mirror of https://github.com/opencv/opencv.git
parent
5625d79508
commit
56571561b4
4 changed files with 76 additions and 2 deletions
@ -0,0 +1,73 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
''' |
||||
K-means clusterization test |
||||
''' |
||||
|
||||
# Python 2/3 compatibility |
||||
from __future__ import print_function |
||||
|
||||
import numpy as np |
||||
import cv2 |
||||
from numpy import random |
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
|
||||
def make_gaussians(cluster_n, img_size): |
||||
points = [] |
||||
ref_distrs = [] |
||||
sizes = [] |
||||
for i in xrange(cluster_n): |
||||
mean = (0.1 + 0.8*random.rand(2)) * img_size |
||||
a = (random.rand(2, 2)-0.5)*img_size*0.1 |
||||
cov = np.dot(a.T, a) + img_size*0.05*np.eye(2) |
||||
n = 100 + random.randint(900) |
||||
pts = random.multivariate_normal(mean, cov, n) |
||||
points.append( pts ) |
||||
ref_distrs.append( (mean, cov) ) |
||||
sizes.append(n) |
||||
points = np.float32( np.vstack(points) ) |
||||
return points, ref_distrs, sizes |
||||
|
||||
def getMainLabelConfidence(labels, nLabels): |
||||
|
||||
n = len(labels) |
||||
labelsDict = dict.fromkeys(range(nLabels), 0) |
||||
labelsConfDict = dict.fromkeys(range(nLabels)) |
||||
|
||||
for i in range(n): |
||||
labelsDict[labels[i][0]] += 1 |
||||
|
||||
for i in range(nLabels): |
||||
labelsConfDict[i] = float(labelsDict[i]) / n |
||||
|
||||
return max(labelsConfDict.values()) |
||||
|
||||
class kmeans_test(NewOpenCVTests): |
||||
|
||||
def test_kmeans(self): |
||||
|
||||
np.random.seed(10) |
||||
|
||||
cluster_n = 5 |
||||
img_size = 512 |
||||
|
||||
# generating bright palette |
||||
colors = np.zeros((1, cluster_n, 3), np.uint8) |
||||
colors[0,:] = 255 |
||||
colors[0,:,0] = np.arange(0, 180, 180.0/cluster_n) |
||||
colors = cv2.cvtColor(colors, cv2.COLOR_HSV2BGR)[0] |
||||
|
||||
points, _, clusterSizes = make_gaussians(cluster_n, img_size) |
||||
|
||||
term_crit = (cv2.TERM_CRITERIA_EPS, 30, 0.1) |
||||
ret, labels, centers = cv2.kmeans(points, cluster_n, None, term_crit, 10, 0) |
||||
|
||||
self.assertEqual(len(centers), cluster_n) |
||||
|
||||
offset = 0 |
||||
for i in range(cluster_n): |
||||
confidence = getMainLabelConfidence(labels[offset : (offset + clusterSizes[i])], cluster_n) |
||||
offset += clusterSizes[i] |
||||
self.assertGreater(confidence, 0.9) |
Loading…
Reference in new issue