mirror of https://github.com/opencv/opencv.git
parent
90c230678e
commit
55af7857b9
6 changed files with 1158 additions and 9 deletions
@ -0,0 +1,761 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. |
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// @Authors |
||||
// Zhang Ying, zhangying913@gmail.com |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors as is and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
|
||||
//warpAffine kernel |
||||
//support data types: CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4, and three interpolation methods: NN, Linear, Cubic. |
||||
|
||||
#ifdef DOUBLE_SUPPORT |
||||
#ifdef cl_amd_fp64 |
||||
#pragma OPENCL EXTENSION cl_amd_fp64:enable |
||||
#elif defined (cl_khr_fp64) |
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable |
||||
#endif |
||||
typedef double F; |
||||
typedef double4 F4; |
||||
#define convert_F4 convert_double4 |
||||
#else |
||||
typedef float F; |
||||
typedef float4 F4; |
||||
#define convert_F4 convert_float4 |
||||
#endif |
||||
|
||||
#define INTER_BITS 5 |
||||
#define INTER_TAB_SIZE (1 << INTER_BITS) |
||||
#define INTER_SCALE 1.f/INTER_TAB_SIZE |
||||
#define AB_BITS max(10, (int)INTER_BITS) |
||||
#define AB_SCALE (1 << AB_BITS) |
||||
#define INTER_REMAP_COEF_BITS 15 |
||||
#define INTER_REMAP_COEF_SCALE (1 << INTER_REMAP_COEF_BITS) |
||||
|
||||
inline void interpolateCubic( float x, float* coeffs ) |
||||
{ |
||||
const float A = -0.75f; |
||||
|
||||
coeffs[0] = ((A*(x + 1.f) - 5.0f*A)*(x + 1.f) + 8.0f*A)*(x + 1.f) - 4.0f*A; |
||||
coeffs[1] = ((A + 2.f)*x - (A + 3.f))*x*x + 1.f; |
||||
coeffs[2] = ((A + 2.f)*(1.f - x) - (A + 3.f))*(1.f - x)*(1.f - x) + 1.f; |
||||
coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2]; |
||||
} |
||||
|
||||
|
||||
/**********************************************8UC1********************************************* |
||||
***********************************************************************************************/ |
||||
__kernel void warpAffineNN_C1_D0(__global uchar const * restrict src, __global uchar * dst, int src_cols, int src_rows, |
||||
int dst_cols, int dst_rows, int srcStep, int dstStep, |
||||
int src_offset, int dst_offset, __constant F * M, int threadCols ) |
||||
{ |
||||
int dx = get_global_id(0); |
||||
int dy = get_global_id(1); |
||||
|
||||
if( dx < threadCols && dy < dst_rows) |
||||
{ |
||||
dx = (dx<<2) - (dst_offset&3); |
||||
|
||||
int round_delta = (AB_SCALE>>1); |
||||
|
||||
int4 X, Y; |
||||
int4 sx, sy; |
||||
int4 DX = (int4)(dx, dx+1, dx+2, dx+3); |
||||
DX = (DX << AB_BITS); |
||||
F4 M0DX, M3DX; |
||||
M0DX = M[0] * convert_F4(DX); |
||||
M3DX = M[3] * convert_F4(DX); |
||||
X = convert_int4(rint(M0DX)); |
||||
Y = convert_int4(rint(M3DX)); |
||||
int tmp1, tmp2; |
||||
tmp1 = rint((M[1]*dy + M[2]) * AB_SCALE); |
||||
tmp2 = rint((M[4]*dy + M[5]) * AB_SCALE); |
||||
|
||||
X += tmp1 + round_delta; |
||||
Y += tmp2 + round_delta; |
||||
|
||||
sx = convert_int4(convert_short4(X >> AB_BITS)); |
||||
sy = convert_int4(convert_short4(Y >> AB_BITS)); |
||||
|
||||
__global uchar4 * d = (__global uchar4 *)(dst+dst_offset+dy*dstStep+dx); |
||||
uchar4 dval = *d; |
||||
DX = (int4)(dx, dx+1, dx+2, dx+3); |
||||
int4 dcon = DX >= 0 && DX < dst_cols && dy >= 0 && dy < dst_rows; |
||||
int4 scon = sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows; |
||||
int4 spos = src_offset + sy * srcStep + sx; |
||||
uchar4 sval; |
||||
sval.s0 = scon.s0 ? src[spos.s0] : 0; |
||||
sval.s1 = scon.s1 ? src[spos.s1] : 0; |
||||
sval.s2 = scon.s2 ? src[spos.s2] : 0; |
||||
sval.s3 = scon.s3 ? src[spos.s3] : 0; |
||||
dval = convert_uchar4(dcon) != (uchar4)(0,0,0,0) ? sval : dval; |
||||
*d = dval; |
||||
} |
||||
} |
||||
|
||||
__kernel void warpAffineLinear_C1_D0(__global const uchar * restrict src, __global uchar * dst, int src_cols, int src_rows, |
||||
int dst_cols, int dst_rows, int srcStep, int dstStep, |
||||
int src_offset, int dst_offset, __constant F * M, int threadCols ) |
||||
{ |
||||
int dx = get_global_id(0); |
||||
int dy = get_global_id(1); |
||||
|
||||
|
||||
if( dx < threadCols && dy < dst_rows) |
||||
{ |
||||
dx = (dx<<2) - (dst_offset&3); |
||||
|
||||
int round_delta = ((AB_SCALE >> INTER_BITS) >> 1); |
||||
|
||||
int4 X, Y; |
||||
short4 ax, ay; |
||||
int4 sx, sy; |
||||
int4 DX = (int4)(dx, dx+1, dx+2, dx+3); |
||||
DX = (DX << AB_BITS); |
||||
F4 M0DX, M3DX; |
||||
M0DX = M[0] * convert_F4(DX); |
||||
M3DX = M[3] * convert_F4(DX); |
||||
X = convert_int4(rint(M0DX)); |
||||
Y = convert_int4(rint(M3DX)); |
||||
|
||||
int tmp1, tmp2; |
||||
tmp1 = rint((M[1]*dy + M[2]) * AB_SCALE); |
||||
tmp2 = rint((M[4]*dy + M[5]) * AB_SCALE); |
||||
|
||||
X += tmp1 + round_delta; |
||||
Y += tmp2 + round_delta; |
||||
|
||||
X = X >> (AB_BITS - INTER_BITS); |
||||
Y = Y >> (AB_BITS - INTER_BITS); |
||||
|
||||
sx = convert_int4(convert_short4(X >> INTER_BITS)); |
||||
sy = convert_int4(convert_short4(Y >> INTER_BITS)); |
||||
ax = convert_short4(X & (INTER_TAB_SIZE-1)); |
||||
ay = convert_short4(Y & (INTER_TAB_SIZE-1)); |
||||
|
||||
uchar4 v0, v1, v2,v3; |
||||
int4 scon0, scon1, scon2, scon3; |
||||
int4 spos0, spos1, spos2, spos3; |
||||
|
||||
scon0 = (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows); |
||||
scon1 = (sx+1 >= 0 && sx+1 < src_cols && sy >= 0 && sy < src_rows); |
||||
scon2 = (sx >= 0 && sx < src_cols && sy+1 >= 0 && sy+1 < src_rows); |
||||
scon3 = (sx+1 >= 0 && sx+1 < src_cols && sy+1 >= 0 && sy+1 < src_rows); |
||||
spos0 = src_offset + sy * srcStep + sx; |
||||
spos1 = src_offset + sy * srcStep + sx + 1; |
||||
spos2 = src_offset + (sy+1) * srcStep + sx; |
||||
spos3 = src_offset + (sy+1) * srcStep + sx + 1; |
||||
|
||||
v0.s0 = scon0.s0 ? src[spos0.s0] : 0; |
||||
v1.s0 = scon1.s0 ? src[spos1.s0] : 0; |
||||
v2.s0 = scon2.s0 ? src[spos2.s0] : 0; |
||||
v3.s0 = scon3.s0 ? src[spos3.s0] : 0; |
||||
|
||||
v0.s1 = scon0.s1 ? src[spos0.s1] : 0; |
||||
v1.s1 = scon1.s1 ? src[spos1.s1] : 0; |
||||
v2.s1 = scon2.s1 ? src[spos2.s1] : 0; |
||||
v3.s1 = scon3.s1 ? src[spos3.s1] : 0; |
||||
|
||||
v0.s2 = scon0.s2 ? src[spos0.s2] : 0; |
||||
v1.s2 = scon1.s2 ? src[spos1.s2] : 0; |
||||
v2.s2 = scon2.s2 ? src[spos2.s2] : 0; |
||||
v3.s2 = scon3.s2 ? src[spos3.s2] : 0; |
||||
|
||||
v0.s3 = scon0.s3 ? src[spos0.s3] : 0; |
||||
v1.s3 = scon1.s3 ? src[spos1.s3] : 0; |
||||
v2.s3 = scon2.s3 ? src[spos2.s3] : 0; |
||||
v3.s3 = scon3.s3 ? src[spos3.s3] : 0; |
||||
|
||||
short4 itab0, itab1, itab2, itab3; |
||||
float4 taby, tabx; |
||||
taby = INTER_SCALE * convert_float4(ay); |
||||
tabx = INTER_SCALE * convert_float4(ax); |
||||
|
||||
itab0 = convert_short4_sat(( (1.0f-taby)*(1.0f-tabx) * (float4)INTER_REMAP_COEF_SCALE )); |
||||
itab1 = convert_short4_sat(( (1.0f-taby)*tabx * (float4)INTER_REMAP_COEF_SCALE )); |
||||
itab2 = convert_short4_sat(( taby*(1.0f-tabx) * (float4)INTER_REMAP_COEF_SCALE )); |
||||
itab3 = convert_short4_sat(( taby*tabx * (float4)INTER_REMAP_COEF_SCALE )); |
||||
|
||||
|
||||
int4 val; |
||||
uchar4 tval; |
||||
val = convert_int4(v0) * convert_int4(itab0) + convert_int4(v1) * convert_int4(itab1) |
||||
+ convert_int4(v2) * convert_int4(itab2) + convert_int4(v3) * convert_int4(itab3); |
||||
tval = convert_uchar4_sat ( (val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ) ; |
||||
|
||||
__global uchar4 * d =(__global uchar4 *)(dst+dst_offset+dy*dstStep+dx); |
||||
uchar4 dval = *d; |
||||
DX = (int4)(dx, dx+1, dx+2, dx+3); |
||||
int4 dcon = DX >= 0 && DX < dst_cols && dy >= 0 && dy < dst_rows; |
||||
dval = convert_uchar4(dcon != 0) ? tval : dval; |
||||
*d = dval; |
||||
} |
||||
} |
||||
|
||||
__kernel void warpAffineCubic_C1_D0(__global uchar * src, __global uchar * dst, int src_cols, int src_rows, |
||||
int dst_cols, int dst_rows, int srcStep, int dstStep, |
||||
int src_offset, int dst_offset, __constant F * M, int threadCols ) |
||||
{ |
||||
int dx = get_global_id(0); |
||||
int dy = get_global_id(1); |
||||
|
||||
if( dx < threadCols && dy < dst_rows) |
||||
{ |
||||
int round_delta = ((AB_SCALE>>INTER_BITS)>>1); |
||||
|
||||
int X0 = rint(M[0] * dx * AB_SCALE); |
||||
int Y0 = rint(M[3] * dx * AB_SCALE); |
||||
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; |
||||
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; |
||||
int X = X0 >> (AB_BITS - INTER_BITS); |
||||
int Y = Y0 >> (AB_BITS - INTER_BITS); |
||||
|
||||
short sx = (short)(X >> INTER_BITS) - 1; |
||||
short sy = (short)(Y >> INTER_BITS) - 1; |
||||
short ay = (short)(Y & (INTER_TAB_SIZE-1)); |
||||
short ax = (short)(X & (INTER_TAB_SIZE-1)); |
||||
|
||||
uchar v[16]; |
||||
int i, j; |
||||
|
||||
#pragma unroll 4 |
||||
for(i=0; i<4; i++) |
||||
for(j=0; j<4; j++) |
||||
{ |
||||
v[i*4+j] = (sx+j >= 0 && sx+j < src_cols && sy+i >= 0 && sy+i < src_rows) ? src[src_offset+(sy+i) * srcStep + (sx+j)] : 0; |
||||
} |
||||
|
||||
short itab[16]; |
||||
float tab1y[4], tab1x[4]; |
||||
float axx, ayy; |
||||
|
||||
ayy = 1.f/INTER_TAB_SIZE * ay; |
||||
axx = 1.f/INTER_TAB_SIZE * ax; |
||||
interpolateCubic(ayy, tab1y); |
||||
interpolateCubic(axx, tab1x); |
||||
int isum = 0; |
||||
|
||||
#pragma unroll 16 |
||||
for( i=0; i<16; i++ ) |
||||
{ |
||||
F v = tab1y[(i>>2)] * tab1x[(i&3)]; |
||||
isum += itab[i] = convert_short_sat( rint( v * INTER_REMAP_COEF_SCALE ) ); |
||||
} |
||||
|
||||
if( isum != INTER_REMAP_COEF_SCALE ) |
||||
{ |
||||
int k1, k2; |
||||
int diff = isum - INTER_REMAP_COEF_SCALE; |
||||
int Mk1=2, Mk2=2, mk1=2, mk2=2; |
||||
for( k1 = 2; k1 < 4; k1++ ) |
||||
for( k2 = 2; k2 < 4; k2++ ) |
||||
{ |
||||
if( itab[(k1<<2)+k2] < itab[(mk1<<2)+mk2] ) |
||||
mk1 = k1, mk2 = k2; |
||||
else if( itab[(k1<<2)+k2] > itab[(Mk1<<2)+Mk2] ) |
||||
Mk1 = k1, Mk2 = k2; |
||||
} |
||||
diff<0 ? (itab[(Mk1<<2)+Mk2]=(short)(itab[(Mk1<<2)+Mk2]-diff)) : (itab[(mk1<<2)+mk2]=(short)(itab[(mk1<<2)+mk2]-diff)); |
||||
} |
||||
|
||||
if( dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) |
||||
{ |
||||
int sum=0; |
||||
for ( i =0; i<16; i++ ) |
||||
{ |
||||
sum += v[i] * itab[i] ; |
||||
} |
||||
dst[dst_offset+dy*dstStep+dx] = convert_uchar_sat( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ) ; |
||||
} |
||||
} |
||||
} |
||||
|
||||
/**********************************************8UC4********************************************* |
||||
***********************************************************************************************/ |
||||
|
||||
__kernel void warpAffineNN_C4_D0(__global uchar4 const * restrict src, __global uchar4 * dst, int src_cols, int src_rows, |
||||
int dst_cols, int dst_rows, int srcStep, int dstStep, |
||||
int src_offset, int dst_offset, __constant F * M, int threadCols ) |
||||
{ |
||||
int dx = get_global_id(0); |
||||
int dy = get_global_id(1); |
||||
|
||||
if( dx < threadCols && dy < dst_rows) |
||||
{ |
||||
int round_delta = (AB_SCALE >> 1); |
||||
|
||||
int X0 = rint(M[0] * dx * AB_SCALE); |
||||
int Y0 = rint(M[3] * dx * AB_SCALE); |
||||
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; |
||||
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; |
||||
|
||||
int sx0 = (short)(X0 >> AB_BITS); |
||||
int sy0 = (short)(Y0 >> AB_BITS); |
||||
|
||||
if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) |
||||
dst[(dst_offset>>2)+dy*(dstStep>>2)+dx]= (sx0>=0 && sx0<src_cols && sy0>=0 && sy0<src_rows) ? src[(src_offset>>2)+sy0*(srcStep>>2)+sx0] : (uchar4)0; |
||||
} |
||||
} |
||||
|
||||
__kernel void warpAffineLinear_C4_D0(__global uchar4 const * restrict src, __global uchar4 * dst, int src_cols, int src_rows, |
||||
int dst_cols, int dst_rows, int srcStep, int dstStep, |
||||
int src_offset, int dst_offset, __constant F * M, int threadCols ) |
||||
{ |
||||
int dx = get_global_id(0); |
||||
int dy = get_global_id(1); |
||||
|
||||
|
||||
if( dx < threadCols && dy < dst_rows) |
||||
{ |
||||
int round_delta = AB_SCALE/INTER_TAB_SIZE/2; |
||||
|
||||
src_offset = (src_offset>>2); |
||||
srcStep = (srcStep>>2); |
||||
|
||||
int tmp = (dx << AB_BITS); |
||||
int X0 = rint(M[0] * tmp); |
||||
int Y0 = rint(M[3] * tmp); |
||||
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; |
||||
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; |
||||
X0 = X0 >> (AB_BITS - INTER_BITS); |
||||
Y0 = Y0 >> (AB_BITS - INTER_BITS); |
||||
|
||||
short sx0 = (short)(X0 >> INTER_BITS); |
||||
short sy0 = (short)(Y0 >> INTER_BITS); |
||||
short ax0 = (short)(X0 & (INTER_TAB_SIZE-1)); |
||||
short ay0 = (short)(Y0 & (INTER_TAB_SIZE-1)); |
||||
|
||||
int4 v0, v1, v2, v3; |
||||
|
||||
v0 = (sx0 >= 0 && sx0 < src_cols && sy0 >= 0 && sy0 < src_rows) ? convert_int4(src[src_offset+sy0 * srcStep + sx0]) : 0; |
||||
v1 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0 >= 0 && sy0 < src_rows) ? convert_int4(src[src_offset+sy0 * srcStep + sx0+1]) : 0; |
||||
v2 = (sx0 >= 0 && sx0 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? convert_int4(src[src_offset+(sy0+1) * srcStep + sx0]) : 0; |
||||
v3 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? convert_int4(src[src_offset+(sy0+1) * srcStep + sx0+1]) : 0; |
||||
|
||||
int itab0, itab1, itab2, itab3; |
||||
float taby, tabx; |
||||
taby = 1.f/INTER_TAB_SIZE*ay0; |
||||
tabx = 1.f/INTER_TAB_SIZE*ax0; |
||||
|
||||
itab0 = convert_short_sat(rint( (1.0f-taby)*(1.0f-tabx) * INTER_REMAP_COEF_SCALE )); |
||||
itab1 = convert_short_sat(rint( (1.0f-taby)*tabx * INTER_REMAP_COEF_SCALE )); |
||||
itab2 = convert_short_sat(rint( taby*(1.0f-tabx) * INTER_REMAP_COEF_SCALE )); |
||||
itab3 = convert_short_sat(rint( taby*tabx * INTER_REMAP_COEF_SCALE )); |
||||
|
||||
int4 val; |
||||
val = v0 * itab0 + v1 * itab1 + v2 * itab2 + v3 * itab3; |
||||
|
||||
if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) |
||||
dst[(dst_offset>>2)+dy*(dstStep>>2)+dx] = convert_uchar4_sat ( (val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ) ; |
||||
} |
||||
} |
||||
|
||||
__kernel void warpAffineCubic_C4_D0(__global uchar4 const * restrict src, __global uchar4 * dst, int src_cols, int src_rows, |
||||
int dst_cols, int dst_rows, int srcStep, int dstStep, |
||||
int src_offset, int dst_offset, __constant F * M, int threadCols ) |
||||
{ |
||||
int dx = get_global_id(0); |
||||
int dy = get_global_id(1); |
||||
|
||||
if( dx < threadCols && dy < dst_rows) |
||||
{ |
||||
int round_delta = ((AB_SCALE>>INTER_BITS)>>1); |
||||
|
||||
src_offset = (src_offset>>2); |
||||
srcStep = (srcStep>>2); |
||||
dst_offset = (dst_offset>>2); |
||||
dstStep = (dstStep>>2); |
||||
|
||||
int tmp = (dx << AB_BITS); |
||||
int X0 = rint(M[0] * tmp); |
||||
int Y0 = rint(M[3] * tmp); |
||||
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; |
||||
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; |
||||
X0 = X0 >> (AB_BITS - INTER_BITS); |
||||
Y0 = Y0 >> (AB_BITS - INTER_BITS); |
||||
|
||||
int sx = (short)(X0 >> INTER_BITS) - 1; |
||||
int sy = (short)(Y0 >> INTER_BITS) - 1; |
||||
int ay = (short)(Y0 & (INTER_TAB_SIZE-1)); |
||||
int ax = (short)(X0 & (INTER_TAB_SIZE-1)); |
||||
|
||||
uchar4 v[16]; |
||||
int i,j; |
||||
#pragma unroll 4 |
||||
for(i=0; i<4; i++) |
||||
for(j=0; j<4; j++) |
||||
{ |
||||
v[i*4+j] = (sx+j >= 0 && sx+j < src_cols && sy+i >= 0 && sy+i < src_rows) ? (src[src_offset+(sy+i) * srcStep + (sx+j)]) : (uchar4)0; |
||||
} |
||||
int itab[16]; |
||||
float tab1y[4], tab1x[4]; |
||||
float axx, ayy; |
||||
|
||||
ayy = INTER_SCALE * ay; |
||||
axx = INTER_SCALE * ax; |
||||
interpolateCubic(ayy, tab1y); |
||||
interpolateCubic(axx, tab1x); |
||||
int isum = 0; |
||||
|
||||
#pragma unroll 16 |
||||
for( i=0; i<16; i++ ) |
||||
{ |
||||
float tmp; |
||||
tmp = tab1y[(i>>2)] * tab1x[(i&3)] * INTER_REMAP_COEF_SCALE; |
||||
itab[i] = rint(tmp); |
||||
isum += itab[i]; |
||||
} |
||||
|
||||
if( isum != INTER_REMAP_COEF_SCALE ) |
||||
{ |
||||
int k1, k2; |
||||
int diff = isum - INTER_REMAP_COEF_SCALE; |
||||
int Mk1=2, Mk2=2, mk1=2, mk2=2; |
||||
|
||||
for( k1 = 2; k1 < 4; k1++ ) |
||||
for( k2 = 2; k2 < 4; k2++ ) |
||||
{ |
||||
|
||||
if( itab[(k1<<2)+k2] < itab[(mk1<<2)+mk2] ) |
||||
mk1 = k1, mk2 = k2; |
||||
else if( itab[(k1<<2)+k2] > itab[(Mk1<<2)+Mk2] ) |
||||
Mk1 = k1, Mk2 = k2; |
||||
} |
||||
|
||||
diff<0 ? (itab[(Mk1<<2)+Mk2]=(short)(itab[(Mk1<<2)+Mk2]-diff)) : (itab[(mk1<<2)+mk2]=(short)(itab[(mk1<<2)+mk2]-diff)); |
||||
} |
||||
|
||||
if( dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) |
||||
{ |
||||
int4 sum=0; |
||||
for ( i =0; i<16; i++ ) |
||||
{ |
||||
sum += convert_int4(v[i]) * itab[i]; |
||||
} |
||||
dst[dst_offset+dy*dstStep+dx] = convert_uchar4_sat( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ) ; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/**********************************************32FC1******************************************** |
||||
***********************************************************************************************/ |
||||
|
||||
__kernel void warpAffineNN_C1_D5(__global float * src, __global float * dst, int src_cols, int src_rows, |
||||
int dst_cols, int dst_rows, int srcStep, int dstStep, |
||||
int src_offset, int dst_offset, __constant F * M, int threadCols ) |
||||
{ |
||||
int dx = get_global_id(0); |
||||
int dy = get_global_id(1); |
||||
|
||||
if( dx < threadCols && dy < dst_rows) |
||||
{ |
||||
int round_delta = AB_SCALE/2; |
||||
|
||||
int X0 = rint(M[0] * dx * AB_SCALE); |
||||
int Y0 = rint(M[3] * dx * AB_SCALE); |
||||
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; |
||||
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; |
||||
|
||||
short sx0 = (short)(X0 >> AB_BITS); |
||||
short sy0 = (short)(Y0 >> AB_BITS); |
||||
|
||||
if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) |
||||
dst[(dst_offset>>2)+dy*dstStep+dx]= (sx0>=0 && sx0<src_cols && sy0>=0 && sy0<src_rows) ? src[(src_offset>>2)+sy0*srcStep+sx0] : 0; |
||||
} |
||||
} |
||||
|
||||
__kernel void warpAffineLinear_C1_D5(__global float * src, __global float * dst, int src_cols, int src_rows, |
||||
int dst_cols, int dst_rows, int srcStep, int dstStep, |
||||
int src_offset, int dst_offset, __constant F * M, int threadCols ) |
||||
{ |
||||
int dx = get_global_id(0); |
||||
int dy = get_global_id(1); |
||||
|
||||
if( dx < threadCols && dy < dst_rows) |
||||
{ |
||||
int round_delta = AB_SCALE/INTER_TAB_SIZE/2; |
||||
|
||||
src_offset = (src_offset>>2); |
||||
|
||||
int X0 = rint(M[0] * dx * AB_SCALE); |
||||
int Y0 = rint(M[3] * dx * AB_SCALE); |
||||
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; |
||||
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; |
||||
X0 = X0 >> (AB_BITS - INTER_BITS); |
||||
Y0 = Y0 >> (AB_BITS - INTER_BITS); |
||||
|
||||
short sx0 = (short)(X0 >> INTER_BITS); |
||||
short sy0 = (short)(Y0 >> INTER_BITS); |
||||
short ax0 = (short)(X0 & (INTER_TAB_SIZE-1)); |
||||
short ay0 = (short)(Y0 & (INTER_TAB_SIZE-1)); |
||||
|
||||
float v0, v1, v2, v3; |
||||
|
||||
v0 = (sx0 >= 0 && sx0 < src_cols && sy0 >= 0 && sy0 < src_rows) ? src[src_offset+sy0 * srcStep + sx0] : 0; |
||||
v1 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0 >= 0 && sy0 < src_rows) ? src[src_offset+sy0 * srcStep + sx0+1] : 0; |
||||
v2 = (sx0 >= 0 && sx0 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? src[src_offset+(sy0+1) * srcStep + sx0] : 0; |
||||
v3 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? src[src_offset+(sy0+1) * srcStep + sx0+1] : 0; |
||||
|
||||
float tab[4]; |
||||
float taby[2], tabx[2]; |
||||
taby[0] = 1.0f - 1.f/INTER_TAB_SIZE*ay0; |
||||
taby[1] = 1.f/INTER_TAB_SIZE*ay0; |
||||
tabx[0] = 1.0f - 1.f/INTER_TAB_SIZE*ax0; |
||||
tabx[1] = 1.f/INTER_TAB_SIZE*ax0; |
||||
|
||||
tab[0] = taby[0] * tabx[0]; |
||||
tab[1] = taby[0] * tabx[1]; |
||||
tab[2] = taby[1] * tabx[0]; |
||||
tab[3] = taby[1] * tabx[1]; |
||||
|
||||
float sum = 0; |
||||
sum += v0 * tab[0] + v1 * tab[1] + v2 * tab[2] + v3 * tab[3]; |
||||
if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) |
||||
dst[(dst_offset>>2)+dy*dstStep+dx] = sum; |
||||
} |
||||
} |
||||
|
||||
__kernel void warpAffineCubic_C1_D5(__global float * src, __global float * dst, int src_cols, int src_rows, |
||||
int dst_cols, int dst_rows, int srcStep, int dstStep, |
||||
int src_offset, int dst_offset, __constant F * M, int threadCols ) |
||||
{ |
||||
int dx = get_global_id(0); |
||||
int dy = get_global_id(1); |
||||
|
||||
if( dx < threadCols && dy < dst_rows) |
||||
{ |
||||
int round_delta = AB_SCALE/INTER_TAB_SIZE/2; |
||||
|
||||
src_offset = (src_offset>>2); |
||||
dst_offset = (dst_offset>>2); |
||||
|
||||
int X0 = rint(M[0] * dx * AB_SCALE); |
||||
int Y0 = rint(M[3] * dx * AB_SCALE); |
||||
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; |
||||
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; |
||||
X0 = X0 >> (AB_BITS - INTER_BITS); |
||||
Y0 = Y0 >> (AB_BITS - INTER_BITS); |
||||
|
||||
short sx = (short)(X0 >> INTER_BITS) - 1; |
||||
short sy = (short)(Y0 >> INTER_BITS) - 1; |
||||
short ay = (short)(Y0 & (INTER_TAB_SIZE-1)); |
||||
short ax = (short)(X0 & (INTER_TAB_SIZE-1)); |
||||
|
||||
float v[16]; |
||||
int i; |
||||
|
||||
for(i=0; i<16; i++) |
||||
v[i] = (sx+(i&3) >= 0 && sx+(i&3) < src_cols && sy+(i>>2) >= 0 && sy+(i>>2) < src_rows) ? src[src_offset+(sy+(i>>2)) * srcStep + (sx+(i&3))] : 0; |
||||
|
||||
float tab[16]; |
||||
float tab1y[4], tab1x[4]; |
||||
float axx, ayy; |
||||
|
||||
ayy = 1.f/INTER_TAB_SIZE * ay; |
||||
axx = 1.f/INTER_TAB_SIZE * ax; |
||||
interpolateCubic(ayy, tab1y); |
||||
interpolateCubic(axx, tab1x); |
||||
|
||||
#pragma unroll 4 |
||||
for( i=0; i<16; i++ ) |
||||
{ |
||||
tab[i] = tab1y[(i>>2)] * tab1x[(i&3)]; |
||||
} |
||||
|
||||
if( dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) |
||||
{ |
||||
float sum = 0; |
||||
#pragma unroll 4 |
||||
for ( i =0; i<16; i++ ) |
||||
{ |
||||
sum += v[i] * tab[i]; |
||||
} |
||||
dst[dst_offset+dy*dstStep+dx] = sum; |
||||
|
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/**********************************************32FC4******************************************** |
||||
***********************************************************************************************/ |
||||
|
||||
__kernel void warpAffineNN_C4_D5(__global float4 * src, __global float4 * dst, int src_cols, int src_rows, |
||||
int dst_cols, int dst_rows, int srcStep, int dstStep, |
||||
int src_offset, int dst_offset, __constant F * M, int threadCols ) |
||||
{ |
||||
int dx = get_global_id(0); |
||||
int dy = get_global_id(1); |
||||
|
||||
if( dx < threadCols && dy < dst_rows) |
||||
{ |
||||
int round_delta = AB_SCALE/2; |
||||
|
||||
int X0 = rint(M[0] * dx * AB_SCALE); |
||||
int Y0 = rint(M[3] * dx * AB_SCALE); |
||||
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; |
||||
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; |
||||
|
||||
short sx0 = (short)(X0 >> AB_BITS); |
||||
short sy0 = (short)(Y0 >> AB_BITS); |
||||
|
||||
if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) |
||||
dst[(dst_offset>>4)+dy*(dstStep>>2)+dx]= (sx0>=0 && sx0<src_cols && sy0>=0 && sy0<src_rows) ? src[(src_offset>>4)+sy0*(srcStep>>2)+sx0] : (float4)0; |
||||
} |
||||
} |
||||
|
||||
__kernel void warpAffineLinear_C4_D5(__global float4 * src, __global float4 * dst, int src_cols, int src_rows, |
||||
int dst_cols, int dst_rows, int srcStep, int dstStep, |
||||
int src_offset, int dst_offset, __constant F * M, int threadCols ) |
||||
{ |
||||
int dx = get_global_id(0); |
||||
int dy = get_global_id(1); |
||||
|
||||
if( dx < threadCols && dy < dst_rows) |
||||
{ |
||||
int round_delta = AB_SCALE/INTER_TAB_SIZE/2; |
||||
|
||||
src_offset = (src_offset>>4); |
||||
dst_offset = (dst_offset>>4); |
||||
srcStep = (srcStep>>2); |
||||
dstStep = (dstStep>>2); |
||||
|
||||
int X0 = rint(M[0] * dx * AB_SCALE); |
||||
int Y0 = rint(M[3] * dx * AB_SCALE); |
||||
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; |
||||
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; |
||||
X0 = X0 >> (AB_BITS - INTER_BITS); |
||||
Y0 = Y0 >> (AB_BITS - INTER_BITS); |
||||
|
||||
short sx0 = (short)(X0 >> INTER_BITS); |
||||
short sy0 = (short)(Y0 >> INTER_BITS); |
||||
short ax0 = (short)(X0 & (INTER_TAB_SIZE-1)); |
||||
short ay0 = (short)(Y0 & (INTER_TAB_SIZE-1)); |
||||
|
||||
float4 v0, v1, v2, v3; |
||||
|
||||
v0 = (sx0 >= 0 && sx0 < src_cols && sy0 >= 0 && sy0 < src_rows) ? src[src_offset+sy0 * srcStep + sx0] : (float4)0; |
||||
v1 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0 >= 0 && sy0 < src_rows) ? src[src_offset+sy0 * srcStep + sx0+1] : (float4)0; |
||||
v2 = (sx0 >= 0 && sx0 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? src[src_offset+(sy0+1) * srcStep + sx0] : (float4)0; |
||||
v3 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? src[src_offset+(sy0+1) * srcStep + sx0+1] : (float4)0; |
||||
|
||||
float tab[4]; |
||||
float taby[2], tabx[2]; |
||||
taby[0] = 1.0f - 1.f/INTER_TAB_SIZE*ay0; |
||||
taby[1] = 1.f/INTER_TAB_SIZE*ay0; |
||||
tabx[0] = 1.0f - 1.f/INTER_TAB_SIZE*ax0; |
||||
tabx[1] = 1.f/INTER_TAB_SIZE*ax0; |
||||
|
||||
tab[0] = taby[0] * tabx[0]; |
||||
tab[1] = taby[0] * tabx[1]; |
||||
tab[2] = taby[1] * tabx[0]; |
||||
tab[3] = taby[1] * tabx[1]; |
||||
|
||||
float4 sum = 0; |
||||
sum += v0 * tab[0] + v1 * tab[1] + v2 * tab[2] + v3 * tab[3]; |
||||
if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) |
||||
dst[dst_offset+dy*dstStep+dx] = sum; |
||||
} |
||||
} |
||||
|
||||
__kernel void warpAffineCubic_C4_D5(__global float4 * src, __global float4 * dst, int src_cols, int src_rows, |
||||
int dst_cols, int dst_rows, int srcStep, int dstStep, |
||||
int src_offset, int dst_offset, __constant F * M, int threadCols ) |
||||
{ |
||||
int dx = get_global_id(0); |
||||
int dy = get_global_id(1); |
||||
|
||||
if( dx < threadCols && dy < dst_rows) |
||||
{ |
||||
int round_delta = AB_SCALE/INTER_TAB_SIZE/2; |
||||
|
||||
src_offset = (src_offset>>4); |
||||
dst_offset = (dst_offset>>4); |
||||
srcStep = (srcStep>>2); |
||||
dstStep = (dstStep>>2); |
||||
|
||||
int X0 = rint(M[0] * dx * AB_SCALE); |
||||
int Y0 = rint(M[3] * dx * AB_SCALE); |
||||
X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; |
||||
Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; |
||||
X0 = X0 >> (AB_BITS - INTER_BITS); |
||||
Y0 = Y0 >> (AB_BITS - INTER_BITS); |
||||
|
||||
short sx = (short)(X0 >> INTER_BITS) - 1; |
||||
short sy = (short)(Y0 >> INTER_BITS) - 1; |
||||
short ay = (short)(Y0 & (INTER_TAB_SIZE-1)); |
||||
short ax = (short)(X0 & (INTER_TAB_SIZE-1)); |
||||
|
||||
float4 v[16]; |
||||
int i; |
||||
|
||||
for(i=0; i<16; i++) |
||||
v[i] = (sx+(i&3) >= 0 && sx+(i&3) < src_cols && sy+(i>>2) >= 0 && sy+(i>>2) < src_rows) ? src[src_offset+(sy+(i>>2)) * srcStep + (sx+(i&3))] : (float4)0; |
||||
|
||||
float tab[16]; |
||||
float tab1y[4], tab1x[4]; |
||||
float axx, ayy; |
||||
|
||||
ayy = 1.f/INTER_TAB_SIZE * ay; |
||||
axx = 1.f/INTER_TAB_SIZE * ax; |
||||
interpolateCubic(ayy, tab1y); |
||||
interpolateCubic(axx, tab1x); |
||||
|
||||
#pragma unroll 4 |
||||
for( i=0; i<16; i++ ) |
||||
{ |
||||
tab[i] = tab1y[(i>>2)] * tab1x[(i&3)]; |
||||
} |
||||
|
||||
if( dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) |
||||
{ |
||||
float4 sum = 0; |
||||
#pragma unroll 4 |
||||
for ( i =0; i<16; i++ ) |
||||
{ |
||||
sum += v[i] * tab[i]; |
||||
} |
||||
dst[dst_offset+dy*dstStep+dx] = sum; |
||||
|
||||
} |
||||
} |
||||
} |
@ -0,0 +1,223 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. |
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// @Authors |
||||
// Zhang Ying, zhangying913@gmail.com |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors as is and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#ifdef DOUBLE_SUPPORT |
||||
#ifdef cl_amd_fp64 |
||||
#pragma OPENCL EXTENSION cl_amd_fp64:enable |
||||
#elif defined (cl_khr_fp64) |
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable |
||||
#endif |
||||
#define CT double |
||||
#else |
||||
#define CT float |
||||
#endif |
||||
|
||||
#define INTER_BITS 5 |
||||
#define INTER_TAB_SIZE (1 << INTER_BITS) |
||||
#define INTER_SCALE 1.f / INTER_TAB_SIZE |
||||
#define AB_BITS max(10, (int)INTER_BITS) |
||||
#define AB_SCALE (1 << AB_BITS) |
||||
#define INTER_REMAP_COEF_BITS 15 |
||||
#define INTER_REMAP_COEF_SCALE (1 << INTER_REMAP_COEF_BITS) |
||||
|
||||
#define noconvert |
||||
|
||||
#ifdef INTER_NEAREST |
||||
|
||||
__kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, |
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, |
||||
__constant CT * M, T scalar) |
||||
{ |
||||
int dx = get_global_id(0); |
||||
int dy = get_global_id(1); |
||||
|
||||
if (dx < dst_cols && dy < dst_rows) |
||||
{ |
||||
CT X0 = M[0] * dx + M[1] * dy + M[2]; |
||||
CT Y0 = M[3] * dx + M[4] * dy + M[5]; |
||||
CT W = M[6] * dx + M[7] * dy + M[8]; |
||||
W = W != 0.0f ? 1.f / W : 0.0f; |
||||
short sx = convert_short_sat_rte(X0*W); |
||||
short sy = convert_short_sat_rte(Y0*W); |
||||
|
||||
int dst_index = mad24(dy, dst_step, dx * (int)sizeof(T) + dst_offset); |
||||
__global T * dst = (__global T *)(dstptr + dst_index); |
||||
|
||||
if (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows) |
||||
{ |
||||
int src_index = mad24(sy, src_step, sx * (int)sizeof(T) + src_offset); |
||||
__global const T * src = (__global const T *)(srcptr + src_index); |
||||
dst[0] = src[0]; |
||||
} |
||||
else |
||||
dst[0] = scalar; |
||||
} |
||||
} |
||||
|
||||
#elif defined INTER_LINEAR |
||||
|
||||
__kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, |
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, |
||||
__constant CT * M, WT scalar) |
||||
{ |
||||
int dx = get_global_id(0); |
||||
int dy = get_global_id(1); |
||||
|
||||
if (dx < dst_cols && dy < dst_rows) |
||||
{ |
||||
CT X0 = M[0] * dx + M[1] * dy + M[2]; |
||||
CT Y0 = M[3] * dx + M[4] * dy + M[5]; |
||||
CT W = M[6] * dx + M[7] * dy + M[8]; |
||||
W = W != 0.0f ? INTER_TAB_SIZE / W : 0.0f; |
||||
int X = rint(X0 * W), Y = rint(Y0 * W); |
||||
|
||||
short sx = convert_short_sat(X >> INTER_BITS); |
||||
short sy = convert_short_sat(Y >> INTER_BITS); |
||||
short ay = (short)(Y & (INTER_TAB_SIZE - 1)); |
||||
short ax = (short)(X & (INTER_TAB_SIZE - 1)); |
||||
|
||||
WT v0 = (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows) ? |
||||
convertToWT(*(__global const T *)(srcptr + mad24(sy, src_step, src_offset + sx * (int)sizeof(T)))) : scalar; |
||||
WT v1 = (sx+1 >= 0 && sx+1 < src_cols && sy >= 0 && sy < src_rows) ? |
||||
convertToWT(*(__global const T *)(srcptr + mad24(sy, src_step, src_offset + (sx+1) * (int)sizeof(T)))) : scalar; |
||||
WT v2 = (sx >= 0 && sx < src_cols && sy+1 >= 0 && sy+1 < src_rows) ? |
||||
convertToWT(*(__global const T *)(srcptr + mad24(sy+1, src_step, src_offset + sx * (int)sizeof(T)))) : scalar; |
||||
WT v3 = (sx+1 >= 0 && sx+1 < src_cols && sy+1 >= 0 && sy+1 < src_rows) ? |
||||
convertToWT(*(__global const T *)(srcptr + mad24(sy+1, src_step, src_offset + (sx+1) * (int)sizeof(T)))) : scalar; |
||||
|
||||
float taby = 1.f/INTER_TAB_SIZE*ay; |
||||
float tabx = 1.f/INTER_TAB_SIZE*ax; |
||||
|
||||
int dst_index = mad24(dy, dst_step, dst_offset + dx * (int)sizeof(T)); |
||||
__global T * dst = (__global T *)(dstptr + dst_index); |
||||
|
||||
#if depth <= 4 |
||||
int itab0 = convert_short_sat_rte( (1.0f-taby)*(1.0f-tabx) * INTER_REMAP_COEF_SCALE ); |
||||
int itab1 = convert_short_sat_rte( (1.0f-taby)*tabx * INTER_REMAP_COEF_SCALE ); |
||||
int itab2 = convert_short_sat_rte( taby*(1.0f-tabx) * INTER_REMAP_COEF_SCALE ); |
||||
int itab3 = convert_short_sat_rte( taby*tabx * INTER_REMAP_COEF_SCALE ); |
||||
|
||||
WT val = v0 * itab0 + v1 * itab1 + v2 * itab2 + v3 * itab3; |
||||
dst[0] = convertToT((val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS); |
||||
#else |
||||
float tabx2 = 1.0f - tabx, taby2 = 1.0f - taby; |
||||
WT val = v0 * tabx2 * taby2 + v1 * tabx * taby2 + v2 * tabx2 * taby + v3 * tabx * taby; |
||||
dst[0] = convertToT(val); |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
#elif defined INTER_CUBIC |
||||
|
||||
inline void interpolateCubic( float x, float* coeffs ) |
||||
{ |
||||
const float A = -0.75f; |
||||
|
||||
coeffs[0] = ((A*(x + 1.f) - 5.0f*A)*(x + 1.f) + 8.0f*A)*(x + 1.f) - 4.0f*A; |
||||
coeffs[1] = ((A + 2.f)*x - (A + 3.f))*x*x + 1.f; |
||||
coeffs[2] = ((A + 2.f)*(1.f - x) - (A + 3.f))*(1.f - x)*(1.f - x) + 1.f; |
||||
coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2]; |
||||
} |
||||
|
||||
__kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, |
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, |
||||
__constant CT * M, WT scalar) |
||||
{ |
||||
int dx = get_global_id(0); |
||||
int dy = get_global_id(1); |
||||
|
||||
if (dx < dst_cols && dy < dst_rows) |
||||
{ |
||||
CT X0 = M[0] * dx + M[1] * dy + M[2]; |
||||
CT Y0 = M[3] * dx + M[4] * dy + M[5]; |
||||
CT W = M[6] * dx + M[7] * dy + M[8]; |
||||
W = W != 0.0f ? INTER_TAB_SIZE / W : 0.0f; |
||||
int X = rint(X0 * W), Y = rint(Y0 * W); |
||||
|
||||
short sx = convert_short_sat(X >> INTER_BITS) - 1; |
||||
short sy = convert_short_sat(Y >> INTER_BITS) - 1; |
||||
short ay = (short)(Y & (INTER_TAB_SIZE-1)); |
||||
short ax = (short)(X & (INTER_TAB_SIZE-1)); |
||||
|
||||
WT v[16]; |
||||
#pragma unroll |
||||
for (int y = 0; y < 4; y++) |
||||
#pragma unroll |
||||
for (int x = 0; x < 4; x++) |
||||
v[mad24(y, 4, x)] = (sx+x >= 0 && sx+x < src_cols && sy+y >= 0 && sy+y < src_rows) ? |
||||
convertToWT(*(__global const T *)(srcptr + mad24(sy+y, src_step, src_offset + (sx+x) * (int)sizeof(T)))) : scalar; |
||||
|
||||
float tab1y[4], tab1x[4]; |
||||
|
||||
float ayy = INTER_SCALE * ay; |
||||
float axx = INTER_SCALE * ax; |
||||
interpolateCubic(ayy, tab1y); |
||||
interpolateCubic(axx, tab1x); |
||||
|
||||
int dst_index = mad24(dy, dst_step, dst_offset + dx * (int)sizeof(T)); |
||||
__global T * dst = (__global T *)(dstptr + dst_index); |
||||
|
||||
WT sum = (WT)(0); |
||||
#if depth <= 4 |
||||
int itab[16]; |
||||
|
||||
#pragma unroll |
||||
for (int i = 0; i < 16; i++) |
||||
itab[i] = rint(tab1y[(i>>2)] * tab1x[(i&3)] * INTER_REMAP_COEF_SCALE); |
||||
|
||||
#pragma unroll |
||||
for (int i = 0; i < 16; i++) |
||||
sum += v[i] * itab[i]; |
||||
dst[0] = convertToT( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ); |
||||
#else |
||||
#pragma unroll |
||||
for (int i = 0; i < 16; i++) |
||||
sum += v[i] * tab1y[(i>>2)] * tab1x[(i&3)]; |
||||
dst[0] = convertToT( sum ); |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
#endif |
Loading…
Reference in new issue