dnn: improve debugging of TensorFlow parsing errors

pull/19220/head
Alexander Alekhin 4 years ago
parent 68fb8dd873
commit 55f06b76f9
  1. 344
      modules/dnn/src/tensorflow/tf_importer.cpp

@ -11,6 +11,11 @@ Implementation of Tensorflow models parser
#include "../precomp.hpp"
#include <opencv2/core/utils/logger.defines.hpp>
#undef CV_LOG_STRIP_LEVEL
#define CV_LOG_STRIP_LEVEL CV_LOG_LEVEL_DEBUG + 1
#include <opencv2/core/utils/logger.hpp>
#ifdef HAVE_PROTOBUF
#include "tf_io.hpp"
@ -93,7 +98,7 @@ void blobShapeFromTensor(const tensorflow::TensorProto &tensor, MatShape& shape)
shape[i] = (int)_shape.dim(i).size();
}
else
shape.resize(1, 1); // Scalar.
shape.resize(1, 1); // Scalar. // FIXIT: should be empty
}
else
{
@ -258,7 +263,7 @@ const tensorflow::AttrValue& getLayerAttr(const tensorflow::NodeDef &layer, cons
return layer.attr().at(name);
}
static int getDataLayout(const tensorflow::NodeDef& layer)
static DataLayout getDataLayout(const tensorflow::NodeDef& layer)
{
if (hasLayerAttr(layer, "data_format"))
{
@ -280,10 +285,13 @@ static inline std::string getNodeName(const std::string& tensorName)
return tensorName.substr(0, tensorName.rfind(':'));
}
static inline int getDataLayout(const std::string& layerName,
const std::map<String, int>& data_layouts)
static inline
DataLayout getDataLayout(
const std::string& layerName,
const std::map<String, DataLayout>& data_layouts
)
{
std::map<String, int>::const_iterator it = data_layouts.find(getNodeName(layerName));
std::map<String, DataLayout>::const_iterator it = data_layouts.find(getNodeName(layerName));
return it != data_layouts.end() ? it->second : DATA_LAYOUT_UNKNOWN;
}
@ -439,15 +447,20 @@ void ExcludeLayer(tensorflow::GraphDef& net, const int layer_index, const int in
net.mutable_node()->DeleteSubrange(layer_index, 1);
}
class TFImporter {
class TFImporter
{
public:
TFImporter(const char *model, const char *config = NULL);
TFImporter(const char *dataModel, size_t lenModel,
TFImporter(Net& net, const char *model, const char *config = NULL);
TFImporter(Net& net, const char *dataModel, size_t lenModel,
const char *dataConfig = NULL, size_t lenConfig = 0);
protected:
Net& dstNet;
void populateNet();
void populateNet(Net dstNet);
void parseNode(const tensorflow::NodeDef& layer);
DataLayout predictOutputDataLayout(const tensorflow::NodeDef& layer);
private:
void kernelFromTensor(const tensorflow::TensorProto &tensor, Mat &dstBlob);
void connect(const std::map<String, int>& layers_name_id_map, Net& network, const Pin& outPin,
@ -467,23 +480,53 @@ private:
std::vector<String> netInputsNames;
std::vector<MatShape> netInputShapes;
std::set<String> layers_to_ignore;
std::map<String, DataLayout> data_layouts;
// find all Const layers for params
std::map<String, int> value_id;
// A map with constant blobs which are shared between multiple layers.
std::map<String, Mat> sharedWeights;
std::map<String, int> layer_id;
};
TFImporter::TFImporter(const char *model, const char *config)
TFImporter::TFImporter(Net& net, const char *model, const char *config)
: dstNet(net)
{
if (model && model[0])
{
CV_LOG_DEBUG(NULL, "DNN/TF: processing TensorFlow model from file: " << model);
ReadTFNetParamsFromBinaryFileOrDie(model, &netBin);
}
if (config && config[0])
{
CV_LOG_DEBUG(NULL, "DNN/TF: processing TensorFlow config from file: " << config);
ReadTFNetParamsFromTextFileOrDie(config, &netTxt);
}
populateNet();
}
TFImporter::TFImporter(const char *dataModel, size_t lenModel,
const char *dataConfig, size_t lenConfig)
TFImporter::TFImporter(
Net& net,
const char *dataModel, size_t lenModel,
const char *dataConfig, size_t lenConfig
)
: dstNet(net)
{
if (dataModel != NULL && lenModel > 0)
{
CV_LOG_DEBUG(NULL, "DNN/TF: processing TensorFlow model from memory (" << lenModel << " bytes)");
ReadTFNetParamsFromBinaryBufferOrDie(dataModel, lenModel, &netBin);
}
if (dataConfig != NULL && lenConfig > 0)
{
CV_LOG_DEBUG(NULL, "DNN/TF: processing TensorFlow config from memory (" << lenConfig << " bytes)");
ReadTFNetParamsFromTextBufferOrDie(dataConfig, lenConfig, &netTxt);
}
populateNet();
}
void TFImporter::kernelFromTensor(const tensorflow::TensorProto &tensor, Mat &dstBlob)
@ -612,12 +655,17 @@ const tensorflow::TensorProto& TFImporter::getConstBlob(const tensorflow::NodeDe
static void addConstNodes(tensorflow::GraphDef& net, std::map<String, int>& const_layers,
std::set<String>& layers_to_ignore)
{
CV_LOG_DEBUG(NULL, "DNN/TF: addConstNodes(): handling " << net.node_size() << " nodes...");
for (int li = 0; li < net.node_size(); li++)
{
const tensorflow::NodeDef &layer = net.node(li);
String name = layer.name();
String type = layer.op();
//CV_LOG_DEBUG(NULL, "DNN/TF: layer_id=" << li << " - '" << name << "' @ " << type);
try
{
if (type == "Dequantize")
{
// Example of Dequantize node:
@ -628,7 +676,7 @@ static void addConstNodes(tensorflow::GraphDef& net, std::map<String, int>& cons
// input: "conv2d_1/bias_quantized_max"
// attr { key: "T" value { type: DT_QUINT8 } } (quantized type)
// attr { key: "mode" value { s: "MIN_FIRST" } } (quantization technique)
CV_Assert(layer.input_size() == 3);
CV_CheckEQ(layer.input_size(), 3, "Dequantize: 3 inputs is supported only");
for (int i = 0; i < 3; ++i)
CV_Assert(const_layers.find(layer.input(i)) != const_layers.end());
CV_Assert(hasLayerAttr(layer, "mode") &&
@ -641,12 +689,14 @@ static void addConstNodes(tensorflow::GraphDef& net, std::map<String, int>& cons
tensorflow::TensorProto* tensor = net.mutable_node(tensorId)
->mutable_attr()->at("value")
.mutable_tensor();
CV_Assert(tensor->dtype() == tensorflow::DT_QUINT8);
CV_CheckEQ((int)tensor->dtype(), (int)tensorflow::DT_QUINT8, "");
Mat qMin = getTensorContent(net.node(minId).attr().at("value").tensor());
Mat qMax = getTensorContent(net.node(maxId).attr().at("value").tensor());
CV_Assert_N(qMin.total() == 1, qMin.type() == CV_32FC1,
qMax.total() == 1, qMax.type() == CV_32FC1);
CV_CheckEQ(qMin.total(), (size_t)1, "");
CV_CheckTypeEQ(qMin.type(), CV_32FC1, "");
CV_CheckEQ(qMax.total(), (size_t)1, "");
CV_CheckTypeEQ(qMax.type(), CV_32FC1, "");
Mat content = getTensorContent(*tensor);
@ -673,23 +723,30 @@ static void addConstNodes(tensorflow::GraphDef& net, std::map<String, int>& cons
}
layers_to_ignore.insert(name);
}
catch (const std::exception& e)
{
CV_LOG_ERROR(NULL, "DNN/TF: Can't handle node='" << name << "'. Exception: " << e.what());
throw;
}
}
CV_LOG_DEBUG(NULL, "DNN/TF: layers_to_ignore.size() = " << layers_to_ignore.size());
}
// If all inputs of specific layer have the same data layout we can say that
// this layer's output has this data layout too. Returns DATA_LAYOUT_UNKNOWN otherwise.
static int predictOutputDataLayout(const tensorflow::GraphDef& net,
const tensorflow::NodeDef& layer,
const std::map<String, int>& data_layouts)
DataLayout TFImporter::predictOutputDataLayout(const tensorflow::NodeDef& layer)
{
int layout = getDataLayout(layer);
DataLayout layout = getDataLayout(layer);
if (layout != DATA_LAYOUT_UNKNOWN)
{
CV_LOG_DEBUG(NULL, "DNN/TF: predictOutputDataLayout(" << layer.name() << " @ " << layer.op() << ") => " << (int)layout << " (from attrs)");
return layout;
}
// Determine layout by layer's inputs
std::map<String, int>::const_iterator it;
for (int i = 0, n = layer.input_size(); i < n; ++i)
{
it = data_layouts.find(getNodeName(layer.input(i)));
std::map<String, DataLayout>::const_iterator it = data_layouts.find(getNodeName(layer.input(i)));
if (it != data_layouts.end())
{
if (layout != DATA_LAYOUT_UNKNOWN)
@ -703,48 +760,72 @@ static int predictOutputDataLayout(const tensorflow::GraphDef& net,
}
if (layout != DATA_LAYOUT_UNKNOWN)
{
CV_LOG_DEBUG(NULL, "DNN/TF: predictOutputDataLayout(" << layer.name() << " @ " << layer.op() << ") => " << (int)layout << " (from inputs)");
return layout;
}
// Determine layout by layer's consumers recursively.
it = data_layouts.find(layer.name());
std::map<String, DataLayout>::const_iterator it = data_layouts.find(layer.name());
CV_Assert(it != data_layouts.end());
return it->second;
}
void TFImporter::populateNet(Net dstNet)
void TFImporter::populateNet()
{
if (!netTxt.ByteSize())
removePhaseSwitches(netBin);
CV_Assert(netBin.ByteSize() || netTxt.ByteSize());
CV_LOG_INFO(NULL, "DNN/TF: parsing model"
<< (netBin.has_versions() ? cv::format(" produced by TF v%d (min_consumer=%d)", (int)netBin.versions().producer(), (int)netBin.versions().min_consumer()) : cv::String(" (N/A version info)"))
<< ". Number of nodes = " << netBin.node_size()
);
if (netTxt.ByteSize())
{
CV_LOG_INFO(NULL, "DNN/TF: parsing config"
<< (netTxt.has_versions() ? cv::format(" produced by TF v%d (min_consumer=%d)", (int)netTxt.versions().producer(), (int)netTxt.versions().min_consumer()) : cv::String(" (N/A version info)"))
<< ". Number of nodes = " << netTxt.node_size()
);
RemoveIdentityOps(netBin);
CV_LOG_DEBUG(NULL, "DNN/TF: RemoveIdentityOps(model) => " << netBin.node_size() << " nodes");
RemoveIdentityOps(netTxt);
CV_LOG_DEBUG(NULL, "DNN/TF: RemoveIdentityOps(config) => " << netTxt.node_size() << " nodes");
if (!netTxt.ByteSize())
{
simplifySubgraphs(netBin);
sortByExecutionOrder(netBin);
sortByExecutionOrder(netTxt);
CV_LOG_DEBUG(NULL, "DNN/TF: sortByExecutionOrder(config) => " << netTxt.node_size() << " nodes");
}
else
{
sortByExecutionOrder(netTxt);
}
removePhaseSwitches(netBin);
CV_LOG_DEBUG(NULL, "DNN/TF: removePhaseSwitches(model) => " << netBin.node_size() << " nodes");
std::set<String> layers_to_ignore;
RemoveIdentityOps(netBin);
CV_LOG_DEBUG(NULL, "DNN/TF: RemoveIdentityOps(model) => " << netBin.node_size() << " nodes");
simplifySubgraphs(netBin);
CV_LOG_DEBUG(NULL, "DNN/TF: simplifySubgraphs(model) => " << netBin.node_size() << " nodes");
sortByExecutionOrder(netBin);
CV_LOG_DEBUG(NULL, "DNN/TF: sortByExecutionOrder(model) => " << netBin.node_size() << " nodes");
}
tensorflow::GraphDef& net = netTxt.ByteSize() != 0 ? netTxt : netBin;
int layersSize = net.node_size();
std::map<String, int> data_layouts;
// Pre-fill data layouts where they are set explicitly.
// Assuming that nodes are in topological order
for (int i = net.node_size() - 1; i >= 0; --i)
for (int i = layersSize - 1; i >= 0; --i)
{
const tensorflow::NodeDef& layer = net.node(i);
std::string name = layer.name();
int layout = getDataLayout(layer);
std::map<String, int>::iterator it = data_layouts.find(name);
CV_LOG_DEBUG(NULL, "DNN/TF: node(" << i << " - '" << name << "') propagating layout...");
try
{
DataLayout layout = getDataLayout(layer);
std::map<String, DataLayout>::iterator it = data_layouts.find(name);
if (it != data_layouts.end())
{
if (layout != DATA_LAYOUT_UNKNOWN)
@ -782,31 +863,64 @@ void TFImporter::populateNet(Net dstNet)
data_layouts[name] = layout;
}
}
catch (const std::exception& e)
{
CV_LOG_ERROR(NULL, "DNN/TF: Can't propagate layout for node='" << name << "'. Exception: " << e.what());
throw;
}
}
// find all Const layers for params
std::map<String, int> value_id;
// A map with constant blobs which are shared between multiple layers.
std::map<String, Mat> sharedWeights;
addConstNodes(netBin, value_id, layers_to_ignore);
addConstNodes(netTxt, value_id, layers_to_ignore);
std::map<String, int> layer_id;
for (int li = 0; li < layersSize; li++)
{
tensorflow::NodeDef layer = net.node(li);
String name = layer.name();
String type = layer.op();
const tensorflow::NodeDef& layer = net.node(li);
const std::string name = layer.name();
const std::string type = layer.op();
const int ninputs = layer.input_size();
CV_LOG_DEBUG(NULL, "DNN/TF: (" << li << "/" << layersSize << ") Parse layer " << name << " @ " << type << " with " << ninputs << " inputs");
parseNode(layer);
}
for (size_t i = 0; i < netInputsNames.size(); i++)
{
CV_LOG_DEBUG(NULL, "DNN/TF: Model input: " << i << " - '" << netInputsNames[i] << "'");
CV_Assert(!netInputsNames[i].empty());
}
dstNet.setInputsNames(netInputsNames);
CV_LOG_DEBUG(NULL, "DNN/TF: ===================== Import completed =====================");
}
void TFImporter::parseNode(const tensorflow::NodeDef& layer_)
{
tensorflow::NodeDef layer = layer_;
tensorflow::GraphDef& net = netTxt.ByteSize() != 0 ? netTxt : netBin;
/*const*/ std::string name = layer.name();
/*const*/ std::string type = layer.op();
/*const*/ int num_inputs = layer.input_size();
try
{
LayerParams layerParams;
if(layers_to_ignore.find(name) != layers_to_ignore.end())
continue;
if (layers_to_ignore.find(name) != layers_to_ignore.end())
{
CV_LOG_DEBUG(NULL, "DNN/TF: ignored");
return;
}
int predictedLayout = predictOutputDataLayout(net, layer, data_layouts);
DataLayout predictedLayout = predictOutputDataLayout(layer);
data_layouts[name] = predictedLayout;
if (type == "Conv2D" || type == "SpaceToBatchND" || type == "DepthwiseConv2dNative" || type == "Pad" || type == "MirrorPad" || type == "Conv3D")
{
CV_CheckGT(num_inputs, 0, "");
// The first node of dilated convolution subgraph.
// Extract input node, dilation rate and paddings.
std::string input = layer.input(0);
@ -824,7 +938,7 @@ void TFImporter::populateNet(Net dstNet)
// input: "input"
// input: "SpaceToBatchND/block_shape"
// input: "SpaceToBatchND/paddings"
CV_Assert(layer.input_size() == 3);
CV_CheckEQ(num_inputs, 3, "");
DictValue dilation = parseDims(getConstBlob(layer, value_id, 1));
CV_Assert(dilation.size() == 2);
@ -839,10 +953,14 @@ void TFImporter::populateNet(Net dstNet)
layerParams.set("pad_w", paddings.at<float>(2));
CV_Assert(next_layers.size() == 1);
layer = net.node(next_layers[0].second);
layers_to_ignore.insert(next_layers[0].first);
// FIXIT don't override, rewrite this code
layer = net.node(next_layers[0].second);
name = layer.name();
type = layer.op();
num_inputs = layer.input_size();
CV_LOG_DEBUG(NULL, "DNN/TF: switched to layer " << name << " @ " << type << ") with " << num_inputs << " inputs");
}
else if (type == "Pad" || type == "MirrorPad")
{
@ -876,7 +994,7 @@ void TFImporter::populateNet(Net dstNet)
layer_id[name] = id;
connect(layer_id, dstNet, parsePin(input), id, 0);
continue;
return;
}
else
{
@ -886,10 +1004,14 @@ void TFImporter::populateNet(Net dstNet)
layerParams.set("pad_h", paddings.at<int32_t>(4));
layerParams.set("pad_w", paddings.at<int32_t>(6));
layer = net.node(next_layers[0].second);
layers_to_ignore.insert(next_layers[0].first);
// FIXIT don't override, rewrite this code
layer = net.node(next_layers[0].second);
name = layer.name();
type = layer.op();
num_inputs = layer.input_size();
CV_LOG_DEBUG(NULL, "DNN/TF: switched to layer " << name << " @ " << type << ") with " << num_inputs << " inputs");
}
}
@ -1011,13 +1133,14 @@ void TFImporter::populateNet(Net dstNet)
}
else if (type == "BiasAdd" || type == "Add" || type == "AddV2" || type == "Sub" || type=="AddN")
{
CV_CheckGT(num_inputs, 0, "");
bool haveConst = false;
for(int ii = 0; !haveConst && ii < layer.input_size(); ++ii)
for(int ii = 0; !haveConst && ii < num_inputs; ++ii)
{
Pin input = parsePin(layer.input(ii));
haveConst = value_id.find(input.name) != value_id.end();
}
CV_Assert(!haveConst || layer.input_size() == 2);
CV_Assert(!haveConst || num_inputs == 2);
if (haveConst)
{
@ -1054,7 +1177,7 @@ void TFImporter::populateNet(Net dstNet)
int id = dstNet.addLayer(name, "Eltwise", layerParams);
layer_id[name] = id;
for (int ii = 0; ii < layer.input_size(); ii++)
for (int ii = 0; ii < num_inputs; ii++)
{
Pin inp = parsePin(layer.input(ii));
if (layer_id.find(inp.name) == layer_id.end())
@ -1065,7 +1188,7 @@ void TFImporter::populateNet(Net dstNet)
}
else if (type == "MatMul")
{
CV_Assert(layer.input_size() == 2);
CV_CheckEQ(num_inputs, 2, "");
// For the object detection networks, TensorFlow Object Detection API
// predicts deltas for bounding boxes in yxYX (ymin, xmin, ymax, xmax)
@ -1077,7 +1200,7 @@ void TFImporter::populateNet(Net dstNet)
layerParams.set("bias_term", false);
layerParams.blobs.resize(1);
StrIntVector next_layers = getNextLayers(net, name, "BiasAdd");
StrIntVector next_layers = getNextLayers(net, name, "BiasAdd"); // FIXIT Use layers fusion instead
if (next_layers.empty())
{
next_layers = getNextLayers(net, name, "Add");
@ -1135,8 +1258,9 @@ void TFImporter::populateNet(Net dstNet)
}
else if (type == "Reshape")
{
CV_CheckGT(num_inputs, 0, "");
Pin inpId = parsePin(layer.input(0));
int inpLayout = getDataLayout(layer.input(0), data_layouts);
DataLayout inpLayout = getDataLayout(layer.input(0), data_layouts);
// There are two possible implementations: reshape an input using
// predefined sizes or use a second input blob as a source of new shape.
if (value_id.find(layer.input(1)) != value_id.end())
@ -1185,6 +1309,7 @@ void TFImporter::populateNet(Net dstNet)
}
else if (type == "Flatten" || type == "Squeeze")
{
CV_CheckGT(num_inputs, 0, "");
Pin inpId = parsePin(layer.input(0));
int inpLayout = getDataLayout(layer.input(0), data_layouts);
if (type == "Squeeze")
@ -1231,6 +1356,7 @@ void TFImporter::populateNet(Net dstNet)
}
else if (type == "Transpose")
{
CV_CheckGT(num_inputs, 0, "");
Mat perm = getTensorContent(getConstBlob(layer, value_id, 1));
CV_Assert(perm.type() == CV_32SC1);
int* permData = (int*)perm.data;
@ -1304,6 +1430,7 @@ void TFImporter::populateNet(Net dstNet)
}
else if (type == "LRN")
{
CV_CheckGT(num_inputs, 0, "");
if(hasLayerAttr(layer, "alpha")) {
layerParams.set("alpha", getLayerAttr(layer, "alpha").f());
}
@ -1322,11 +1449,12 @@ void TFImporter::populateNet(Net dstNet)
int id = dstNet.addLayer(name, "LRN", layerParams);
layer_id[name] = id;
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, num_inputs);
}
else if (type == "Concat" || type == "ConcatV2")
{
int axisId = (type == "Concat" ? 0 : layer.input_size() - 1);
CV_CheckGT(num_inputs, 0, "");
int axisId = (type == "Concat" ? 0 : num_inputs - 1);
int axis = getConstBlob(layer, value_id, axisId).int_val().Get(0);
if (getDataLayout(name, data_layouts) == DATA_LAYOUT_NHWC)
@ -1337,7 +1465,7 @@ void TFImporter::populateNet(Net dstNet)
// input(0) or input(n-1) is concat_dim
int from = (type == "Concat" ? 1 : 0);
int to = (type == "Concat" ? layer.input_size() : layer.input_size() - 1);
int to = (type == "Concat" ? num_inputs : num_inputs - 1);
for (int ii = from; ii < to; ii++)
{
@ -1370,6 +1498,7 @@ void TFImporter::populateNet(Net dstNet)
}
else if (type == "MaxPool" || type == "MaxPool3D")
{
CV_CheckGT(num_inputs, 0, "");
layerParams.set("pool", "max");
setKSize(layerParams, layer);
@ -1381,10 +1510,11 @@ void TFImporter::populateNet(Net dstNet)
int id = dstNet.addLayer(name, "Pooling", layerParams);
layer_id[name] = id;
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, num_inputs);
}
else if (type == "AvgPool" || type == "AvgPool3D")
{
CV_CheckGT(num_inputs, 0, "");
layerParams.set("pool", "ave");
layerParams.set("ave_pool_padded_area", false);
setKSize(layerParams, layer);
@ -1394,11 +1524,11 @@ void TFImporter::populateNet(Net dstNet)
int id = dstNet.addLayer(name, "Pooling", layerParams);
layer_id[name] = id;
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, num_inputs);
}
else if (type == "MaxPoolGrad")
{
CV_Assert(layer.input_size() == 3);
CV_CheckEQ(num_inputs, 3, "");
layerParams.set("pool_k_h", 0);
layerParams.set("pool_k_w", 0);
@ -1457,7 +1587,7 @@ void TFImporter::populateNet(Net dstNet)
// TODO: slicing input may be Const op
// TODO: slicing kernels for convolutions - in current implementation it is impossible
// TODO: add parsing num of slices parameter
CV_Assert(layer.input_size() == 2);
CV_CheckEQ(num_inputs, 2, "");
// num_split
// 1st blob is dims tensor
int axis = getConstBlob(layer, value_id, 0).int_val().Get(0);
@ -1480,7 +1610,7 @@ void TFImporter::populateNet(Net dstNet)
// input: "input_node"
// input: "Slice/begin"
// input: "Slice/size"
CV_Assert(layer.input_size() == 3);
CV_CheckEQ(num_inputs, 3, "");
Mat begins = getTensorContent(getConstBlob(layer, value_id, 1));
Mat sizes = getTensorContent(getConstBlob(layer, value_id, 2));
CV_Assert_N(!begins.empty(), !sizes.empty());
@ -1505,7 +1635,7 @@ void TFImporter::populateNet(Net dstNet)
}
else if (type == "StridedSlice")
{
CV_Assert(layer.input_size() == 4);
CV_CheckEQ(num_inputs, 4, "");
Mat begins = getTensorContent(getConstBlob(layer, value_id, 1));
Mat ends = getTensorContent(getConstBlob(layer, value_id, 2));
Mat strides = getTensorContent(getConstBlob(layer, value_id, 3));
@ -1544,8 +1674,9 @@ void TFImporter::populateNet(Net dstNet)
}
else if (type == "Mul" || type == "RealDiv")
{
CV_CheckGT(num_inputs, 0, "");
int constId = -1;
for(int ii = 0; ii < layer.input_size(); ++ii)
for(int ii = 0; ii < num_inputs; ++ii)
{
Pin input = parsePin(layer.input(ii));
if (value_id.find(input.name) != value_id.end())
@ -1554,12 +1685,12 @@ void TFImporter::populateNet(Net dstNet)
break;
}
}
CV_Assert((constId != -1) || (layer.input_size() == 2));
CV_Assert((constId != -1) || (num_inputs == 2));
if (constId != -1)
{
// Multiplication by constant.
CV_Assert(layer.input_size() == 2);
CV_CheckEQ(num_inputs, 2, "");
Mat scaleMat = getTensorContent(getConstBlob(layer, value_id));
CV_Assert(scaleMat.type() == CV_32FC1);
if (type == "RealDiv")
@ -1643,7 +1774,7 @@ void TFImporter::populateNet(Net dstNet)
// Check if all the inputs have the same shape.
bool equalInpShapes = true;
MatShape outShape0;
for (int ii = 0; ii < layer.input_size() && !netInputShapes.empty(); ii++)
for (int ii = 0; ii < num_inputs && !netInputShapes.empty(); ii++)
{
Pin pin = parsePin(layer.input(ii));
int inpId = layer_id.find(pin.name)->second;
@ -1681,7 +1812,7 @@ void TFImporter::populateNet(Net dstNet)
layer_id[name] = id;
for (int ii = 0; ii < layer.input_size(); ii++)
for (int ii = 0; ii < num_inputs; ii++)
{
Pin inp = parsePin(layer.input(ii));
if (layer_id.find(inp.name) == layer_id.end())
@ -1698,9 +1829,7 @@ void TFImporter::populateNet(Net dstNet)
// input: "BatchNorm/beta"
// input: "BatchNorm/moving_mean"
// input: "BatchNorm/moving_variance"
if (layer.input_size() != 5)
CV_Error(Error::StsNotImplemented,
"Expected gamma, beta, mean and std");
CV_CheckEQ(num_inputs, 5, "Expected gamma, beta, mean and std");
Pin inpId = parsePin(layer.input(0));
bool isTraining = hasLayerAttr(layer, "is_training") && getLayerAttr(layer, "is_training").b();
@ -1768,9 +1897,7 @@ void TFImporter::populateNet(Net dstNet)
// input: "conv2d_transpose/output_shape"
// input: "weights"
// input: "input"
if (layer.input_size() != 3)
CV_Error(Error::StsNotImplemented,
"Expected output shape, weights and input nodes");
CV_CheckEQ(num_inputs, 3, "Expected output shape, weights and input nodes");
layerParams.set("bias_term", false);
layerParams.blobs.resize(1);
@ -1845,8 +1972,7 @@ void TFImporter::populateNet(Net dstNet)
// input: "lstm_block_wrapper/w_f_diag"
// input: "lstm_block_wrapper/w_o_diag"
// input: "lstm_block_wrapper/bias"
if (layer.input_size() != 9)
CV_Error(Error::StsNotImplemented, "Unexpected number of input nodes");
CV_CheckEQ(num_inputs, 9, "Unexpected number of input nodes");
if (hasLayerAttr(layer, "forget_bias"))
layerParams.set("forget_bias", getLayerAttr(layer, "forget_bias").f());
@ -1912,6 +2038,7 @@ void TFImporter::populateNet(Net dstNet)
}
else if (type == "ResizeNearestNeighbor" || type == "ResizeBilinear" || type == "FusedResizeAndPadConv2D")
{
CV_CheckGT(num_inputs, 0, "");
std::string convWeights = "";
if (type == "FusedResizeAndPadConv2D")
{
@ -1919,30 +2046,32 @@ void TFImporter::populateNet(Net dstNet)
// input: "decoder/ResizeBilinear/size"
// input: "decoder/decoder_conv0/Conv2D_dummy_paddings"
// input: "decoder/decoder_conv0/weights"
CV_CheckEQ(layer.input_size(), 4, "Number of input for FusedResizeAndPadConv2D");
CV_CheckEQ(num_inputs, 4, "Number of input for FusedResizeAndPadConv2D");
Mat paddings = getTensorContent(getConstBlob(layer, value_id, 2));
CV_CheckEQ(countNonZero(paddings), 0, "Unsupported mode");
convWeights = layer.input(3);
layer.mutable_input()->DeleteSubrange(2, 2);
layer.mutable_input()->DeleteSubrange(2, 2); // FIXIT do NOT modify input model
num_inputs = layer.input_size();
name = name + "/resize";
if (hasLayerAttr(layer, "resize_align_corners"))
{
// FIXIT do NOT modify input model
layer.mutable_attr()->insert(
::google::protobuf::MapPair<std::string, tensorflow::AttrValue>("align_corners",
getLayerAttr(layer, "resize_align_corners")));
}
}
if (layer.input_size() == 2)
if (num_inputs == 2)
{
Mat outSize = getTensorContent(getConstBlob(layer, value_id, 1));
CV_CheckTypeEQ(outSize.type(), CV_32SC1, ""); CV_CheckEQ(outSize.total(), (size_t)2, "");
layerParams.set("height", outSize.at<int>(0, 0));
layerParams.set("width", outSize.at<int>(0, 1));
}
else if (layer.input_size() == 3)
else if (num_inputs == 3)
{
Mat factorHeight = getTensorContent(getConstBlob(layer, value_id, 1));
Mat factorWidth = getTensorContent(getConstBlob(layer, value_id, 2));
@ -1952,7 +2081,7 @@ void TFImporter::populateNet(Net dstNet)
layerParams.set("zoom_factor_y", factorHeight.at<float>(0));
}
else
CV_Assert(layer.input_size() == 2 || layer.input_size() == 3);
CV_Check(num_inputs, num_inputs == 2 || num_inputs == 3, "");
if (type == "ResizeNearestNeighbor")
layerParams.set("interpolation", "nearest");
@ -1973,12 +2102,12 @@ void TFImporter::populateNet(Net dstNet)
// Step back to add convolution
if (type == "FusedResizeAndPadConv2D")
{
tensorflow::NodeDef* conv = net.mutable_node(li);
conv->clear_input();
conv->add_input(name);
conv->add_input(convWeights);
conv->set_op("Conv2D");
li -= 1;
tensorflow::NodeDef conv = layer_;
conv.clear_input();
conv.add_input(name);
conv.add_input(convWeights);
conv.set_op("Conv2D");
parseNode(conv);
}
}
else if (type == "L2Normalize")
@ -1986,7 +2115,7 @@ void TFImporter::populateNet(Net dstNet)
// op: "L2Normalize"
// input: "input"
// input: "reduction_indices" (axis)
CV_Assert(layer.input_size() == 2);
CV_CheckEQ(num_inputs, 2, "");
Mat reductionIndices = getTensorContent(getConstBlob(layer, value_id, 1));
CV_Assert(reductionIndices.type() == CV_32SC1);
@ -2011,6 +2140,7 @@ void TFImporter::populateNet(Net dstNet)
}
else if (type == "PriorBox")
{
CV_CheckEQ(num_inputs, 2, "");
if (hasLayerAttr(layer, "min_size"))
layerParams.set("min_size", getLayerAttr(layer, "min_size").i());
if (hasLayerAttr(layer, "max_size"))
@ -2043,12 +2173,13 @@ void TFImporter::populateNet(Net dstNet)
}
else if (type == "Softmax")
{
CV_CheckGT(num_inputs, 0, "");
if (hasLayerAttr(layer, "axis"))
layerParams.set("axis", getLayerAttr(layer, "axis").i());
int id = dstNet.addLayer(name, "Softmax", layerParams);
layer_id[name] = id;
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, num_inputs);
}
else if (type == "CropAndResize")
{
@ -2056,7 +2187,7 @@ void TFImporter::populateNet(Net dstNet)
// input: "input"
// input: "boxes"
// input: "sizes"
CV_Assert(layer.input_size() == 3);
CV_CheckEQ(num_inputs, 3, "");
Mat cropSize = getTensorContent(getConstBlob(layer, value_id, 2));
CV_CheckTypeEQ(cropSize.type(), CV_32SC1, ""); CV_CheckEQ(cropSize.total(), (size_t)2, "");
@ -2084,6 +2215,7 @@ void TFImporter::populateNet(Net dstNet)
// determine out shape: NxCxHxW --Slice--> 1xCxHxW
// out_shape = 1xCxHxW if keepDims else (1xCxHxW --Flatten--> CxHxW)
// global pool: NxCxHxW --Flatten--> Nx(C*H*W) --Reshape--> 1x1xNx(C*H*W) --Pooling--> 1x1x1x(C*H*W) --Reshape--> out_shape
CV_CheckGT(num_inputs, 0, "");
Mat indices = getTensorContent(getConstBlob(layer, value_id, 1));
CV_Assert(indices.type() == CV_32SC1);
@ -2218,6 +2350,7 @@ void TFImporter::populateNet(Net dstNet)
// Example: given a list with "N" tensors of shape (C, H, W):
// if axis == 0 then the output tensor will have the shape (N, C, H, W),
// if axis == 1 then the output tensor will have the shape (C, N, H, W).
CV_CheckGT(num_inputs, 0, "");
CV_Assert(hasLayerAttr(layer, "axis"));
int dim = (int)getLayerAttr(layer, "axis").i();
if (dim != 0)
@ -2225,7 +2358,7 @@ void TFImporter::populateNet(Net dstNet)
CV_Assert(hasLayerAttr(layer, "N"));
int num = (int)getLayerAttr(layer, "N").i();
CV_Assert(layer.input_size() == num);
CV_CheckEQ(num_inputs, num, "");
std::string base_name = name + "/reshape_";
std::vector<int> reshape_ids;
for (int i = 0; i < num; i++) {
@ -2256,7 +2389,7 @@ void TFImporter::populateNet(Net dstNet)
// input: "input"
// input: "mix"
// input: "max"
CV_Assert(layer.input_size() == 3);
CV_CheckEQ(num_inputs, 3, "");
Mat minValue = getTensorContent(getConstBlob(layer, value_id, 1));
Mat maxValue = getTensorContent(getConstBlob(layer, value_id, 2));
@ -2275,6 +2408,7 @@ void TFImporter::populateNet(Net dstNet)
type == "Relu" || type == "Elu" ||
type == "Identity" || type == "Relu6")
{
CV_CheckGT(num_inputs, 0, "");
std::string dnnType = type;
if (type == "Abs") dnnType = "AbsVal";
else if (type == "Tanh") dnnType = "TanH";
@ -2284,7 +2418,7 @@ void TFImporter::populateNet(Net dstNet)
int id = dstNet.addLayer(name, dnnType, layerParams);
layer_id[name] = id;
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, num_inputs);
}
else
{
@ -2308,7 +2442,7 @@ void TFImporter::populateNet(Net dstNet)
// All the Const input nodes are added to layer's blobs.
std::vector<std::string> inputsNames;
for (int i = 0; i < layer.input_size(); ++i)
for (int i = 0; i < num_inputs; ++i)
{
// Check if input is a Const node.
if (value_id.find(layer.input(i)) != value_id.end())
@ -2328,7 +2462,11 @@ void TFImporter::populateNet(Net dstNet)
}
}
}
dstNet.setInputsNames(netInputsNames);
catch (const std::exception& e)
{
CV_LOG_ERROR(NULL, "DNN/TF: Can't parse layer for node='" << name << "'. Exception: " << e.what());
throw;
}
}
} // namespace
@ -2337,18 +2475,16 @@ void TFImporter::populateNet(Net dstNet)
Net readNetFromTensorflow(const String &model, const String &config)
{
TFImporter importer(model.c_str(), config.c_str());
Net net;
importer.populateNet(net);
TFImporter importer(net, model.c_str(), config.c_str());
return net;
}
Net readNetFromTensorflow(const char* bufferModel, size_t lenModel,
const char* bufferConfig, size_t lenConfig)
{
TFImporter importer(bufferModel, lenModel, bufferConfig, lenConfig);
Net net;
importer.populateNet(net);
TFImporter importer(net, bufferModel, lenModel, bufferConfig, lenConfig);
return net;
}

Loading…
Cancel
Save