROI || poolingType == PSROI) && dst.size[0] ==rois.size[0] || src.size[0] == dst.size[0]), ((poolingType == ROI || poolingType == PSROI) && dst.size[0] ==rois.size[0] || src.size[0] == dst.size[0]),

@ -254,7 +254,7 @@ public:
} }
if (params.has("offset_h") || params.has("offset_w")) if (params.has("offset_h") || params.has("offset_w"))
{ {
CV_Assert(!params.has("offset"), params.has("offset_h"), params.has("offset_w")); CV_Assert_N(!params.has("offset"), params.has("offset_h"), params.has("offset_w"));
getParams("offset_h", params, &_offsetsY); getParams("offset_h", params, &_offsetsY);
getParams("offset_w", params, &_offsetsX); getParams("offset_w", params, &_offsetsX);
CV_Assert(_offsetsX.size() == _offsetsY.size()); CV_Assert(_offsetsX.size() == _offsetsY.size());
@ -299,7 +299,8 @@ public:
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs) CV_OVERRIDE void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs) CV_OVERRIDE
{ {
CV_Assert(inputs.size() > 1, inputs[0]->dims == 4, inputs[1]->dims == 4); CV_CheckGT(inputs.size(), (size_t)1, "");
CV_CheckEQ(inputs[0]->dims, 4, ""); CV_CheckEQ(inputs[1]->dims, 4, "");
int layerWidth = inputs[0]->size[3]; int layerWidth = inputs[0]->size[3];
int layerHeight = inputs[0]->size[2]; int layerHeight = inputs[0]->size[2];

@ -197,7 +197,7 @@ public:
} }
else else
{ {
CV_Assert(inputs.size() == 2, total(inputs[0]) == total(inputs[1])); CV_Assert_N(inputs.size() == 2, total(inputs[0]) == total(inputs[1]));
outputs.assign(1, inputs[1]); outputs.assign(1, inputs[1]);
} }
return true; return true;

@ -43,7 +43,7 @@ public:
std::vector<MatShape> &outputs, std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE std::vector<MatShape> &internals) const CV_OVERRIDE
{ {
CV_Assert(inputs.size() == 1, inputs[0].size() == 4); CV_Assert_N(inputs.size() == 1, inputs[0].size() == 4);
outputs.resize(1, inputs[0]); outputs.resize(1, inputs[0]);
outputs[0][2] = outHeight > 0 ? outHeight : (outputs[0][2] * zoomFactorHeight); outputs[0][2] = outHeight > 0 ? outHeight : (outputs[0][2] * zoomFactorHeight);
outputs[0][3] = outWidth > 0 ? outWidth : (outputs[0][3] * zoomFactorWidth); outputs[0][3] = outWidth > 0 ? outWidth : (outputs[0][3] * zoomFactorWidth);
@ -106,7 +106,7 @@ public:
const int inpSpatialSize = inpHeight * inpWidth; const int inpSpatialSize = inpHeight * inpWidth;
const int outSpatialSize = outHeight * outWidth; const int outSpatialSize = outHeight * outWidth;
const int numPlanes = inp.size[0] * inp.size[1]; const int numPlanes = inp.size[0] * inp.size[1];
CV_Assert(inp.isContinuous(), out.isContinuous()); CV_Assert_N(inp.isContinuous(), out.isContinuous());
Mat inpPlanes = inp.reshape(1, numPlanes * inpHeight); Mat inpPlanes = inp.reshape(1, numPlanes * inpHeight);
Mat outPlanes = out.reshape(1, numPlanes * outHeight); Mat outPlanes = out.reshape(1, numPlanes * outHeight);
@ -184,7 +184,7 @@ public:
std::vector<MatShape> &outputs, std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE std::vector<MatShape> &internals) const CV_OVERRIDE
{ {
CV_Assert(inputs.size() == 1, inputs[0].size() == 4); CV_Assert_N(inputs.size() == 1, inputs[0].size() == 4);
outputs.resize(1, inputs[0]); outputs.resize(1, inputs[0]);
outputs[0][2] = outHeight > 0 ? outHeight : (1 + zoomFactorHeight * (outputs[0][2] - 1)); outputs[0][2] = outHeight > 0 ? outHeight : (1 + zoomFactorHeight * (outputs[0][2] - 1));
outputs[0][3] = outWidth > 0 ? outWidth : (1 + zoomFactorWidth * (outputs[0][3] - 1)); outputs[0][3] = outWidth > 0 ? outWidth : (1 + zoomFactorWidth * (outputs[0][3] - 1));

@ -64,7 +64,7 @@ public:
{ {
CV_TRACE_FUNCTION(); CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_Assert(outputs.size() == 1, !blobs.empty() || inputs.size() == 2); CV_Assert_N(outputs.size() == 1, !blobs.empty() || inputs.size() == 2);
Mat &inpBlob = *inputs[0]; Mat &inpBlob = *inputs[0];
Mat &outBlob = outputs[0]; Mat &outBlob = outputs[0];
@ -76,7 +76,9 @@ public:
weights = weights.reshape(1, 1); weights = weights.reshape(1, 1);
MatShape inpShape = shape(inpBlob); MatShape inpShape = shape(inpBlob);
const int numWeights = !weights.empty() ? weights.total() : bias.total(); const int numWeights = !weights.empty() ? weights.total() : bias.total();
CV_Assert(numWeights != 0, !hasWeights || !hasBias || weights.total() == bias.total()); CV_Assert(numWeights != 0);
if (hasWeights && hasBias)
CV_CheckEQ(weights.total(), bias.total(), "Incompatible weights/bias blobs");
int endAxis; int endAxis;
for (endAxis = axis + 1; endAxis <= inpBlob.dims; ++endAxis) for (endAxis = axis + 1; endAxis <= inpBlob.dims; ++endAxis)
@ -84,9 +86,9 @@ public:
if (total(inpShape, axis, endAxis) == numWeights) if (total(inpShape, axis, endAxis) == numWeights)
break; break;
} }
CV_Assert(total(inpShape, axis, endAxis) == numWeights, CV_Assert(total(inpShape, axis, endAxis) == numWeights);
!hasBias || numWeights == bias.total(), CV_Assert(!hasBias || numWeights == bias.total());
inpBlob.type() == CV_32F && outBlob.type() == CV_32F); CV_CheckTypeEQ(inpBlob.type(), CV_32FC1, ""); CV_CheckTypeEQ(outBlob.type(), CV_32FC1, "");
int numSlices = total(inpShape, 0, axis); int numSlices = total(inpShape, 0, axis);
float* inpData = (float*)inpBlob.data; float* inpData = (float*)inpBlob.data;

@ -25,7 +25,7 @@ void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
const float score_threshold, const float nms_threshold, const float score_threshold, const float nms_threshold,
std::vector<int>& indices, const float eta, const int top_k) std::vector<int>& indices, const float eta, const int top_k)
{ {
CV_Assert(bboxes.size() == scores.size(), score_threshold >= 0, CV_Assert_N(bboxes.size() == scores.size(), score_threshold >= 0,
nms_threshold >= 0, eta > 0); nms_threshold >= 0, eta > 0);
NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, rectOverlap); NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, rectOverlap);
} }
@ -46,7 +46,7 @@ void NMSBoxes(const std::vector<RotatedRect>& bboxes, const std::vector<float>&
const float score_threshold, const float nms_threshold, const float score_threshold, const float nms_threshold,
std::vector<int>& indices, const float eta, const int top_k) std::vector<int>& indices, const float eta, const int top_k)
{ {
CV_Assert(bboxes.size() == scores.size(), score_threshold >= 0, CV_Assert_N(bboxes.size() == scores.size(), score_threshold >= 0,
nms_threshold >= 0, eta > 0); nms_threshold >= 0, eta > 0);
NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, rotatedRectIOU); NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, rotatedRectIOU);
} }

@ -221,7 +221,7 @@ public:
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{ {
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor()); Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor());
CV_Assert(epsMat.total() == 1, epsMat.type() == CV_32FC1); CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, "");
fusedNode->mutable_input()->RemoveLast(); fusedNode->mutable_input()->RemoveLast();
fusedNode->clear_attr(); fusedNode->clear_attr();
@ -256,7 +256,7 @@ public:
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{ {
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor()); Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor());
CV_Assert(epsMat.total() == 1, epsMat.type() == CV_32FC1); CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, "");
fusedNode->mutable_input()->RemoveLast(); fusedNode->mutable_input()->RemoveLast();
fusedNode->clear_attr(); fusedNode->clear_attr();
@ -593,7 +593,7 @@ public:
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{ {
Mat factorsMat = getTensorContent(inputNodes[1]->attr().at("value").tensor()); Mat factorsMat = getTensorContent(inputNodes[1]->attr().at("value").tensor());
CV_Assert(factorsMat.total() == 2, factorsMat.type() == CV_32SC1); CV_CheckEQ(factorsMat.total(), (size_t)2, ""); CV_CheckTypeEQ(factorsMat.type(), CV_32SC1, "");
// Height scale factor // Height scale factor
tensorflow::TensorProto* factorY = inputNodes[1]->mutable_attr()->at("value").mutable_tensor(); tensorflow::TensorProto* factorY = inputNodes[1]->mutable_attr()->at("value").mutable_tensor();

@ -545,8 +545,8 @@ const tensorflow::TensorProto& TFImporter::getConstBlob(const tensorflow::NodeDe
} }
else else
{ {
CV_Assert(nodeIdx < netTxt.node_size(), CV_Assert_N(nodeIdx < netTxt.node_size(),
netTxt.node(nodeIdx).name() == kernel_inp.name); netTxt.node(nodeIdx).name() == kernel_inp.name);
return netTxt.node(nodeIdx).attr().at("value").tensor(); return netTxt.node(nodeIdx).attr().at("value").tensor();
} }
} }
@ -587,8 +587,8 @@ static void addConstNodes(tensorflow::GraphDef& net, std::map<String, int>& cons
Mat qMin = getTensorContent(net.node(minId).attr().at("value").tensor()); Mat qMin = getTensorContent(net.node(minId).attr().at("value").tensor());
Mat qMax = getTensorContent(net.node(maxId).attr().at("value").tensor()); Mat qMax = getTensorContent(net.node(maxId).attr().at("value").tensor());
CV_Assert(qMin.total() == 1, qMin.type() == CV_32FC1, CV_Assert_N(qMin.total() == 1, qMin.type() == CV_32FC1,
qMax.total() == 1, qMax.type() == CV_32FC1); qMax.total() == 1, qMax.type() == CV_32FC1);
Mat content = getTensorContent(*tensor); Mat content = getTensorContent(*tensor);
@ -1295,8 +1295,9 @@ void TFImporter::populateNet(Net dstNet)
CV_Assert(layer.input_size() == 3); CV_Assert(layer.input_size() == 3);
Mat begins = getTensorContent(getConstBlob(layer, value_id, 1)); Mat begins = getTensorContent(getConstBlob(layer, value_id, 1));
Mat sizes = getTensorContent(getConstBlob(layer, value_id, 2)); Mat sizes = getTensorContent(getConstBlob(layer, value_id, 2));
CV_Assert(!begins.empty(), !sizes.empty(), begins.type() == CV_32SC1, CV_Assert_N(!begins.empty(), !sizes.empty());
sizes.type() == CV_32SC1); CV_CheckTypeEQ(begins.type(), CV_32SC1, "");
CV_CheckTypeEQ(sizes.type(), CV_32SC1, "");
if (begins.total() == 4 && getDataLayout(name, data_layouts) == DATA_LAYOUT_NHWC) if (begins.total() == 4 && getDataLayout(name, data_layouts) == DATA_LAYOUT_NHWC)
{ {
@ -1665,7 +1666,7 @@ void TFImporter::populateNet(Net dstNet)
if (layer.input_size() == 2) if (layer.input_size() == 2)
{ {
Mat outSize = getTensorContent(getConstBlob(layer, value_id, 1)); Mat outSize = getTensorContent(getConstBlob(layer, value_id, 1));
CV_Assert(outSize.type() == CV_32SC1, outSize.total() == 2); CV_CheckTypeEQ(outSize.type(), CV_32SC1, ""); CV_CheckEQ(outSize.total(), (size_t)2, "");
layerParams.set("height", outSize.at<int>(0, 0)); layerParams.set("height", outSize.at<int>(0, 0));
layerParams.set("width", outSize.at<int>(0, 1)); layerParams.set("width", outSize.at<int>(0, 1));
} }
@ -1673,8 +1674,8 @@ void TFImporter::populateNet(Net dstNet)
{ {
Mat factorHeight = getTensorContent(getConstBlob(layer, value_id, 1)); Mat factorHeight = getTensorContent(getConstBlob(layer, value_id, 1));
Mat factorWidth = getTensorContent(getConstBlob(layer, value_id, 2)); Mat factorWidth = getTensorContent(getConstBlob(layer, value_id, 2));
CV_Assert(factorHeight.type() == CV_32SC1, factorHeight.total() == 1, CV_CheckTypeEQ(factorHeight.type(), CV_32SC1, ""); CV_CheckEQ(factorHeight.total(), (size_t)1, "");
factorWidth.type() == CV_32SC1, factorWidth.total() == 1); CV_CheckTypeEQ(factorWidth.type(), CV_32SC1, ""); CV_CheckEQ(factorWidth.total(), (size_t)1, "");
layerParams.set("zoom_factor_x", factorWidth.at<int>(0)); layerParams.set("zoom_factor_x", factorWidth.at<int>(0));
layerParams.set("zoom_factor_y", factorHeight.at<int>(0)); layerParams.set("zoom_factor_y", factorHeight.at<int>(0));
} }
@ -1772,7 +1773,7 @@ void TFImporter::populateNet(Net dstNet)
CV_Assert(layer.input_size() == 3); CV_Assert(layer.input_size() == 3);
Mat cropSize = getTensorContent(getConstBlob(layer, value_id, 2)); Mat cropSize = getTensorContent(getConstBlob(layer, value_id, 2));
CV_Assert(cropSize.type() == CV_32SC1, cropSize.total() == 2); CV_CheckTypeEQ(cropSize.type(), CV_32SC1, ""); CV_CheckEQ(cropSize.total(), (size_t)2, "");
layerParams.set("height", cropSize.at<int>(0)); layerParams.set("height", cropSize.at<int>(0));
layerParams.set("width", cropSize.at<int>(1)); layerParams.set("width", cropSize.at<int>(1));
@ -1826,8 +1827,8 @@ void TFImporter::populateNet(Net dstNet)
Mat minValue = getTensorContent(getConstBlob(layer, value_id, 1)); Mat minValue = getTensorContent(getConstBlob(layer, value_id, 1));
Mat maxValue = getTensorContent(getConstBlob(layer, value_id, 2)); Mat maxValue = getTensorContent(getConstBlob(layer, value_id, 2));
CV_Assert(minValue.total() == 1, minValue.type() == CV_32F, CV_CheckEQ(minValue.total(), (size_t)1, ""); CV_CheckTypeEQ(minValue.type(), CV_32FC1, "");
maxValue.total() == 1, maxValue.type() == CV_32F); CV_CheckEQ(maxValue.total(), (size_t)1, ""); CV_CheckTypeEQ(maxValue.type(), CV_32FC1, "");
layerParams.set("min_value", minValue.at<float>(0)); layerParams.set("min_value", minValue.at<float>(0));
layerParams.set("max_value", maxValue.at<float>(0)); layerParams.set("max_value", maxValue.at<float>(0));

@ -896,8 +896,8 @@ struct TorchImporter
else if (nnName == "SpatialZeroPadding" || nnName == "SpatialReflectionPadding") else if (nnName == "SpatialZeroPadding" || nnName == "SpatialReflectionPadding")
{ {
readTorchTable(scalarParams, tensorParams); readTorchTable(scalarParams, tensorParams);
CV_Assert(scalarParams.has("pad_l"), scalarParams.has("pad_r"), CV_Assert_N(scalarParams.has("pad_l"), scalarParams.has("pad_r"),
scalarParams.has("pad_t"), scalarParams.has("pad_b")); scalarParams.has("pad_t"), scalarParams.has("pad_b"));
int padTop = scalarParams.get<int>("pad_t"); int padTop = scalarParams.get<int>("pad_t");
int padLeft = scalarParams.get<int>("pad_l"); int padLeft = scalarParams.get<int>("pad_l");
int padRight = scalarParams.get<int>("pad_r"); int padRight = scalarParams.get<int>("pad_r");

@ -814,7 +814,7 @@ TEST_P(Layer_Test_DWconv_Prelu, Accuracy)
const int group = 3; //outChannels=group when group>1 const int group = 3; //outChannels=group when group>1
const int num_output = get<1>(GetParam()); const int num_output = get<1>(GetParam());
const int kernel_depth = num_input/group; const int kernel_depth = num_input/group;
CV_Assert(num_output >= group, num_output % group == 0, num_input % group == 0); CV_Assert_N(num_output >= group, num_output % group == 0, num_input % group == 0);
Net net; Net net;
//layer 1: dwconv //layer 1: dwconv

@ -1500,7 +1500,7 @@ MainWindowProc( HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam )
rgn = CreateRectRgn(0, 0, wrc.right, wrc.bottom); rgn = CreateRectRgn(0, 0, wrc.right, wrc.bottom);
rgn1 = CreateRectRgn(cr.left, cr.top, cr.right, cr.bottom); rgn1 = CreateRectRgn(cr.left, cr.top, cr.right, cr.bottom);
rgn2 = CreateRectRgn(tr.left, tr.top, tr.right, tr.bottom); rgn2 = CreateRectRgn(tr.left, tr.top, tr.right, tr.bottom);
CV_Assert(rgn != 0, rgn1 != 0, rgn2 != 0); CV_Assert_N(rgn != 0, rgn1 != 0, rgn2 != 0);
ret = CombineRgn(rgn, rgn, rgn1, RGN_DIFF); ret = CombineRgn(rgn, rgn, rgn1, RGN_DIFF);
ret = CombineRgn(rgn, rgn, rgn2, RGN_DIFF); ret = CombineRgn(rgn, rgn, rgn2, RGN_DIFF);

@ -49,7 +49,6 @@ int main(int argc, char** argv)
float scale = parser.get<float>("scale"); float scale = parser.get<float>("scale");
Scalar mean = parser.get<Scalar>("mean"); Scalar mean = parser.get<Scalar>("mean");
bool swapRB = parser.get<bool>("rgb"); bool swapRB = parser.get<bool>("rgb");
CV_Assert(parser.has("width"), parser.has("height"));
int inpWidth = parser.get<int>("width"); int inpWidth = parser.get<int>("width");
int inpHeight = parser.get<int>("height"); int inpHeight = parser.get<int>("height");
String model = parser.get<String>("model"); String model = parser.get<String>("model");
@ -72,7 +71,13 @@ int main(int argc, char** argv)
} }
} }
CV_Assert(parser.has("model")); if (!parser.check())
{
parser.printErrors();
return 1;
}
CV_Assert(!model.empty());
//! [Read and initialize network] //! [Read and initialize network]
Net net = readNet(model, config, framework); Net net = readNet(model, config, framework);
net.setPreferableBackend(backendId); net.setPreferableBackend(backendId);

@ -108,7 +108,7 @@ public:
} }
else else
{ {
CV_Assert(blobs.size() == 2, blobs[0].total() == 1, blobs[1].total() == 1); CV_Assert(blobs.size() == 2); CV_Assert(blobs[0].total() == 1); CV_Assert(blobs[1].total() == 1);
factorHeight = blobs[0].at<int>(0, 0); factorHeight = blobs[0].at<int>(0, 0);
factorWidth = blobs[1].at<int>(0, 0); factorWidth = blobs[1].at<int>(0, 0);
outHeight = outWidth = 0; outHeight = outWidth = 0;

@ -57,7 +57,6 @@ int main(int argc, char** argv)
float scale = parser.get<float>("scale"); float scale = parser.get<float>("scale");
Scalar mean = parser.get<Scalar>("mean"); Scalar mean = parser.get<Scalar>("mean");
bool swapRB = parser.get<bool>("rgb"); bool swapRB = parser.get<bool>("rgb");
CV_Assert(parser.has("width"), parser.has("height"));
int inpWidth = parser.get<int>("width"); int inpWidth = parser.get<int>("width");
int inpHeight = parser.get<int>("height"); int inpHeight = parser.get<int>("height");
String model = parser.get<String>("model"); String model = parser.get<String>("model");
@ -99,7 +98,13 @@ int main(int argc, char** argv)
} }
} }
CV_Assert(parser.has("model")); if (!parser.check())
{
parser.printErrors();
return 1;
}
CV_Assert(!model.empty());
//! [Read and initialize network] //! [Read and initialize network]
Net net = readNet(model, config, framework); Net net = readNet(model, config, framework);
net.setPreferableBackend(backendId); net.setPreferableBackend(backendId);

@ -33,9 +33,16 @@ int main(int argc, char** argv)
float nmsThreshold = parser.get<float>("nms"); float nmsThreshold = parser.get<float>("nms");
int inpWidth = parser.get<int>("width"); int inpWidth = parser.get<int>("width");
int inpHeight = parser.get<int>("height"); int inpHeight = parser.get<int>("height");
CV_Assert(parser.has("model"));
String model = parser.get<String>("model"); String model = parser.get<String>("model");
if (!parser.check())
{
parser.printErrors();
return 1;
}
CV_Assert(!model.empty());
// Load network. // Load network.
Net net = readNet(model); Net net = readNet(model);
@ -113,9 +120,9 @@ void decode(const Mat& scores, const Mat& geometry, float scoreThresh,
std::vector<RotatedRect>& detections, std::vector<float>& confidences) std::vector<RotatedRect>& detections, std::vector<float>& confidences)
{ {
detections.clear(); detections.clear();
CV_Assert(scores.dims == 4, geometry.dims == 4, scores.size[0] == 1, CV_Assert(scores.dims == 4); CV_Assert(geometry.dims == 4); CV_Assert(scores.size[0] == 1);
geometry.size[0] == 1, scores.size[1] == 1, geometry.size[1] == 5, CV_Assert(geometry.size[0] == 1); CV_Assert(scores.size[1] == 1); CV_Assert(geometry.size[1] == 5);
scores.size[2] == geometry.size[2], scores.size[3] == geometry.size[3]); CV_Assert(scores.size[2] == geometry.size[2]); CV_Assert(scores.size[3] == geometry.size[3]);
const int height = scores.size[2]; const int height = scores.size[2];
const int width = scores.size[3]; const int width = scores.size[3];

Loading…
Cancel
Save