Merge pull request #21847 from lamm45:imgproc-tform-doc

Minor documentation fixes for geometric image transformations
pull/21977/head
OpenCV Pushbot 3 years ago committed by GitHub
commit 56824d1769
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 10
      modules/imgproc/include/opencv2/imgproc.hpp

@ -118,7 +118,7 @@ sophisticated [interpolation methods](http://en.wikipedia.org/wiki/Multivariate_
where a polynomial function is fit into some neighborhood of the computed pixel \f$(f_x(x,y),
f_y(x,y))\f$, and then the value of the polynomial at \f$(f_x(x,y), f_y(x,y))\f$ is taken as the
interpolated pixel value. In OpenCV, you can choose between several interpolation methods. See
resize for details.
#resize for details.
@note The geometrical transformations do not work with `CV_8S` or `CV_32S` images.
@ -2265,7 +2265,7 @@ way:
resize(src, dst, Size(), 0.5, 0.5, interpolation);
@endcode
To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
enlarge an image, it will generally look best with c#INTER_CUBIC (slow) or #INTER_LINEAR
enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
(faster but still looks OK).
@param src input image.
@ -2357,7 +2357,7 @@ The function remap transforms the source image using the specified map:
where values of pixels with non-integer coordinates are computed using one of available
interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps
in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in
\f$map_1\f$, or fixed-point maps created by using convertMaps. The reason you might want to
\f$map_1\f$, or fixed-point maps created by using #convertMaps. The reason you might want to
convert from floating to fixed-point representations of a map is that they can yield much faster
(\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x),
cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients.
@ -2367,7 +2367,7 @@ This function cannot operate in-place.
@param src Source image.
@param dst Destination image. It has the same size as map1 and the same type as src .
@param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 ,
CV_32FC1, or CV_32FC2. See convertMaps for details on converting a floating point
CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point
representation to fixed-point for speed.
@param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
if map1 is (x,y) points), respectively.
@ -2392,7 +2392,7 @@ options ( (map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.
supported:
- \f$\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. This is the
most frequently used conversion operation, in which the original floating-point maps (see remap )
most frequently used conversion operation, in which the original floating-point maps (see #remap)
are converted to a more compact and much faster fixed-point representation. The first output array
contains the rounded coordinates and the second array (created only when nninterpolation=false )
contains indices in the interpolation tables.

Loading…
Cancel
Save