parent
29b917a500
commit
58b7c344aa
6 changed files with 446 additions and 426 deletions
@ -0,0 +1,358 @@ |
||||
#include <algorithm> |
||||
#include <functional> |
||||
#include <opencv2/calib3d/calib3d.hpp> |
||||
#include <opencv2/gpu/gpu.hpp> |
||||
#include "matchers.hpp" |
||||
#include "util.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace |
||||
{ |
||||
class CpuSurfFeaturesFinder : public FeaturesFinder |
||||
{ |
||||
public: |
||||
inline CpuSurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers,
|
||||
int num_octaves_descr, int num_layers_descr)
|
||||
{ |
||||
detector_ = new SurfFeatureDetector(hess_thresh, num_octaves, num_layers); |
||||
extractor_ = new SurfDescriptorExtractor(num_octaves_descr, num_layers_descr); |
||||
} |
||||
|
||||
protected: |
||||
void find(const vector<Mat> &images, vector<ImageFeatures> &features); |
||||
|
||||
private: |
||||
Ptr<FeatureDetector> detector_; |
||||
Ptr<DescriptorExtractor> extractor_; |
||||
}; |
||||
|
||||
void CpuSurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features) |
||||
{ |
||||
// Make images gray
|
||||
vector<Mat> gray_images(images.size()); |
||||
for (size_t i = 0; i < images.size(); ++i) |
||||
{ |
||||
CV_Assert(images[i].depth() == CV_8U); |
||||
cvtColor(images[i], gray_images[i], CV_BGR2GRAY); |
||||
} |
||||
|
||||
features.resize(images.size()); |
||||
|
||||
// Find keypoints in all images
|
||||
for (size_t i = 0; i < images.size(); ++i) |
||||
{ |
||||
detector_->detect(gray_images[i], features[i].keypoints); |
||||
extractor_->compute(gray_images[i], features[i].keypoints, features[i].descriptors); |
||||
} |
||||
} |
||||
|
||||
class GpuSurfFeaturesFinder : public FeaturesFinder |
||||
{ |
||||
public: |
||||
inline GpuSurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers,
|
||||
int num_octaves_descr, int num_layers_descr)
|
||||
{ |
||||
surf_.hessianThreshold = hess_thresh; |
||||
surf_.extended = false; |
||||
num_octaves_ = num_octaves; |
||||
num_layers_ = num_layers; |
||||
num_octaves_descr_ = num_octaves_descr; |
||||
num_layers_descr_ = num_layers_descr; |
||||
} |
||||
|
||||
protected: |
||||
void find(const vector<Mat> &images, vector<ImageFeatures> &features); |
||||
|
||||
private: |
||||
SURF_GPU surf_; |
||||
int num_octaves_, num_layers_; |
||||
int num_octaves_descr_, num_layers_descr_; |
||||
}; |
||||
|
||||
void GpuSurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features) |
||||
{ |
||||
// Make images gray
|
||||
vector<GpuMat> gray_images(images.size()); |
||||
for (size_t i = 0; i < images.size(); ++i) |
||||
{ |
||||
CV_Assert(images[i].depth() == CV_8U); |
||||
cvtColor(GpuMat(images[i]), gray_images[i], CV_BGR2GRAY); |
||||
} |
||||
|
||||
features.resize(images.size()); |
||||
|
||||
// Find keypoints in all images
|
||||
GpuMat d_keypoints; |
||||
GpuMat d_descriptors; |
||||
for (size_t i = 0; i < images.size(); ++i) |
||||
{ |
||||
surf_.nOctaves = num_octaves_; |
||||
surf_.nOctaveLayers = num_layers_; |
||||
surf_(gray_images[i], GpuMat(), d_keypoints); |
||||
|
||||
surf_.nOctaves = num_octaves_descr_; |
||||
surf_.nOctaveLayers = num_layers_descr_; |
||||
surf_(gray_images[i], GpuMat(), d_keypoints, d_descriptors, true); |
||||
|
||||
surf_.downloadKeypoints(d_keypoints, features[i].keypoints); |
||||
d_descriptors.download(features[i].descriptors); |
||||
} |
||||
} |
||||
} |
||||
|
||||
SurfFeaturesFinder::SurfFeaturesFinder(bool gpu_hint, double hess_thresh, int num_octaves, int num_layers,
|
||||
int num_octaves_descr, int num_layers_descr) |
||||
{ |
||||
if (gpu_hint && getCudaEnabledDeviceCount() > 0) |
||||
impl_ = new GpuSurfFeaturesFinder(hess_thresh, num_octaves, num_layers, num_octaves_descr, num_layers_descr); |
||||
else |
||||
impl_ = new CpuSurfFeaturesFinder(hess_thresh, num_octaves, num_layers, num_octaves_descr, num_layers_descr); |
||||
} |
||||
|
||||
|
||||
void SurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features) |
||||
{ |
||||
(*impl_)(images, features); |
||||
} |
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0) {} |
||||
|
||||
|
||||
MatchesInfo::MatchesInfo(const MatchesInfo &other) |
||||
{ |
||||
*this = other; |
||||
} |
||||
|
||||
|
||||
const MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other) |
||||
{ |
||||
src_img_idx = other.src_img_idx; |
||||
dst_img_idx = other.dst_img_idx; |
||||
matches = other.matches; |
||||
num_inliers = other.num_inliers; |
||||
H = other.H.clone(); |
||||
return *this; |
||||
} |
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void FeaturesMatcher::operator ()(const vector<Mat> &images, const vector<ImageFeatures> &features, |
||||
vector<MatchesInfo> &pairwise_matches) |
||||
{ |
||||
pairwise_matches.resize(images.size() * images.size()); |
||||
for (size_t i = 0; i < images.size(); ++i) |
||||
{ |
||||
LOGLN("Processing image " << i << "... "); |
||||
for (size_t j = 0; j < images.size(); ++j) |
||||
{ |
||||
if (i == j) |
||||
continue; |
||||
size_t pair_idx = i * images.size() + j; |
||||
(*this)(images[i], features[i], images[j], features[j], pairwise_matches[pair_idx]); |
||||
pairwise_matches[pair_idx].src_img_idx = i; |
||||
pairwise_matches[pair_idx].dst_img_idx = j; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace |
||||
{ |
||||
class CpuMatcher : public FeaturesMatcher |
||||
{ |
||||
public: |
||||
inline CpuMatcher(float match_conf) : match_conf_(match_conf) {} |
||||
|
||||
void match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info); |
||||
|
||||
private: |
||||
float match_conf_; |
||||
}; |
||||
|
||||
void CpuMatcher::match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info) |
||||
{ |
||||
matches_info.matches.clear(); |
||||
|
||||
BruteForceMatcher< L2<float> > matcher; |
||||
vector< vector<DMatch> > pair_matches; |
||||
|
||||
// Find 1->2 matches
|
||||
matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2); |
||||
for (size_t i = 0; i < pair_matches.size(); ++i) |
||||
{ |
||||
if (pair_matches[i].size() < 2) |
||||
continue; |
||||
const DMatch& m0 = pair_matches[i][0]; |
||||
const DMatch& m1 = pair_matches[i][1]; |
||||
if (m0.distance < (1.f - match_conf_) * m1.distance) |
||||
matches_info.matches.push_back(m0); |
||||
} |
||||
|
||||
// Find 2->1 matches
|
||||
pair_matches.clear(); |
||||
matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2); |
||||
for (size_t i = 0; i < pair_matches.size(); ++i) |
||||
{ |
||||
if (pair_matches[i].size() < 2) |
||||
continue; |
||||
const DMatch& m0 = pair_matches[i][0]; |
||||
const DMatch& m1 = pair_matches[i][1]; |
||||
if (m0.distance < (1.f - match_conf_) * m1.distance) |
||||
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); |
||||
} |
||||
} |
||||
|
||||
class GpuMatcher : public FeaturesMatcher |
||||
{ |
||||
public: |
||||
inline GpuMatcher(float match_conf) : match_conf_(match_conf) {} |
||||
|
||||
void match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info); |
||||
|
||||
private: |
||||
float match_conf_; |
||||
|
||||
GpuMat descriptors1_; |
||||
GpuMat descriptors2_; |
||||
|
||||
GpuMat trainIdx_, distance_, allDist_; |
||||
}; |
||||
|
||||
void GpuMatcher::match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info) |
||||
{ |
||||
matches_info.matches.clear(); |
||||
|
||||
BruteForceMatcher_GPU< L2<float> > matcher; |
||||
|
||||
descriptors1_.upload(features1.descriptors); |
||||
descriptors2_.upload(features2.descriptors); |
||||
|
||||
vector< vector<DMatch> > pair_matches; |
||||
|
||||
// Find 1->2 matches
|
||||
matcher.knnMatch(descriptors1_, descriptors2_, trainIdx_, distance_, allDist_, 2); |
||||
matcher.knnMatchDownload(trainIdx_, distance_, pair_matches); |
||||
for (size_t i = 0; i < pair_matches.size(); ++i) |
||||
{ |
||||
if (pair_matches[i].size() < 2) |
||||
continue; |
||||
const DMatch& m0 = pair_matches[i][0]; |
||||
const DMatch& m1 = pair_matches[i][1]; |
||||
|
||||
CV_Assert(m0.queryIdx < static_cast<int>(features1.keypoints.size())); |
||||
CV_Assert(m0.trainIdx < static_cast<int>(features2.keypoints.size())); |
||||
|
||||
if (m0.distance < (1.f - match_conf_) * m1.distance) |
||||
matches_info.matches.push_back(m0); |
||||
} |
||||
|
||||
// Find 2->1 matches
|
||||
pair_matches.clear(); |
||||
matcher.knnMatch(descriptors2_, descriptors1_, trainIdx_, distance_, allDist_, 2); |
||||
matcher.knnMatchDownload(trainIdx_, distance_, pair_matches); |
||||
for (size_t i = 0; i < pair_matches.size(); ++i) |
||||
{ |
||||
if (pair_matches[i].size() < 2) |
||||
continue; |
||||
const DMatch& m0 = pair_matches[i][0]; |
||||
const DMatch& m1 = pair_matches[i][1]; |
||||
|
||||
CV_Assert(m0.trainIdx < static_cast<int>(features1.keypoints.size())); |
||||
CV_Assert(m0.queryIdx < static_cast<int>(features2.keypoints.size())); |
||||
|
||||
if (m0.distance < (1.f - match_conf_) * m1.distance) |
||||
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); |
||||
} |
||||
} |
||||
} |
||||
|
||||
BestOf2NearestMatcher::BestOf2NearestMatcher(bool gpu_hint, float match_conf, int num_matches_thresh1, int num_matches_thresh2) |
||||
{ |
||||
if (gpu_hint && getCudaEnabledDeviceCount() > 0) |
||||
impl_ = new GpuMatcher(match_conf); |
||||
else |
||||
impl_ = new CpuMatcher(match_conf); |
||||
|
||||
num_matches_thresh1_ = num_matches_thresh1; |
||||
num_matches_thresh2_ = num_matches_thresh2; |
||||
} |
||||
|
||||
|
||||
void BestOf2NearestMatcher::match(const Mat &img1, const ImageFeatures &features1, const Mat &img2, const ImageFeatures &features2, |
||||
MatchesInfo &matches_info) |
||||
{ |
||||
(*impl_)(img1, features1, img2, features2, matches_info); |
||||
|
||||
// Check if it makes sense to find homography
|
||||
if (matches_info.matches.size() < static_cast<size_t>(num_matches_thresh1_)) |
||||
return; |
||||
|
||||
// Construct point-point correspondences for homography estimation
|
||||
Mat src_points(1, matches_info.matches.size(), CV_32FC2); |
||||
Mat dst_points(1, matches_info.matches.size(), CV_32FC2); |
||||
for (size_t i = 0; i < matches_info.matches.size(); ++i) |
||||
{ |
||||
const DMatch& m = matches_info.matches[i]; |
||||
|
||||
Point2f p = features1.keypoints[m.queryIdx].pt; |
||||
p.x -= img1.cols * 0.5f; |
||||
p.y -= img1.rows * 0.5f; |
||||
src_points.at<Point2f>(0, i) = p; |
||||
|
||||
p = features2.keypoints[m.trainIdx].pt; |
||||
p.x -= img2.cols * 0.5f; |
||||
p.y -= img2.rows * 0.5f; |
||||
dst_points.at<Point2f>(0, i) = p; |
||||
} |
||||
|
||||
// Find pair-wise motion
|
||||
matches_info.H = findHomography(src_points, dst_points, matches_info.inliers_mask, CV_RANSAC); |
||||
|
||||
// Find number of inliers
|
||||
matches_info.num_inliers = 0; |
||||
for (size_t i = 0; i < matches_info.inliers_mask.size(); ++i) |
||||
if (matches_info.inliers_mask[i]) |
||||
matches_info.num_inliers++; |
||||
|
||||
// Check if we should try to refine motion
|
||||
if (matches_info.num_inliers < num_matches_thresh2_) |
||||
return; |
||||
|
||||
// Construct point-point correspondences for inliers only
|
||||
src_points.create(1, matches_info.num_inliers, CV_32FC2); |
||||
dst_points.create(1, matches_info.num_inliers, CV_32FC2); |
||||
int inlier_idx = 0; |
||||
for (size_t i = 0; i < matches_info.matches.size(); ++i) |
||||
{ |
||||
if (!matches_info.inliers_mask[i]) |
||||
continue; |
||||
|
||||
const DMatch& m = matches_info.matches[i]; |
||||
|
||||
Point2f p = features1.keypoints[m.queryIdx].pt; |
||||
p.x -= img1.cols * 0.5f; |
||||
p.y -= img2.rows * 0.5f; |
||||
src_points.at<Point2f>(0, inlier_idx) = p; |
||||
|
||||
p = features2.keypoints[m.trainIdx].pt; |
||||
p.x -= img2.cols * 0.5f; |
||||
p.y -= img2.rows * 0.5f; |
||||
dst_points.at<Point2f>(0, inlier_idx) = p; |
||||
|
||||
inlier_idx++; |
||||
} |
||||
|
||||
// Rerun motion estimation on inliers only
|
||||
matches_info.H = findHomography(src_points, dst_points, CV_RANSAC); |
||||
} |
@ -0,0 +1,84 @@ |
||||
#ifndef __OPENCV_MATCHERS_HPP__ |
||||
#define __OPENCV_MATCHERS_HPP__ |
||||
|
||||
#include <vector> |
||||
#include <opencv2/core/core.hpp> |
||||
#include <opencv2/features2d/features2d.hpp> |
||||
|
||||
struct ImageFeatures |
||||
{ |
||||
std::vector<cv::KeyPoint> keypoints; |
||||
cv::Mat descriptors; |
||||
}; |
||||
|
||||
|
||||
class FeaturesFinder |
||||
{ |
||||
public: |
||||
virtual ~FeaturesFinder() {} |
||||
void operator ()(const std::vector<cv::Mat> &images, std::vector<ImageFeatures> &features) { find(images, features); } |
||||
|
||||
protected: |
||||
virtual void find(const std::vector<cv::Mat> &images, std::vector<ImageFeatures> &features) = 0; |
||||
}; |
||||
|
||||
|
||||
class SurfFeaturesFinder : public FeaturesFinder |
||||
{ |
||||
public: |
||||
explicit SurfFeaturesFinder(bool gpu_hint = true, double hess_thresh = 500.0,
|
||||
int num_octaves = 3, int num_layers = 4,
|
||||
int num_octaves_descr = 4, int num_layers_descr = 2); |
||||
|
||||
protected: |
||||
void find(const std::vector<cv::Mat> &images, std::vector<ImageFeatures> &features); |
||||
|
||||
cv::Ptr<FeaturesFinder> impl_; |
||||
}; |
||||
|
||||
|
||||
struct MatchesInfo |
||||
{ |
||||
MatchesInfo(); |
||||
MatchesInfo(const MatchesInfo &other); |
||||
const MatchesInfo& operator =(const MatchesInfo &other); |
||||
|
||||
int src_img_idx, dst_img_idx; // Optional images indices
|
||||
std::vector<cv::DMatch> matches; |
||||
std::vector<uchar> inliers_mask; |
||||
int num_inliers; // Number of geometrically consistent matches
|
||||
cv::Mat H; // Homography
|
||||
}; |
||||
|
||||
|
||||
class FeaturesMatcher |
||||
{ |
||||
public: |
||||
virtual ~FeaturesMatcher() {} |
||||
void operator ()(const cv::Mat &img1, const ImageFeatures &features1, const cv::Mat &img2, const ImageFeatures &features2, |
||||
MatchesInfo& matches_info) { match(img1, features1, img2, features2, matches_info); } |
||||
void operator ()(const std::vector<cv::Mat> &images, const std::vector<ImageFeatures> &features, |
||||
std::vector<MatchesInfo> &pairwise_matches); |
||||
|
||||
protected: |
||||
virtual void match(const cv::Mat &img1, const ImageFeatures &features1, const cv::Mat &img2, const ImageFeatures &features2, |
||||
MatchesInfo& matches_info) = 0; |
||||
}; |
||||
|
||||
|
||||
class BestOf2NearestMatcher : public FeaturesMatcher |
||||
{ |
||||
public: |
||||
explicit BestOf2NearestMatcher(bool gpu_hint = true, float match_conf = 0.55f, int num_matches_thresh1 = 5, int num_matches_thresh2 = 5); |
||||
|
||||
protected: |
||||
void match(const cv::Mat &img1, const ImageFeatures &features1, const cv::Mat &img2, const ImageFeatures &features2, |
||||
MatchesInfo &matches_info); |
||||
|
||||
int num_matches_thresh1_; |
||||
int num_matches_thresh2_; |
||||
|
||||
cv::Ptr<FeaturesMatcher> impl_; |
||||
}; |
||||
|
||||
#endif // __OPENCV_MATCHERS_HPP__
|
Loading…
Reference in new issue