parent
d96f533784
commit
5596c792bc
1 changed files with 72 additions and 0 deletions
@ -0,0 +1,72 @@ |
||||
import numpy as np |
||||
import cv2, cv |
||||
from common import anorm |
||||
|
||||
help_message = '''SURF image match |
||||
|
||||
USAGE: findobj.py [ <image1> <image2> ] |
||||
''' |
||||
|
||||
|
||||
def match(desc1, desc2, r_threshold = 0.75): |
||||
res = [] |
||||
for i in xrange(len(desc1)): |
||||
dist = anorm( desc2 - desc1[i] ) |
||||
n1, n2 = dist.argsort()[:2] |
||||
r = dist[n1] / dist[n2] |
||||
if r < r_threshold: |
||||
res.append((i, n1)) |
||||
return np.array(res) |
||||
|
||||
def draw_match(img1, img2, p1, p2, status = None, H = None): |
||||
h1, w1 = img1.shape[:2] |
||||
h2, w2 = img2.shape[:2] |
||||
vis = np.zeros((max(h1, h2), w1+w2), np.uint8) |
||||
vis[:h1, :w1] = img1 |
||||
vis[:h2, w1:w1+w2] = img2 |
||||
vis = cv2.cvtColor(vis, cv.CV_GRAY2BGR) |
||||
|
||||
if H is not None: |
||||
corners = np.float32([[0, 0], [w1, 0], [w1, h1], [0, h1]]) |
||||
corners = np.int32( cv2.perspectiveTransform(corners.reshape(1, -1, 2), H).reshape(-1, 2) + (w1, 0) ) |
||||
cv2.polylines(vis, [corners], True, (255, 255, 255)) |
||||
|
||||
if status is None: |
||||
status = np.ones(len(p1), np.bool_) |
||||
green = (0, 255, 0) |
||||
red = (0, 0, 255) |
||||
for (x1, y1), (x2, y2), inlier in zip(np.int32(p1), np.int32(p2), status): |
||||
col = [red, green][inlier] |
||||
if not inlier: |
||||
cv2.line(vis, (x1, y1), (x2+w1, y2), col) |
||||
cv2.circle(vis, (x1, y1), 2, col, -1) |
||||
cv2.circle(vis, (x2+w1, y2), 2, col, -1) |
||||
return vis |
||||
|
||||
if __name__ == '__main__': |
||||
import sys |
||||
try: fn1, fn2 = sys.argv[1:3] |
||||
except: |
||||
fn1 = '../c/box.png' |
||||
fn2 = '../c/box_in_scene.png' |
||||
print help_message |
||||
|
||||
img1 = cv2.imread(fn1, 0) |
||||
img2 = cv2.imread(fn2, 0) |
||||
|
||||
surf = cv2.SURF(1000) |
||||
kp1, desc1 = surf.detect(img1, None, False) |
||||
kp2, desc2 = surf.detect(img2, None, False) |
||||
desc1.shape = (-1, surf.descriptorSize()) |
||||
desc2.shape = (-1, surf.descriptorSize()) |
||||
print 'img1 - %d features, img2 - %d features' % (len(kp1), len(kp2)) |
||||
|
||||
m = match(desc1, desc2) |
||||
matched_p1 = np.array([kp1[i].pt for i, j in m]) |
||||
matched_p2 = np.array([kp2[j].pt for i, j in m]) |
||||
H, status = cv2.findHomography(matched_p1, matched_p2, cv2.RANSAC, 10.0) |
||||
print '%d / %d inliers/matched' % (np.sum(status), len(status)) |
||||
|
||||
vis = draw_match(img1, img2, matched_p1, matched_p2, status, H) |
||||
cv2.imshow('find_obj SURF', vis) |
||||
cv2.waitKey() |
Loading…
Reference in new issue