detection_output layer ocl implementation

Signed-off-by: Li Peng <peng.li@intel.com>
pull/10228/head
Li Peng 7 years ago
parent 66feea6cac
commit 59cbaca4d3
  1. 182
      modules/dnn/src/layers/detection_output_layer.cpp
  2. 181
      modules/dnn/src/opencl/detection_output.cl

@ -45,6 +45,7 @@
#include <float.h>
#include <string>
#include "../nms.inl.hpp"
#include "opencl_kernels_dnn.hpp"
namespace cv
{
@ -211,11 +212,160 @@ public:
return false;
}
#ifdef HAVE_OPENCL
// Decode all bboxes in a batch
bool ocl_DecodeBBoxesAll(UMat& loc_mat, UMat& prior_mat,
const int num, const int numPriors, const bool share_location,
const int num_loc_classes, const int background_label_id,
const cv::String& code_type, const bool variance_encoded_in_target,
const bool clip, std::vector<LabelBBox>& all_decode_bboxes)
{
UMat outmat = UMat(loc_mat.dims, loc_mat.size, CV_32F);
size_t nthreads = loc_mat.total();
String kernel_name;
if (code_type == "CORNER")
kernel_name = "DecodeBBoxesCORNER";
else if (code_type == "CENTER_SIZE")
kernel_name = "DecodeBBoxesCENTER_SIZE";
else
return false;
for (int i = 0; i < num; ++i)
{
ocl::Kernel kernel(kernel_name.c_str(), ocl::dnn::detection_output_oclsrc);
kernel.set(0, (int)nthreads);
kernel.set(1, ocl::KernelArg::PtrReadOnly(loc_mat));
kernel.set(2, ocl::KernelArg::PtrReadOnly(prior_mat));
kernel.set(3, (int)variance_encoded_in_target);
kernel.set(4, (int)numPriors);
kernel.set(5, (int)share_location);
kernel.set(6, (int)num_loc_classes);
kernel.set(7, (int)background_label_id);
kernel.set(8, (int)clip);
kernel.set(9, ocl::KernelArg::PtrWriteOnly(outmat));
if (!kernel.run(1, &nthreads, NULL, false))
return false;
}
all_decode_bboxes.clear();
all_decode_bboxes.resize(num);
{
Mat mat = outmat.getMat(ACCESS_READ);
const float* decode_data = mat.ptr<float>();
for (int i = 0; i < num; ++i)
{
LabelBBox& decode_bboxes = all_decode_bboxes[i];
for (int c = 0; c < num_loc_classes; ++c)
{
int label = share_location ? -1 : c;
decode_bboxes[label].resize(numPriors);
for (int p = 0; p < numPriors; ++p)
{
int startIdx = p * num_loc_classes * 4;
util::NormalizedBBox& bbox = decode_bboxes[label][p];
bbox.xmin = decode_data[startIdx + c * 4];
bbox.ymin = decode_data[startIdx + c * 4 + 1];
bbox.xmax = decode_data[startIdx + c * 4 + 2];
bbox.ymax = decode_data[startIdx + c * 4 + 3];
}
}
}
}
return true;
}
void ocl_GetConfidenceScores(const UMat& inp1, const int num,
const int numPredsPerClass, const int numClasses,
std::vector<Mat>& confPreds)
{
int shape[] = { numClasses, numPredsPerClass };
for (int i = 0; i < num; i++)
confPreds.push_back(Mat(2, shape, CV_32F));
UMat umat = inp1.reshape(1, num * numPredsPerClass);
for (int i = 0; i < num; ++i)
{
Range ranges[] = { Range(i * numPredsPerClass, (i + 1) * numPredsPerClass), Range::all() };
transpose(umat(ranges), confPreds[i]);
}
}
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
std::vector<LabelBBox> allDecodedBBoxes;
std::vector<Mat> allConfidenceScores;
int num = inputs[0].size[0];
// extract predictions from input layers
{
int numPriors = inputs[2].size[2] / 4;
// Retrieve all confidences
ocl_GetConfidenceScores(inputs[1], num, numPriors, _numClasses, allConfidenceScores);
// Decode all loc predictions to bboxes
bool ret = ocl_DecodeBBoxesAll(inputs[0], inputs[2], num, numPriors,
_shareLocation, _numLocClasses, _backgroundLabelId,
_codeType, _varianceEncodedInTarget, false,
allDecodedBBoxes);
if (!ret)
return false;
}
size_t numKept = 0;
std::vector<std::map<int, std::vector<int> > > allIndices;
for (int i = 0; i < num; ++i)
{
numKept += processDetections_(allDecodedBBoxes[i], allConfidenceScores[i], allIndices);
}
if (numKept == 0)
{
// Set confidences to zeros.
Range ranges[] = {Range::all(), Range::all(), Range::all(), Range(2, 3)};
outputs[0](ranges).setTo(0);
return true;
}
int outputShape[] = {1, 1, (int)numKept, 7};
UMat umat = UMat(4, outputShape, CV_32F);
{
Mat mat = umat.getMat(ACCESS_WRITE);
float* outputsData = mat.ptr<float>();
size_t count = 0;
for (int i = 0; i < num; ++i)
{
count += outputDetections_(i, &outputsData[count * 7],
allDecodedBBoxes[i], allConfidenceScores[i],
allIndices[i]);
}
CV_Assert(count == numKept);
}
outputs.clear();
outputs.push_back(umat);
outs.assign(outputs);
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
@ -225,7 +375,7 @@ public:
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
std::vector<LabelBBox> allDecodedBBoxes;
std::vector<std::vector<std::vector<float> > > allConfidenceScores;
std::vector<Mat> allConfidenceScores;
int num = inputs[0]->size[0];
@ -286,7 +436,7 @@ public:
size_t outputDetections_(
const int i, float* outputsData,
const LabelBBox& decodeBBoxes, const std::vector<std::vector<float> >& confidenceScores,
const LabelBBox& decodeBBoxes, Mat& confidenceScores,
const std::map<int, std::vector<int> >& indicesMap
)
{
@ -294,9 +444,9 @@ public:
for (std::map<int, std::vector<int> >::const_iterator it = indicesMap.begin(); it != indicesMap.end(); ++it)
{
int label = it->first;
if (confidenceScores.size() <= label)
if (confidenceScores.rows <= label)
CV_ErrorNoReturn_(cv::Error::StsError, ("Could not find confidence predictions for label %d", label));
const std::vector<float>& scores = confidenceScores[label];
const std::vector<float>& scores = confidenceScores.row(label);
int locLabel = _shareLocation ? -1 : label;
LabelBBox::const_iterator label_bboxes = decodeBBoxes.find(locLabel);
if (label_bboxes == decodeBBoxes.end())
@ -320,7 +470,7 @@ public:
}
size_t processDetections_(
const LabelBBox& decodeBBoxes, const std::vector<std::vector<float> >& confidenceScores,
const LabelBBox& decodeBBoxes, Mat& confidenceScores,
std::vector<std::map<int, std::vector<int> > >& allIndices
)
{
@ -330,10 +480,10 @@ public:
{
if (c == _backgroundLabelId)
continue; // Ignore background class.
if (c >= confidenceScores.size())
if (c >= confidenceScores.rows)
CV_ErrorNoReturn_(cv::Error::StsError, ("Could not find confidence predictions for label %d", c));
const std::vector<float>& scores = confidenceScores[c];
const std::vector<float> scores = confidenceScores.row(c);
int label = _shareLocation ? -1 : c;
LabelBBox::const_iterator label_bboxes = decodeBBoxes.find(label);
@ -351,9 +501,9 @@ public:
{
int label = it->first;
const std::vector<int>& labelIndices = it->second;
if (label >= confidenceScores.size())
if (label >= confidenceScores.rows)
CV_ErrorNoReturn_(cv::Error::StsError, ("Could not find location predictions for label %d", label));
const std::vector<float>& scores = confidenceScores[label];
const std::vector<float>& scores = confidenceScores.row(label);
for (size_t j = 0; j < labelIndices.size(); ++j)
{
size_t idx = labelIndices[j];
@ -630,20 +780,20 @@ public:
// confidence prediction for an image.
static void GetConfidenceScores(const float* confData, const int num,
const int numPredsPerClass, const int numClasses,
std::vector<std::vector<std::vector<float> > >& confPreds)
std::vector<Mat>& confPreds)
{
confPreds.clear(); confPreds.resize(num);
int shape[] = { numClasses, numPredsPerClass };
for (int i = 0; i < num; i++)
confPreds.push_back(Mat(2, shape, CV_32F));
for (int i = 0; i < num; ++i, confData += numPredsPerClass * numClasses)
{
std::vector<std::vector<float> >& labelScores = confPreds[i];
labelScores.resize(numClasses);
Mat labelScores = confPreds[i];
for (int c = 0; c < numClasses; ++c)
{
std::vector<float>& classLabelScores = labelScores[c];
classLabelScores.resize(numPredsPerClass);
for (int p = 0; p < numPredsPerClass; ++p)
{
classLabelScores[p] = confData[p * numClasses + c];
labelScores.at<float>(c, p) = confData[p * numClasses + c];
}
}
}

@ -0,0 +1,181 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#define Dtype float
#define Dtype4 float4
__kernel void DecodeBBoxesCORNER(const int nthreads,
__global const Dtype* loc_data,
__global const Dtype* prior_data,
const int variance_encoded_in_target,
const int num_priors,
const int share_location,
const int num_loc_classes,
const int background_label_id,
const int clip_bbox,
__global Dtype* bbox_data)
{
for (int index = get_global_id(0); index < nthreads; index += get_global_size(0))
{
Dtype bbox_xmin, bbox_ymin, bbox_xmax, bbox_ymax;
const int i = index % 4;
const int p = ((index / 4 / num_loc_classes) % num_priors) * 4;
const int c = (index / 4) % num_loc_classes;
int label = share_location ? -1 : c;
if (label == background_label_id)
return; // Ignore background class.
Dtype4 loc_vec = vload4(0, loc_data + index - i);
Dtype4 bbox_vec, prior_variance;
if (variance_encoded_in_target)
{
bbox_vec = loc_vec;
} else {
const int start_index = num_priors * 4 + p;
prior_variance = vload4(0, prior_data + start_index);
bbox_vec = loc_vec * prior_variance;
}
bbox_xmin = bbox_vec.x;
bbox_ymin = bbox_vec.y;
bbox_xmax = bbox_vec.z;
bbox_ymax = bbox_vec.w;
Dtype4 prior_vec = vload4(0, prior_data + p);
Dtype val;
switch (i)
{
case 0:
val = prior_vec.x + bbox_xmin;
break;
case 1:
val = prior_vec.y + bbox_ymin;
break;
case 2:
val = prior_vec.z + bbox_xmax;
break;
case 3:
val = prior_vec.w + bbox_ymax;
break;
}
if (clip_bbox)
val = max(min(val, (Dtype)1.), (Dtype)0.);
bbox_data[index] = val;
}
}
__kernel void DecodeBBoxesCENTER_SIZE(const int nthreads,
__global const Dtype* loc_data,
__global const Dtype* prior_data,
const int variance_encoded_in_target,
const int num_priors,
const int share_location,
const int num_loc_classes,
const int background_label_id,
const int clip_bbox,
__global Dtype* bbox_data)
{
for (int index = get_global_id(0); index < nthreads; index += get_global_size(0))
{
Dtype bbox_xmin, bbox_ymin, bbox_xmax, bbox_ymax;
const int i = index % 4;
const int p = ((index / 4 / num_loc_classes) % num_priors) * 4;
const int c = (index / 4) % num_loc_classes;
int label = share_location ? -1 : c;
if (label == background_label_id)
return; // Ignore background class.
Dtype4 loc_vec = vload4(0, loc_data + index - i);
Dtype4 bbox_vec, prior_variance;
if (variance_encoded_in_target)
{
bbox_vec = loc_vec;
} else {
const int start_index = num_priors * 4 + p;
prior_variance = vload4(0, prior_data + start_index);
bbox_vec = loc_vec * prior_variance;
}
bbox_xmin = bbox_vec.x;
bbox_ymin = bbox_vec.y;
bbox_xmax = bbox_vec.z;
bbox_ymax = bbox_vec.w;
Dtype4 prior_vec = vload4(0, prior_data + p);
Dtype prior_width = prior_vec.z - prior_vec.x;
Dtype prior_height = prior_vec.w - prior_vec.y;
Dtype prior_center_x = (prior_vec.x + prior_vec.z) * .5;
Dtype prior_center_y = (prior_vec.y + prior_vec.w) * .5;
Dtype decode_bbox_center_x, decode_bbox_center_y;
Dtype decode_bbox_width, decode_bbox_height;
decode_bbox_center_x = bbox_xmin * prior_width + prior_center_x;
decode_bbox_center_y = bbox_ymin * prior_height + prior_center_y;
decode_bbox_width = exp(bbox_xmax) * prior_width;
decode_bbox_height = exp(bbox_ymax) * prior_height;
Dtype val;
switch (i)
{
case 0:
val = decode_bbox_center_x - decode_bbox_width * .5;
break;
case 1:
val = decode_bbox_center_y - decode_bbox_height * .5;
break;
case 2:
val = decode_bbox_center_x + decode_bbox_width * .5;
break;
case 3:
val = decode_bbox_center_y + decode_bbox_height * .5;
break;
}
if (clip_bbox)
val = max(min(val, (Dtype)1.), (Dtype)0.);
bbox_data[index] = val;
}
}
Loading…
Cancel
Save