|
|
|
@ -40,11 +40,13 @@ |
|
|
|
|
//M*/
|
|
|
|
|
#include "precomp.hpp" |
|
|
|
|
|
|
|
|
|
/*#define dprintf(x) printf x
|
|
|
|
|
#define print_matrix(x) print(x)*/ |
|
|
|
|
|
|
|
|
|
#if 0 |
|
|
|
|
#define dprintf(x) printf x |
|
|
|
|
#define print_matrix(x) print(x) |
|
|
|
|
#else |
|
|
|
|
#define dprintf(x) |
|
|
|
|
#define print_matrix(x) |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
|
|
|
|
@ -61,7 +63,7 @@ file C:\builds\master_PackSlave-w in32-vc12-shared\opencv\modules\core\include\o |
|
|
|
|
|
|
|
|
|
DownhillSolverImpl::innerDownhillSimplex something looks broken here: |
|
|
|
|
Mat_<double> coord_sum(1,ndim,0.0),buf(1,ndim,0.0),y(1,ndim,0.0); |
|
|
|
|
nfunk = 0; |
|
|
|
|
fcount = 0; |
|
|
|
|
for(i=0;i<ndim+1;++i) |
|
|
|
|
{ |
|
|
|
|
y(i) = f->calc(p[i]); |
|
|
|
@ -153,7 +155,6 @@ public: |
|
|
|
|
// set dimensionality and make a deep copy of step
|
|
|
|
|
Mat m = step.getMat(); |
|
|
|
|
dprintf(("m.cols=%d\nm.rows=%d\n", m.cols, m.rows)); |
|
|
|
|
CV_Assert( std::min(m.cols, m.rows) == 1 && m.type() == CV_64FC1 ); |
|
|
|
|
if( m.rows == 1 ) |
|
|
|
|
m.copyTo(_step); |
|
|
|
|
else |
|
|
|
@ -178,17 +179,19 @@ public: |
|
|
|
|
{ |
|
|
|
|
dprintf(("hi from minimize\n")); |
|
|
|
|
CV_Assert( !_Function.empty() ); |
|
|
|
|
CV_Assert( std::min(_step.cols, _step.rows) == 1 && |
|
|
|
|
std::max(_step.cols, _step.rows) >= 2 && |
|
|
|
|
_step.type() == CV_64FC1 ); |
|
|
|
|
dprintf(("termcrit:\n\ttype: %d\n\tmaxCount: %d\n\tEPS: %g\n",_termcrit.type,_termcrit.maxCount,_termcrit.epsilon)); |
|
|
|
|
dprintf(("step\n")); |
|
|
|
|
print_matrix(_step); |
|
|
|
|
|
|
|
|
|
Mat x = x_.getMat(); |
|
|
|
|
Mat_<double> simplex; |
|
|
|
|
Mat x = x_.getMat(), simplex; |
|
|
|
|
|
|
|
|
|
createInitialSimplex(x, simplex, _step); |
|
|
|
|
int count = 0; |
|
|
|
|
double res = innerDownhillSimplex(simplex,_termcrit.epsilon, _termcrit.epsilon, |
|
|
|
|
count, _Function, _termcrit.maxCount); |
|
|
|
|
count, _termcrit.maxCount); |
|
|
|
|
dprintf(("%d iterations done\n",count)); |
|
|
|
|
|
|
|
|
|
if( !x.empty() ) |
|
|
|
@ -208,7 +211,7 @@ protected: |
|
|
|
|
TermCriteria _termcrit; |
|
|
|
|
Mat _step; |
|
|
|
|
|
|
|
|
|
inline void updateCoordSum(const Mat_<double>& p, Mat_<double>& coord_sum) |
|
|
|
|
inline void updateCoordSum(const Mat& p, Mat& coord_sum) |
|
|
|
|
{ |
|
|
|
|
int i, j, m = p.rows, n = p.cols; |
|
|
|
|
double* coord_sum_ = coord_sum.ptr<double>(); |
|
|
|
@ -223,9 +226,13 @@ protected: |
|
|
|
|
for( j = 0; j < n; j++ ) |
|
|
|
|
coord_sum_[j] += p_i[j]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
dprintf(("\nupdated coord sum:\n")); |
|
|
|
|
print_matrix(coord_sum); |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
inline void createInitialSimplex( const Mat& x0, Mat_<double>& simplex, Mat& step ) |
|
|
|
|
inline void createInitialSimplex( const Mat& x0, Mat& simplex, Mat& step ) |
|
|
|
|
{ |
|
|
|
|
int i, j, ndim = step.cols; |
|
|
|
|
Mat x = x0; |
|
|
|
@ -234,7 +241,7 @@ protected: |
|
|
|
|
CV_Assert( (x.cols == 1 && x.rows == ndim) || (x.cols == ndim && x.rows == 1) ); |
|
|
|
|
CV_Assert( x.type() == CV_32F || x.type() == CV_64F ); |
|
|
|
|
|
|
|
|
|
simplex.create(ndim + 1, ndim); |
|
|
|
|
simplex.create(ndim + 1, ndim, CV_64F); |
|
|
|
|
Mat simplex_0m(x.rows, x.cols, CV_64F, simplex.ptr<double>()); |
|
|
|
|
|
|
|
|
|
x.convertTo(simplex_0m, CV_64F); |
|
|
|
@ -250,7 +257,7 @@ protected: |
|
|
|
|
for( j = 0; j < ndim; j++ ) |
|
|
|
|
simplex_0[j] -= 0.5*step_[j]; |
|
|
|
|
|
|
|
|
|
dprintf(("this is simplex\n")); |
|
|
|
|
dprintf(("\nthis is simplex\n")); |
|
|
|
|
print_matrix(simplex); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -259,27 +266,24 @@ protected: |
|
|
|
|
|
|
|
|
|
The matrix p[ndim+1][1..ndim] represents ndim+1 vertices that |
|
|
|
|
form a simplex - each row is an ndim vector. |
|
|
|
|
On output, nfunk gives the number of function evaluations taken. |
|
|
|
|
On output, fcount gives the number of function evaluations taken. |
|
|
|
|
*/ |
|
|
|
|
double innerDownhillSimplex( Mat_<double>& p,double MinRange,double MinError, int& nfunk, |
|
|
|
|
const Ptr<MinProblemSolver::Function>& f, int nmax ) |
|
|
|
|
double innerDownhillSimplex( Mat& p, double MinRange, double MinError, int& fcount, int nmax ) |
|
|
|
|
{ |
|
|
|
|
int i, j, ndim = p.cols; |
|
|
|
|
Mat_<double> coord_sum(1, ndim), buf(1, ndim), y(1, ndim+1); |
|
|
|
|
Mat coord_sum(1, ndim, CV_64F), buf(1, ndim, CV_64F), y(1, ndim+1, CV_64F); |
|
|
|
|
double* y_ = y.ptr<double>(); |
|
|
|
|
|
|
|
|
|
nfunk = 0; |
|
|
|
|
|
|
|
|
|
fcount = ndim+1; |
|
|
|
|
for( i = 0; i <= ndim; i++ ) |
|
|
|
|
y_[i] = f->calc(p[i]); |
|
|
|
|
y_[i] = calc_f(p.ptr<double>(i)); |
|
|
|
|
|
|
|
|
|
nfunk = ndim+1; |
|
|
|
|
updateCoordSum(p, coord_sum); |
|
|
|
|
|
|
|
|
|
for (;;) |
|
|
|
|
{ |
|
|
|
|
/* find highest (worst), next-to-worst, and lowest
|
|
|
|
|
(best) points by going through all of them. */ |
|
|
|
|
// find highest (worst), next-to-worst, and lowest
|
|
|
|
|
// (best) points by going through all of them.
|
|
|
|
|
int ilo = 0, ihi, inhi; |
|
|
|
|
if( y_[0] > y_[1] ) |
|
|
|
|
{ |
|
|
|
@ -302,101 +306,145 @@ protected: |
|
|
|
|
else if (yval > y_[inhi] && i != ihi) |
|
|
|
|
inhi = i; |
|
|
|
|
} |
|
|
|
|
CV_Assert( ilo != ihi && ilo != inhi && ihi != inhi ); |
|
|
|
|
dprintf(("this is y on iteration %d:\n",nfunk)); |
|
|
|
|
CV_Assert( ihi != inhi ); |
|
|
|
|
if( ilo == inhi || ilo == ihi ) |
|
|
|
|
{ |
|
|
|
|
for( i = 0; i <= ndim; i++ ) |
|
|
|
|
{ |
|
|
|
|
double yval = y_[i]; |
|
|
|
|
if( yval == y_[ilo] && i != ihi && i != inhi ) |
|
|
|
|
{ |
|
|
|
|
ilo = i; |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
dprintf(("\nthis is y on iteration %d:\n",fcount)); |
|
|
|
|
print_matrix(y); |
|
|
|
|
|
|
|
|
|
/* check stop criterion */ |
|
|
|
|
// check stop criterion
|
|
|
|
|
double error = fabs(y_[ihi] - y_[ilo]); |
|
|
|
|
double range = 0; |
|
|
|
|
for( j = 0; j < ndim; j++ ) |
|
|
|
|
{ |
|
|
|
|
double minval, maxval; |
|
|
|
|
minval = maxval = p(0, j); |
|
|
|
|
minval = maxval = p.at<double>(0, j); |
|
|
|
|
for( i = 1; i <= ndim; i++ ) |
|
|
|
|
{ |
|
|
|
|
double pval = p(i, j); |
|
|
|
|
double pval = p.at<double>(i, j); |
|
|
|
|
minval = std::min(minval, pval); |
|
|
|
|
maxval = std::max(maxval, pval); |
|
|
|
|
} |
|
|
|
|
range = std::max(range, fabs(maxval - minval)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( range <= MinRange || error <= MinError || nfunk >= nmax ) |
|
|
|
|
if( range <= MinRange || error <= MinError || fcount >= nmax ) |
|
|
|
|
{ |
|
|
|
|
/* Put best point and value in first slot. */ |
|
|
|
|
std::swap(y(0), y(ilo)); |
|
|
|
|
// Put best point and value in first slot.
|
|
|
|
|
std::swap(y_[0], y_[ilo]); |
|
|
|
|
for( j = 0; j < ndim; j++ ) |
|
|
|
|
{ |
|
|
|
|
std::swap(p(0, j), p(ilo, j)); |
|
|
|
|
std::swap(p.at<double>(0, j), p.at<double>(ilo, j)); |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
nfunk += 2; |
|
|
|
|
|
|
|
|
|
double ylo = y_[ilo], ynhi = y_[inhi]; |
|
|
|
|
/* Begin a new iteration. First, reflect the worst point about the centroid of others */ |
|
|
|
|
double ytry = tryNewPoint(p, y, coord_sum, f, ihi, -1.0, buf); |
|
|
|
|
if( ytry <= ylo ) |
|
|
|
|
double y_lo = y_[ilo], y_nhi = y_[inhi], y_hi = y_[ihi]; |
|
|
|
|
// Begin a new iteration. First, reflect the worst point about the centroid of others
|
|
|
|
|
double alpha = -1.0; |
|
|
|
|
double y_alpha = tryNewPoint(p, coord_sum, ihi, alpha, buf, fcount); |
|
|
|
|
|
|
|
|
|
dprintf(("\ny_lo=%g, y_nhi=%g, y_hi=%g, y_alpha=%g, p_alpha:\n", y_lo, y_nhi, y_hi, y_alpha)); |
|
|
|
|
print_matrix(buf); |
|
|
|
|
|
|
|
|
|
if( y_alpha < y_nhi ) |
|
|
|
|
{ |
|
|
|
|
/* If that's better than the best point, go twice as far in that direction */ |
|
|
|
|
ytry = tryNewPoint(p, y, coord_sum, f, ihi, 2.0, buf); |
|
|
|
|
if( y_alpha < y_lo ) |
|
|
|
|
{ |
|
|
|
|
// If that's better than the best point, go twice as far in that direction
|
|
|
|
|
double beta = -2.0; |
|
|
|
|
double y_beta = tryNewPoint(p, coord_sum, ihi, beta, buf, fcount); |
|
|
|
|
dprintf(("\ny_beta=%g, p_beta:\n", y_beta)); |
|
|
|
|
print_matrix(buf); |
|
|
|
|
if( y_beta < y_alpha ) |
|
|
|
|
{ |
|
|
|
|
alpha = beta; |
|
|
|
|
y_alpha = y_beta; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
replacePoint(p, coord_sum, y, ihi, alpha, y_alpha); |
|
|
|
|
} |
|
|
|
|
else if( ytry >= ynhi ) |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
/* The new point is worse than the second-highest,
|
|
|
|
|
do not go so far in that direction */ |
|
|
|
|
double ysave = y(ihi); |
|
|
|
|
ytry = tryNewPoint(p, y, coord_sum, f, ihi, 0.5, buf); |
|
|
|
|
if (ytry >= ysave) |
|
|
|
|
// The new point is worse than the second-highest,
|
|
|
|
|
// do not go so far in that direction
|
|
|
|
|
double gamma = 0.5; |
|
|
|
|
double y_gamma = tryNewPoint(p, coord_sum, ihi, gamma, buf, fcount); |
|
|
|
|
dprintf(("\ny_gamma=%g, p_gamma:\n", y_gamma)); |
|
|
|
|
print_matrix(buf); |
|
|
|
|
if( y_gamma < y_hi ) |
|
|
|
|
replacePoint(p, coord_sum, y, ihi, gamma, y_gamma); |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
/* Can't seem to improve things. Contract the simplex to good point
|
|
|
|
|
in hope to find a simplex landscape. */ |
|
|
|
|
// Can't seem to improve things.
|
|
|
|
|
// Contract the simplex to good point
|
|
|
|
|
// in hope to find a simplex landscape.
|
|
|
|
|
for( i = 0; i <= ndim; i++ ) |
|
|
|
|
{ |
|
|
|
|
if (i != ilo) |
|
|
|
|
{ |
|
|
|
|
for( j = 0; j < ndim; j++ ) |
|
|
|
|
p(i,j) = 0.5*(p(i,j) + p(ilo,j)); |
|
|
|
|
y(i)=f->calc(p.ptr<double>(i)); |
|
|
|
|
p.at<double>(i, j) = 0.5*(p.at<double>(i, j) + p.at<double>(ilo, j)); |
|
|
|
|
y_[i] = calc_f(p.ptr<double>(i)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
nfunk += ndim; |
|
|
|
|
fcount += ndim; |
|
|
|
|
updateCoordSum(p, coord_sum); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else --(nfunk); /* correct nfunk */ |
|
|
|
|
dprintf(("this is simplex on iteration %d\n",nfunk)); |
|
|
|
|
dprintf(("\nthis is simplex on iteration %d\n",fcount)); |
|
|
|
|
print_matrix(p); |
|
|
|
|
} /* go to next iteration. */ |
|
|
|
|
return y(0); |
|
|
|
|
} |
|
|
|
|
return y_[0]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
inline double calc_f(const double* ptr) |
|
|
|
|
{ |
|
|
|
|
double res = _Function->calc(ptr); |
|
|
|
|
CV_Assert( !cvIsNaN(res) && !cvIsInf(res) ); |
|
|
|
|
return res; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
inline double tryNewPoint(Mat_<double>& p, Mat_<double>& y, Mat_<double>& coord_sum, |
|
|
|
|
const Ptr<MinProblemSolver::Function>& f, int ihi, |
|
|
|
|
double fac, Mat_<double>& ptry) |
|
|
|
|
double tryNewPoint( Mat& p, Mat& coord_sum, int ihi, double alpha_, Mat& ptry, int& fcount ) |
|
|
|
|
{ |
|
|
|
|
int j, ndim = p.cols; |
|
|
|
|
|
|
|
|
|
double fac1 = (1.0 - fac)/ndim; |
|
|
|
|
double fac2 = fac1 - fac; |
|
|
|
|
double alpha = (1.0 - alpha_)/ndim; |
|
|
|
|
double beta = alpha - alpha_; |
|
|
|
|
double* p_ihi = p.ptr<double>(ihi); |
|
|
|
|
double* ptry_ = ptry.ptr<double>(); |
|
|
|
|
double* coord_sum_ = coord_sum.ptr<double>(); |
|
|
|
|
|
|
|
|
|
for( j = 0; j < ndim; j++ ) |
|
|
|
|
ptry_[j] = coord_sum_[j]*fac1 - p_ihi[j]*fac2; |
|
|
|
|
ptry_[j] = coord_sum_[j]*alpha - p_ihi[j]*beta; |
|
|
|
|
|
|
|
|
|
double ytry = f->calc(ptry_); |
|
|
|
|
if (ytry < y(ihi)) |
|
|
|
|
{ |
|
|
|
|
y(ihi) = ytry; |
|
|
|
|
for( j = 0; j < ndim; j++ ) |
|
|
|
|
p_ihi[j] = ptry_[j]; |
|
|
|
|
updateCoordSum(p, coord_sum); |
|
|
|
|
} |
|
|
|
|
fcount++; |
|
|
|
|
return calc_f(ptry_); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return ytry; |
|
|
|
|
void replacePoint( Mat& p, Mat& coord_sum, Mat& y, int ihi, double alpha_, double ytry ) |
|
|
|
|
{ |
|
|
|
|
int j, ndim = p.cols; |
|
|
|
|
|
|
|
|
|
double alpha = (1.0 - alpha_)/ndim; |
|
|
|
|
double beta = alpha - alpha_; |
|
|
|
|
double* p_ihi = p.ptr<double>(ihi); |
|
|
|
|
double* coord_sum_ = coord_sum.ptr<double>(); |
|
|
|
|
|
|
|
|
|
for( j = 0; j < ndim; j++ ) |
|
|
|
|
p_ihi[j] = coord_sum_[j]*alpha - p_ihi[j]*beta; |
|
|
|
|
y.at<double>(ihi) = ytry; |
|
|
|
|
updateCoordSum(p, coord_sum); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|