Merge pull request #21775 from luzpaz:typos/gapi

* GAPI: fix various gapi related typos

Fixes source comments and documentation related to gapi code.

* Fix source typos

* Fixed typos requested

* Follow-up typo fix
pull/21878/head
luzpaz 3 years ago committed by GitHub
parent 03c9648f2e
commit 554d08c3a1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      modules/gapi/doc/slides/gapi_overview.org
  2. 2
      modules/gapi/include/opencv2/gapi/garray.hpp
  3. 2
      modules/gapi/include/opencv2/gapi/gframe.hpp
  4. 2
      modules/gapi/include/opencv2/gapi/gscalar.hpp
  5. 2
      modules/gapi/include/opencv2/gapi/gstreaming.hpp
  6. 2
      modules/gapi/include/opencv2/gapi/gtype_traits.hpp
  7. 4
      modules/gapi/include/opencv2/gapi/imgproc.hpp
  8. 2
      modules/gapi/include/opencv2/gapi/infer/onnx.hpp
  9. 4
      modules/gapi/include/opencv2/gapi/infer/parsers.hpp
  10. 2
      modules/gapi/include/opencv2/gapi/oak/oak.hpp
  11. 2
      modules/gapi/include/opencv2/gapi/s11n.hpp
  12. 2
      modules/gapi/include/opencv2/gapi/streaming/desync.hpp
  13. 4
      modules/gapi/include/opencv2/gapi/streaming/onevpl/cfg_params.hpp
  14. 2
      modules/gapi/include/opencv2/gapi/streaming/onevpl/data_provider_interface.hpp
  15. 2
      modules/gapi/misc/python/package/gapi/__init__.py
  16. 4
      modules/gapi/misc/python/pyopencv_gapi.hpp
  17. 6
      modules/gapi/misc/python/test/test_gapi_sample_pipelines.py
  18. 2
      modules/gapi/misc/python/test/test_gapi_streaming.py
  19. 8
      modules/gapi/samples/face_detection_mtcnn.cpp
  20. 2
      modules/gapi/samples/infer_single_roi.cpp
  21. 6
      modules/gapi/samples/onevpl_infer_single_roi.cpp
  22. 2
      modules/gapi/samples/pipeline_modeling_tool/dummy_source.hpp
  23. 2
      modules/gapi/src/api/kernels_streaming.cpp
  24. 2
      modules/gapi/src/backends/common/gbackend.hpp
  25. 2
      modules/gapi/src/backends/common/serialization.hpp
  26. 4
      modules/gapi/src/backends/ie/giebackend.cpp
  27. 2
      modules/gapi/src/backends/oak/goakbackend.cpp
  28. 2
      modules/gapi/src/backends/onnx/gonnxbackend.cpp
  29. 2
      modules/gapi/src/backends/render/ft_render.cpp
  30. 4
      modules/gapi/src/compiler/gislandmodel.cpp
  31. 2
      modules/gapi/src/compiler/passes/intrin.cpp
  32. 2
      modules/gapi/src/compiler/passes/kernels.cpp
  33. 2
      modules/gapi/src/executor/gexecutor.cpp
  34. 4
      modules/gapi/src/executor/gstreamingexecutor.cpp
  35. 2
      modules/gapi/src/executor/gtbbexecutor.cpp
  36. 4
      modules/gapi/src/streaming/gstreamer/gstreamer_pipeline_facade.cpp
  37. 2
      modules/gapi/src/streaming/onevpl/accelerators/accel_policy_interface.hpp
  38. 2
      modules/gapi/src/streaming/onevpl/accelerators/surface/surface.hpp
  39. 2
      modules/gapi/src/streaming/onevpl/accelerators/utils/elastic_barrier.hpp
  40. 8
      modules/gapi/src/streaming/onevpl/engine/decode/decode_engine_legacy.cpp
  41. 4
      modules/gapi/src/streaming/onevpl/engine/preproc/preproc_engine.cpp
  42. 4
      modules/gapi/src/streaming/onevpl/engine/transcode/transcode_engine_legacy.cpp
  43. 8
      modules/gapi/src/streaming/onevpl/source_priv.cpp
  44. 2
      modules/gapi/src/streaming/onevpl/utils.cpp
  45. 2
      modules/gapi/src/utils/itt.hpp
  46. 2
      modules/gapi/test/cpu/gapi_ocv_stateful_kernel_tests.cpp
  47. 2
      modules/gapi/test/gapi_sample_pipelines.cpp
  48. 4
      modules/gapi/test/streaming/gapi_streaming_vpp_preproc_test.cpp

@ -592,7 +592,7 @@ subgraph cluster_3 {style=filled;color=azure2; C};
*** But how does it run?
- Since ~infer~ is an *Operation*, backends may provide *Kernels* implenting it;
- Since ~infer~ is an *Operation*, backends may provide *Kernels* implementing it;
- The only publicly available inference backend now is *OpenVINO™*:
- Brings its ~infer~ kernel atop of the Inference Engine;
- NN model data is passed through G-API compile arguments (like kernels);

@ -381,7 +381,7 @@ public:
*
* @note The value of `cv::GArray<T>` may be overwritten by assigning some
* other `cv::GArray<T>` to the object using `operator=` -- on the
* assigment, the old association or value is discarded.
* assignment, the old association or value is discarded.
*
* @param v a std::vector<T> to associate with this
* `cv::GArray<T>` object. Vector data is copied into the

@ -48,7 +48,7 @@ struct GOrigin;
* operations like BGR(), Y(), UV() -- these operations provide
* access to frame's data in the familiar cv::GMat form, which can be
* used with the majority of the existing G-API operations. These
* accessor functions may perform color space converion on the fly if
* accessor functions may perform color space conversion on the fly if
* the image format of the GFrame they are applied to differs from the
* operation's semantic (e.g. the BGR() accessor is called on an NV12
* image frame).

@ -63,7 +63,7 @@ public:
*
* @note The value of GScalar may be overwritten by assigning some
* other GScalar to the object using `operator=` -- on the
* assigment, the old GScalar value is discarded.
* assignment, the old GScalar value is discarded.
*
* @param s a cv::Scalar value to associate with this GScalar object.
*/

@ -225,7 +225,7 @@ public:
* setSource() to run the graph on a new video stream.
*
* @overload
* @param args arguments used to contruct and initialize a stream
* @param args arguments used to construct and initialize a stream
* source.
*/
template<typename T, typename... Args>

@ -204,7 +204,7 @@ namespace detail
{
static_assert(!(cv::detail::has_gshape<GTypeTraits<U>>::value
|| cv::detail::contains<typename std::decay<U>::type, GAPI_OWN_TYPES_LIST>::value),
"gin/gout must not be used with G* classses or cv::gapi::own::*");
"gin/gout must not be used with G* classes or cv::gapi::own::*");
return GTypeTraits<T>::wrap_out(u);
}
};

@ -1241,7 +1241,7 @@ or column if there are N channels, or have N columns if there is a single channe
@param src Input set of 2D points stored in one of possible containers: Mat,
std::vector<cv::Point2i>, std::vector<cv::Point2f>, std::vector<cv::Point2d>.
@param distType Distance used by the M-estimator, see #DistanceTypes. @ref DIST_USER
and @ref DIST_C are not suppored.
and @ref DIST_C are not supported.
@param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
is chosen.
@param reps Sufficient accuracy for the radius (distance between the coordinate origin and the
@ -1313,7 +1313,7 @@ or column if there are N channels, or have N columns if there is a single channe
@param src Input set of 3D points stored in one of possible containers: Mat,
std::vector<cv::Point3i>, std::vector<cv::Point3f>, std::vector<cv::Point3d>.
@param distType Distance used by the M-estimator, see #DistanceTypes. @ref DIST_USER
and @ref DIST_C are not suppored.
and @ref DIST_C are not supported.
@param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
is chosen.
@param reps Sufficient accuracy for the radius (distance between the coordinate origin and the

@ -126,7 +126,7 @@ public:
The function is used to associate data of graph outputs with output layers of
network topology. If a network has only one output layer, there is no need to call it
as the layer is associated with ouput automatically but this doesn't prevent
as the layer is associated with output automatically but this doesn't prevent
you from doing it yourself. Count of names has to match to number of network
outputs or you can set your own output but for this case you have to
additionally use @ref cfgPostProc function.

@ -95,7 +95,7 @@ GAPI_EXPORTS_W GArray<Rect> parseSSD(const GMat& in,
/** @brief Parses output of Yolo network.
Extracts detection information (box, confidence, label) from Yolo output,
filters it by given confidence and performs non-maximum supression for overlapping boxes.
filters it by given confidence and performs non-maximum suppression for overlapping boxes.
@note Function textual ID is "org.opencv.nn.parsers.parseYolo"
@ -105,7 +105,7 @@ where num_classes - a number of classes Yolo network was trained with.
@param inSz Size to project detected boxes to (size of the input image).
@param confidenceThreshold If confidence of the
detection is smaller than confidence threshold, detection is rejected.
@param nmsThreshold Non-maximum supression threshold which controls minimum
@param nmsThreshold Non-maximum suppression threshold which controls minimum
relative box intersection area required for rejecting the box with a smaller confidence.
If 1.f, nms is not performed and no boxes are rejected.
@param anchors Anchors Yolo network was trained with.

@ -27,7 +27,7 @@ struct EncoderConfig {
*/
enum class Profile: int { H264_BASELINE, H264_HIGH, H264_MAIN, H265_MAIN, MJPEG };
/**
* Specifies prefered bitrate (kb) of compressed output bitstream
* Specifies preferred bitrate (kb) of compressed output bitstream
*/
std::int32_t bitrate = 8000;
/**

@ -241,7 +241,7 @@ GAPI_EXPORTS IIStream& operator>> (IIStream& is, cv::Scalar &s);
GAPI_EXPORTS IOStream& operator<< (IOStream& os, const cv::Mat &m);
GAPI_EXPORTS IIStream& operator>> (IIStream& is, cv::Mat &m);
// FIXME: for GRunArgs serailization
// FIXME: for GRunArgs serialization
#if !defined(GAPI_STANDALONE)
GAPI_EXPORTS IOStream& operator<< (IOStream& os, const cv::UMat & um);
GAPI_EXPORTS IIStream& operator>> (IIStream& is, cv::UMat & um);

@ -67,7 +67,7 @@ G desync(const G &g) {
* always produce their full output vectors.
*
* This operation only makes sense when a GComputation is compiled in
* straming mode with cv::GComputation::compileStreaming(). If this
* streaming mode with cv::GComputation::compileStreaming(). If this
* operation is used and there are desynchronized outputs, the user
* should use a special version of cv::GStreamingCompiled::pull()
* which produces an array of cv::util::optional<> objects.

@ -22,14 +22,14 @@ namespace onevpl {
/**
* @brief Public class is using for creation of onevpl::GSource instances.
*
* Class members availaible through methods @ref CfgParam::get_name() and @ref CfgParam::get_value() are used by
* Class members available through methods @ref CfgParam::get_name() and @ref CfgParam::get_value() are used by
* onevpl::GSource inner logic to create or find oneVPL particular implementation
* (software/hardware, specific API version and etc.).
*
* @note Because oneVPL may provide several implementations which are satisfying with multiple (or single one) @ref CfgParam
* criteria therefore it is possible to configure `preferred` parameters. This kind of CfgParams are created
* using `is_major = false` argument in @ref CfgParam::create method and are not used by creating oneVPL particular implementations.
* Instead they fill out a "score table" to select preferrable implementation from available list. Implementation are satisfying
* Instead they fill out a "score table" to select preferable implementation from available list. Implementation are satisfying
* with most of these optional params would be chosen.
* If no one optional CfgParam params were present then first of available oneVPL implementation would be applied.
* Please get on https://spec.oneapi.io/versions/latest/elements/oneVPL/source/API_ref/VPL_disp_api_func.html?highlight=mfxcreateconfig#mfxsetconfigfilterproperty

@ -27,7 +27,7 @@ private:
};
struct GAPI_EXPORTS DataProviderSystemErrorException final : public DataProviderException {
DataProviderSystemErrorException(int error_code, const std::string& desription = std::string());
DataProviderSystemErrorException(int error_code, const std::string& description = std::string());
~DataProviderSystemErrorException() = default;
};

@ -218,7 +218,7 @@ def op(op_id, in_types, out_types):
for i, t in enumerate(out_types):
if t not in [cv.GMat, cv.GScalar, *garray_types, *gopaque_types]:
raise Exception('{} unsupported output type: {} in possition: {}'
raise Exception('{} unsupported output type: {} in position: {}'
.format(cls.__name__, t.__name__, i))
def on(*args):

@ -701,7 +701,7 @@ static cv::GRunArgs run_py_kernel(cv::detail::PyObjectHolder kernel,
PyErr_Clear();
throw std::logic_error("Python kernel failed with error!");
}
// NB: In fact it's impossible situation, becase errors were handled above.
// NB: In fact it's impossible situation, because errors were handled above.
GAPI_Assert(result.get() && "Python kernel returned NULL!");
if (out_info.size() == 1)
@ -811,7 +811,7 @@ static GMetaArgs run_py_meta(cv::detail::PyObjectHolder out_meta,
PyErr_Clear();
throw std::logic_error("Python outMeta failed with error!");
}
// NB: In fact it's impossible situation, becase errors were handled above.
// NB: In fact it's impossible situation, because errors were handled above.
GAPI_Assert(result.get() && "Python outMeta returned NULL!");
out_metas = PyTuple_Check(result.get()) ? get_meta_args(result.get())

@ -187,7 +187,7 @@ try:
blockSize=block_sz,
useHarrisDetector=use_harris_detector, k=k)
# NB: The operation output is cv::GArray<cv::Pointf>, so it should be mapped
# to python paramaters like this: [(1.2, 3.4), (5.2, 3.2)], because the cv::Point2f
# to python parameters like this: [(1.2, 3.4), (5.2, 3.2)], because the cv::Point2f
# according to opencv rules mapped to the tuple and cv::GArray<> mapped to the list.
# OpenCV returns np.array with shape (n_features, 1, 2), so let's to convert it to list
# tuples with size == n_features.
@ -203,7 +203,7 @@ try:
@staticmethod
def outMeta(desc):
raise NotImplementedError("outMeta isn't imlemented")
raise NotImplementedError("outMeta isn't implemented")
return Op
@ -605,7 +605,7 @@ try:
img1 = np.array([1, 2, 3])
# FIXME: Cause Bad variant access.
# Need to provide more descriptive error messsage.
# Need to provide more descriptive error message.
with self.assertRaises(Exception): comp.apply(cv.gin(img0, img1),
args=cv.gapi.compile_args(
cv.gapi.kernels(GAddImpl)))

@ -454,7 +454,7 @@ try:
else:
raise unittest.SkipTest(str(e))
except SystemError as e:
raise unittest.SkipTest(str(e) + ", casued by " + str(e.__cause__))
raise unittest.SkipTest(str(e) + ", caused by " + str(e.__cause__))
def test_gst_multiple_sources(self):

@ -33,7 +33,7 @@ const std::string keys =
"{ thrr | 0.7 | MTCNN R confidence threshold}"
"{ thro | 0.7 | MTCNN O confidence threshold}"
"{ half_scale | false | MTCNN P use half scale pyramid}"
"{ queue_capacity | 1 | Streaming executor queue capacity. Calculated automaticaly if 0}"
"{ queue_capacity | 1 | Streaming executor queue capacity. Calculated automatically if 0}"
;
namespace {
@ -488,8 +488,8 @@ static inline std::string get_pnet_level_name(const cv::Size &in_size) {
}
int calculate_scales(const cv::Size &input_size, std::vector<double> &out_scales, std::vector<cv::Size> &out_sizes ) {
//calculate multi - scale and limit the maxinum side to 1000
//pr_scale: limit the maxinum side to 1000, < 1.0
//calculate multi - scale and limit the maximum side to 1000
//pr_scale: limit the maximum side to 1000, < 1.0
double pr_scale = 1.0;
double h = static_cast<double>(input_size.height);
double w = static_cast<double>(input_size.width);
@ -602,7 +602,7 @@ int main(int argc, char* argv[]) {
cv::GArray<custom::Face> final_p_faces_for_bb2squares = custom::ApplyRegression::on(faces0, true);
cv::GArray<custom::Face> final_faces_pnet0 = custom::BBoxesToSquares::on(final_p_faces_for_bb2squares);
total_faces[0] = custom::RunNMS::on(final_faces_pnet0, 0.5f, false);
//The rest PNet pyramid layers to accumlate all layers result in total_faces[PYRAMID_LEVELS - 1]]
//The rest PNet pyramid layers to accumulate all layers result in total_faces[PYRAMID_LEVELS - 1]]
for (int i = 1; i < pyramid_levels; ++i)
{
std::tie(regressions[i], scores[i]) = run_mtcnn_p(in_transposedRGB, get_pnet_level_name(level_size[i]));

@ -150,7 +150,7 @@ int main(int argc, char *argv[])
auto networks = cv::gapi::networks(face_net);
// Now build the graph. The graph structure may vary
// pased on the input parameters
// passed on the input parameters
cv::GStreamingCompiled pipeline;
auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));

@ -43,7 +43,7 @@ const std::string keys =
"{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }"
"{ faced | AUTO | Target device for face detection model (e.g. AUTO, GPU, VPU, ...) }"
"{ cfg_params | <prop name>:<value>;<prop name>:<value> | Semicolon separated list of oneVPL mfxVariants which is used for configuring source (see `MFXSetConfigFilterProperty` by https://spec.oneapi.io/versions/latest/elements/oneVPL/source/index.html) }"
"{ streaming_queue_capacity | 1 | Streaming executor queue capacity. Calculated automaticaly if 0 }"
"{ streaming_queue_capacity | 1 | Streaming executor queue capacity. Calculated automatically if 0 }"
"{ frames_pool_size | 0 | OneVPL source applies this parameter as preallocated frames pool size}"
"{ vpp_frames_pool_size | 0 | OneVPL source applies this parameter as preallocated frames pool size for VPP preprocessing results}"
"{ roi | -1,-1,-1,-1 | Region of interest (ROI) to use for inference. Identified automatically when not set }";
@ -281,7 +281,7 @@ int main(int argc, char *argv[]) {
const auto source_vpp_queue_capacity = cmd.get<uint32_t>("vpp_frames_pool_size");
const auto device_id = cmd.get<std::string>("faced");
// check ouput file extension
// check output file extension
if (!output.empty()) {
auto ext = output.find_last_of(".");
if (ext == std::string::npos || (output.substr(ext + 1) != "avi")) {
@ -421,7 +421,7 @@ int main(int argc, char *argv[]) {
} else {
cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs);
}
std::cout << "oneVPL source desription: " << cap->descr_of() << std::endl;
std::cout << "oneVPL source description: " << cap->descr_of() << std::endl;
} catch (const std::exception& ex) {
std::cerr << "Cannot create source: " << ex.what() << std::endl;
return -1;

@ -70,7 +70,7 @@ bool DummySource::pull(cv::gapi::wip::Data& data) {
* update current seq_id correspondingly.
*
* if drop_frames is enabled, wait for the next tick, otherwise
* return last writen frame (+2 at the picture above) immediately.
* return last written frame (+2 at the picture above) immediately.
*/
int64_t num_frames =
static_cast<int64_t>((curr_ts - m_next_tick_ts) / m_latency);

@ -39,7 +39,7 @@ cv::GMat cv::gapi::streaming::desync(const cv::GMat &g) {
//
// At the same time, generally, every island in the streaming
// graph gets its individual input as a queue (so normally, a
// writer pushes the same output MULTIPLE TIMES if it has mutliple
// writer pushes the same output MULTIPLE TIMES if it has multiple
// readers):
//
// LWV

@ -173,7 +173,7 @@ namespace magazine
// without utilizing magazine at all
void GAPI_EXPORTS bindInArg (Mag& mag, const RcDesc &rc, const GRunArg &arg, HandleRMat handleRMat = HandleRMat::BIND);
// Extracts a memory object reference fro GRunArgP, stores it in appropriate slot in a magazine
// Extracts a memory object reference from GRunArgP, stores it in appropriate slot in a magazine
// Note on RMat handling from bindInArg above is also applied here
void GAPI_EXPORTS bindOutArg(Mag& mag, const RcDesc &rc, const GRunArgP &arg, HandleRMat handleRMat = HandleRMat::BIND);

@ -164,7 +164,7 @@ GAPI_EXPORTS void serialize( IOStream& os
GAPI_EXPORTS GSerialized deserialize(IIStream& is);
GAPI_EXPORTS void reconstruct(const GSerialized &s, ade::Graph &g);
// FIXME: Basic Stream implementaions //////////////////////////////////////////
// FIXME: Basic Stream implementations /////////////////////////////////////////
// Basic in-memory stream implementations.
class GAPI_EXPORTS ByteMemoryOutStream final: public IOStream {

@ -460,7 +460,7 @@ public:
const IEUnit &uu;
cv::gimpl::GIslandExecutable::IOutput &out;
// NB: Need to gurantee that MediaFrame::View doesn't die until request is over.
// NB: Need to guarantee that MediaFrame::View doesn't die until request is over.
using Views = std::vector<std::unique_ptr<cv::MediaFrame::View>>;
Views views;
@ -963,7 +963,7 @@ cv::gimpl::ie::GIEExecutable::GIEExecutable(const ade::Graph &g,
void cv::gimpl::ie::GIEExecutable::run(cv::gimpl::GIslandExecutable::IInput &in,
cv::gimpl::GIslandExecutable::IOutput &out) {
// General alghoritm:
// General algorithm:
// 1. Collect island inputs/outputs.
// 2. Create kernel context. (Every kernel has his own context).
// 3. If the EndOfStream message is recieved, wait until all passed task are done.

@ -766,7 +766,7 @@ cv::gimpl::GOAKExecutable::GOAKExecutable(const ade::Graph& g,
// 1. Link input nodes to camera
for (const auto& nh : in_nodes) {
GAPI_Assert(m_oak_nodes.at(nh).inputs.size() == 1);
// FIXME: cover other camera outputs
// FIXME: convert other camera outputs
// Link preview to infer, video to all other nodes
if (m_oak_infer_info.find(nh) == m_oak_infer_info.end()) {
m_camera_input->video.link(*(m_oak_nodes.at(nh).inputs[0]));

@ -1102,7 +1102,7 @@ struct InferList2: public cv::detail::KernelTag {
} else {
GAPI_Assert(false && "Only Rect and Mat types are supported for infer list 2!");
}
// }}} (Preapre input)
// }}} (Prepare input)
} // }}} (For every input of the net)
std::vector<cv::Mat> out_mats(uu.oc->numOutputs());

@ -80,7 +80,7 @@ cv::Size cv::gapi::wip::draw::FTTextRender::Priv::getTextSize(const std::wstring
// See (1) on picture.
//
// 4) As we can see the last pen position is isn't horizontal size yet.
// We need to check if the glyph goes beyound the last position of the pen
// We need to check if the glyph goes beyond the last position of the pen
// To do this we can:
// a) Return to the previous position -advance
// b) Shift on left value +left

@ -346,9 +346,9 @@ std::string GIslandModel::traceIslandName(const ade::NodeHandle& island_nh, cons
auto& backend_impl = island_ptr->backend().priv();
std::string backend_impl_type_name = typeid(backend_impl).name();
// NOTE: Major part of already existing backends implementaion classes are called using
// NOTE: Major part of already existing backends implementation classes are called using
// "*G[Name]BackendImpl*" pattern.
// We are trying to match against this pattern and retrive just [Name] part.
// We are trying to match against this pattern and retrieve just [Name] part.
// If matching isn't successful, full mangled class name will be used.
//
// To match we use following algorithm:

@ -254,7 +254,7 @@ void apply(cv::gimpl::GModel::Graph &g) {
}
// Probably the simplest case: desync makes no sense in the regular
// compilation process, so just drop all its occurences in the graph,
// compilation process, so just drop all its occurrences in the graph,
// reconnecting nodes properly.
void drop(cv::gimpl::GModel::Graph &g) {
// FIXME: LOG here that we're dropping the desync operations as

@ -212,7 +212,7 @@ void cv::gimpl::passes::resolveKernels(ade::passes::PassContext &ctx,
GAPI_Assert(op.k.outMeta == nullptr);
const_cast<cv::GKernel::M&>(op.k.outMeta) = selected_impl.outMeta;
} else {
// Sanity check: the metadata funciton must be present
// Sanity check: the metadata function must be present
GAPI_Assert(op.k.outMeta != nullptr);
}
}

@ -153,7 +153,7 @@ void writeBackExec(const Mag& mag, const RcDesc &rc, GRunArgP &g_arg)
{
case GRunArgP::index_of<cv::Mat*>() : {
// If there is a copy intrinsic at the end of the graph
// we need to actualy copy the data to the user buffer
// we need to actually copy the data to the user buffer
// since output runarg was optimized to simply point
// to the input of the copy kernel
// FIXME:

@ -1520,7 +1520,7 @@ cv::gimpl::GStreamingExecutor::GStreamingExecutor(std::unique_ptr<ade::Graph> &&
cv::gimpl::GStreamingExecutor::~GStreamingExecutor()
{
// FIXME: this is a temporary try-catch exception hadling.
// FIXME: this is a temporary try-catch exception handling.
// Need to eliminate throwings from stop()
try {
if (state == State::READY || state == State::RUNNING)
@ -1619,7 +1619,7 @@ void cv::gimpl::GStreamingExecutor::setSource(GRunArgs &&ins)
case T::index_of<cv::gapi::wip::IStreamSource::Ptr>():
#if !defined(GAPI_STANDALONE)
emitter.reset(new VideoEmitter{emit_arg});
// Currently all video inputs are syncronized if sync policy is to drop,
// Currently all video inputs are synchronized if sync policy is to drop,
// there is no different fps branches etc, so all video emitters are registered
video_emitters.emplace_back(emit_nh);
#else

@ -353,7 +353,7 @@ namespace graph {
}
ctx.executed++;
// reset dependecy_count to initial state to simplify re-execution of the same graph
// reset dependency_count to initial state to simplify re-execution of the same graph
node->dependency_count = node->dependencies;
return result;

@ -111,11 +111,11 @@ GstElement* GStreamerPipelineFacade::getElementByName(const std::string& element
void GStreamerPipelineFacade::completePreroll() {
// FIXME: If there are multiple sources in pipeline and one of them is live, then pipeline
// will return GST_STATE_CHANGE_NO_PREROLL while pipeline pausing.
// But appsink may not be connected to this live source and only to anothers,
// But appsink may not be connected to this live source and only to another,
// not-live ones. So, it is not required to start the playback for appsink to complete
// the preroll.
// Starting of playback for the not-live sources before the first frame pull will lead
// to loosing of some amount of frames and pulling of the first frame can return frame
// to losing of some amount of frames and pulling of the first frame can return frame
// which is far from the first.
//
// Need to handle this case or forbid to mix multiples sources of different

@ -54,7 +54,7 @@ struct VPLAccelerationPolicy
virtual void init(session_t session) = 0;
virtual void deinit(session_t session) = 0;
// Limitation: cannot give guarantee in succesful memory realloccation
// Limitation: cannot give guarantee in successful memory realloccation
// for existing workspace in existing pool (see realloc)
// thus it is not implemented,
// PLEASE provide initial memory area large enough

@ -59,7 +59,7 @@ public:
/**
* Extract value thread-safe lock counter (see @ref Surface description).
* It's usual situation that counter may be instantly decreased in other thread after this method called.
* We need instantaneous value. This method syncronized in inter-threading way with @ref Surface::release_lock()
* We need instantaneous value. This method synchronized in inter-threading way with @ref Surface::release_lock()
*
* @return fetched locks count.
*/

@ -163,7 +163,7 @@ private:
* deinitialization called off in `on_unlock`
* because new `incoming` request had appeared at here before
* `on_unlock` started deinit procedure in another thread.
* So no reinit required because no deinit had happended
* So no reinit required because no deinit had happened
*
* main `busy-wait` request must break busy-wait state
* and become `outgoing` request.

@ -44,7 +44,7 @@ void VPLLegacyDecodeEngine::try_modify_pool_size_request_param(const char* param
param_name + ", overflow");
}
request.NumFrameSuggested = static_cast<mfxU16>(new_frames_count);
GAPI_LOG_DEBUG(nullptr, "mfxFrameAllocRequest overriden by user input: " <<
GAPI_LOG_DEBUG(nullptr, "mfxFrameAllocRequest overridden by user input: " <<
", mfxFrameAllocRequest.NumFrameMin: " << request.NumFrameMin <<
", mfxFrameAllocRequest.NumFrameSuggested: " << request.NumFrameSuggested <<
", mfxFrameAllocRequest.Type: " << request.Type);
@ -152,7 +152,7 @@ VPLLegacyDecodeEngine::VPLLegacyDecodeEngine(std::unique_ptr<VPLAccelerationPoli
} while (MFX_ERR_NONE == sess.last_status && !my_sess.sync_queue.empty());
return ExecutionStatus::Continue;
},
// 4) Falls back on generic status procesing
// 4) Falls back on generic status processing
[this] (EngineSession& sess) -> ExecutionStatus
{
return this->process_error(sess.last_status, static_cast<LegacyDecodeSession&>(sess));
@ -177,7 +177,7 @@ VPLLegacyDecodeEngine::SessionParam VPLLegacyDecodeEngine::prepare_session_param
mfxVideoParam mfxDecParams {};
mfxDecParams.mfx.CodecId = decoder_id_name;
// set memory stream direction accroding to accelearion policy device type
// set memory stream direction according to acceleration policy device type
IDeviceSelector::DeviceScoreTable devices = acceleration_policy->get_device_selector()->select_devices();
GAPI_Assert(devices.size() == 1 && "Multiple(or zero) acceleration devices case is unsupported");
AccelType accel_type = devices.begin()->second.get_type();
@ -252,7 +252,7 @@ VPLLegacyDecodeEngine::SessionParam VPLLegacyDecodeEngine::prepare_session_param
acceleration_policy->create_surface_pool(decRequest, mfxDecParams.mfx.FrameInfo);
// Input parameters finished, now initialize decode
// create decoder for session accoring to header recovered from source file
// create decoder for session according to header recovered from source file
sts = MFXVideoDECODE_Init(mfx_session, &mfxDecParams);
if (MFX_ERR_NONE != sts) {

@ -147,7 +147,7 @@ VPPPreprocEngine::VPPPreprocEngine(std::unique_ptr<VPLAccelerationPolicy>&& acce
} while (MFX_ERR_NONE == sess.last_status && !my_sess.vpp_out_queue.empty());
return ExecutionStatus::Continue;
},
// 2) Falls back on generic status procesing
// 2) Falls back on generic status processing
[this] (EngineSession& sess) -> ExecutionStatus
{
return this->process_error(sess.last_status, static_cast<session_type&>(sess));
@ -273,7 +273,7 @@ pp_session VPPPreprocEngine::initialize_preproc(const pp_params& initial_frame_p
throw std::runtime_error("Cannot execute MFXVideoVPP_QueryIOSurf");
}
// NB: Assing ID as upper limit descendant to distinguish specific VPP allocation
// NB: Assign ID as upper limit descendant to distinguish specific VPP allocation
// from decode allocations witch started from 0: by local module convention
static uint16_t request_id = 0;

@ -248,7 +248,7 @@ VPLLegacyTranscodeEngine::VPLLegacyTranscodeEngine(std::unique_ptr<VPLAccelerati
} while (MFX_ERR_NONE == sess.last_status && !my_sess.vpp_queue.empty());
return ExecutionStatus::Continue;
},
// 5) Falls back on generic status procesing
// 5) Falls back on generic status processing
[this] (EngineSession& sess) -> ExecutionStatus
{
return this->process_error(sess.last_status, static_cast<LegacyDecodeSession&>(sess));
@ -358,7 +358,7 @@ VPLLegacyTranscodeEngine::initialize_session(mfxSession mfx_session,
}
// NB: Assing ID as upper limit descendant to distinguish specific VPP allocation
// NB: Assign ID as upper limit descendant to distinguish specific VPP allocation
// from decode allocations witch started from 0: by local module convention
vppRequests[1].AllocId = std::numeric_limits<uint16_t>::max();

@ -129,7 +129,7 @@ GSource::Priv::Priv(std::shared_ptr<IDataProvider> provider,
}
// collect optional-preferred input parameters from input params
// which may (optionally) or may not be used to choose the most preferrable
// which may (optionally) or may not be used to choose the most preferable
// VPL implementation (for example, specific API version or Debug/Release VPL build)
std::vector<CfgParam> preferred_params;
std::copy_if(cfg_params.begin(), cfg_params.end(), std::back_inserter(preferred_params),
@ -137,7 +137,7 @@ GSource::Priv::Priv(std::shared_ptr<IDataProvider> provider,
std::sort(preferred_params.begin(), preferred_params.end());
GAPI_LOG_DEBUG(nullptr, "Find MFX better implementation from handle: " << mfx_handle <<
" is satisfying preferrable params count: " << preferred_params.size());
" is satisfying preferable params count: " << preferred_params.size());
int i = 0;
mfxImplDescription *idesc = nullptr;
std::vector<mfxImplDescription*> available_impl_descriptions;
@ -162,7 +162,7 @@ GSource::Priv::Priv(std::shared_ptr<IDataProvider> provider,
GAPI_LOG_INFO(nullptr, "Implementation index: " << i << "\n" << ss.str());
// Only one VPL implementation is required for GSource here.
// Let's find intersection params from available impl with preferrable input params
// Let's find intersection params from available impl with preferable input params
// to find best match.
// An available VPL implementation with max matching count
std::vector<CfgParam> impl_params = get_params_from_string<CfgParam>(ss.str());
@ -178,7 +178,7 @@ GSource::Priv::Priv(std::shared_ptr<IDataProvider> provider,
// in case of no input preferrance we consider all params are matched
// for the first available VPL implementation. It will be a chosen one
matches_count.emplace(impl_params.size(), i++);
GAPI_LOG_DEBUG(nullptr, "No preferrable params, use the first one implementation");
GAPI_LOG_DEBUG(nullptr, "No preferable params, use the first one implementation");
break;
} else {
GAPI_LOG_DEBUG(nullptr, "Equal param intersection count: " << matched_params.size());

@ -401,7 +401,7 @@ std::string ext_mem_frame_type_to_cstr(int type) {
std::stringstream ss;
APPEND_STRINGIFY_MASK_N_ERASE(type, "|", MFX_MEMTYPE_DXVA2_DECODER_TARGET);
APPEND_STRINGIFY_MASK_N_ERASE(type, "|", MFX_MEMTYPE_DXVA2_PROCESSOR_TARGET);
// NB: accoring to VPL source the commented MFX_* constane below are belong to the
// NB: according to VPL source the commented MFX_* constane below are belong to the
// same actual integral value as condition abobe. So it is impossible
// to distinct them in condition branch. Just put this comment and possible
// constans here...

@ -13,7 +13,7 @@
#include <opencv2/gapi/util/compiler_hints.hpp>
// NOTE: OPENCV_WITH_ITT is only defined if ITT dependecy is built by OpenCV infrastructure.
// NOTE: OPENCV_WITH_ITT is only defined if ITT dependency is built by OpenCV infrastructure.
// There will not be such define in G-API standalone mode.
// TODO: Consider using OpenCV's trace.hpp
#if defined(OPENCV_WITH_ITT)

@ -415,7 +415,7 @@ TEST(StatefulKernel, StateIsInitViaCompArgs)
// Allowing 1% difference of all pixels between G-API and OpenCV results
compareBackSubResults(gapiForeground, ocvForeground, 1);
// Additionally, test the case where state is resetted
// Additionally, test the case where state is reset
gapiBackSub.prepareForNewStream();
gapiBackSub(cv::gin(frame), cv::gout(gapiForeground));
pOcvBackSub->apply(frame, ocvForeground);

@ -67,7 +67,7 @@ namespace
}
};
// These definitons test the correct macro work if the kernel has multiple output values
// These definitions test the correct macro work if the kernel has multiple output values
G_TYPED_KERNEL(GRetGArrayTupleOfGMat2Kernel, <GArray<std::tuple<GMat, GMat>>(GMat, Scalar)>, "org.opencv.test.retarrayoftupleofgmat2kernel") {};
G_TYPED_KERNEL(GRetGArraTupleyOfGMat3Kernel, <GArray<std::tuple<GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat3kernel") {};
G_TYPED_KERNEL(GRetGArraTupleyOfGMat4Kernel, <GArray<std::tuple<GMat, GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat4kernel") {};

@ -346,9 +346,9 @@ void preproc_function(cv::gapi::wip::IPreprocEngine &preproc_engine, SafeQueue&q
// launch pipeline
bool in_progress = false;
// let's allow counting of preprocessed frames to check this value later:
// Currently, it looks redundant to implement any kind of gracefull shutdown logic
// Currently, it looks redundant to implement any kind of graceful shutdown logic
// in this test - so let's apply agreement that media source is processed
// succesfully when preproc_number != 1 in result.
// successfully when preproc_number != 1 in result.
// Specific validation logic which adhere to explicit counter value may be implemented
// in particular test scope
preproc_number = 1;

Loading…
Cancel
Save