mirror of https://github.com/opencv/opencv.git
parent
86868176a2
commit
54c07ba0ff
6 changed files with 428 additions and 7 deletions
@ -0,0 +1,112 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
''' |
||||
Camshift tracker |
||||
================ |
||||
|
||||
This is a demo that shows mean-shift based tracking |
||||
You select a color objects such as your face and it tracks it. |
||||
This reads from video camera (0 by default, or the camera number the user enters) |
||||
|
||||
http://www.robinhewitt.com/research/track/camshift.html |
||||
|
||||
''' |
||||
|
||||
# Python 2/3 compatibility |
||||
from __future__ import print_function |
||||
import sys |
||||
PY3 = sys.version_info[0] == 3 |
||||
|
||||
if PY3: |
||||
xrange = range |
||||
|
||||
import numpy as np |
||||
import cv2 |
||||
from tst_scene_render import TestSceneRender |
||||
|
||||
def intersectionRate(s1, s2): |
||||
|
||||
x1, y1, x2, y2 = s1 |
||||
s1 = [[x1, y1], [x2,y1], [x2, y2], [x1, y2] ] |
||||
|
||||
x1, y1, x2, y2 = s2 |
||||
s2 = [[x1, y1], [x2,y1], [x2, y2], [x1, y2] ] |
||||
|
||||
area, intersection = cv2.intersectConvexConvex(np.array(s1), np.array(s2)) |
||||
return 2 * area / (cv2.contourArea(np.array(s1)) + cv2.contourArea(np.array(s2))) |
||||
|
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
class camshift_test(NewOpenCVTests): |
||||
|
||||
frame = None |
||||
selection = None |
||||
drag_start = None |
||||
show_backproj = False |
||||
track_window = None |
||||
render = None |
||||
|
||||
def prepareRender(self): |
||||
|
||||
cv2.namedWindow('camshift') |
||||
self.render = TestSceneRender(self.get_sample('samples/data/pca_test1.jpg')) |
||||
|
||||
def runTracker(self): |
||||
|
||||
framesCounter = 0 |
||||
self.selection = True |
||||
|
||||
xmin, ymin, xmax, ymax = self.render.getCurrentRect() |
||||
|
||||
self.track_window = (xmin, ymin, xmax - xmin, ymax - ymin) |
||||
|
||||
while True: |
||||
framesCounter += 1 |
||||
self.frame = self.render.getNextFrame() |
||||
vis = self.frame.copy() |
||||
hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV) |
||||
mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.))) |
||||
|
||||
if self.selection: |
||||
x0, y0, x1, y1 = self.render.getCurrentRect() + 50 |
||||
x0 -= 100 |
||||
y0 -= 100 |
||||
|
||||
hsv_roi = hsv[y0:y1, x0:x1] |
||||
mask_roi = mask[y0:y1, x0:x1] |
||||
hist = cv2.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] ) |
||||
cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX) |
||||
self.hist = hist.reshape(-1) |
||||
|
||||
vis_roi = vis[y0:y1, x0:x1] |
||||
cv2.bitwise_not(vis_roi, vis_roi) |
||||
vis[mask == 0] = 0 |
||||
|
||||
self.selection = False |
||||
|
||||
if self.track_window and self.track_window[2] > 0 and self.track_window[3] > 0: |
||||
self.selection = None |
||||
prob = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1) |
||||
prob &= mask |
||||
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 ) |
||||
track_box, self.track_window = cv2.CamShift(prob, self.track_window, term_crit) |
||||
|
||||
if self.show_backproj: |
||||
vis[:] = prob[...,np.newaxis] |
||||
|
||||
cv2.rectangle(vis, (self.track_window[0], self.track_window[1]), (self.track_window[0] + self.track_window[2], self.track_window[1] + self.track_window[3]), (0, 255, 0), 2) |
||||
|
||||
trackingRect = np.array(self.track_window) |
||||
trackingRect[2] += trackingRect[0] |
||||
trackingRect[3] += trackingRect[1] |
||||
|
||||
print(intersectionRate((self.render.getCurrentRect()), trackingRect)) |
||||
self.assertGreater(intersectionRate((self.render.getCurrentRect()), trackingRect), 0.5) |
||||
|
||||
if framesCounter > 300: |
||||
break |
||||
|
||||
def test_camshift(self): |
||||
self.prepareRender() |
||||
self.runTracker() |
@ -0,0 +1,167 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
''' |
||||
The sample demonstrates how to train Random Trees classifier |
||||
(or Boosting classifier, or MLP, or Knearest, or Support Vector Machines) using the provided dataset. |
||||
|
||||
We use the sample database letter-recognition.data |
||||
from UCI Repository, here is the link: |
||||
|
||||
Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998). |
||||
UCI Repository of machine learning databases |
||||
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. |
||||
Irvine, CA: University of California, Department of Information and Computer Science. |
||||
|
||||
The dataset consists of 20000 feature vectors along with the |
||||
responses - capital latin letters A..Z. |
||||
The first 10000 samples are used for training |
||||
and the remaining 10000 - to test the classifier. |
||||
====================================================== |
||||
Models: RTrees, KNearest, Boost, SVM, MLP |
||||
''' |
||||
|
||||
# Python 2/3 compatibility |
||||
from __future__ import print_function |
||||
|
||||
import numpy as np |
||||
import cv2 |
||||
|
||||
def load_base(fn): |
||||
a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') }) |
||||
samples, responses = a[:,1:], a[:,0] |
||||
return samples, responses |
||||
|
||||
class LetterStatModel(object): |
||||
class_n = 26 |
||||
train_ratio = 0.5 |
||||
|
||||
def load(self, fn): |
||||
self.model.load(fn) |
||||
def save(self, fn): |
||||
self.model.save(fn) |
||||
|
||||
def unroll_samples(self, samples): |
||||
sample_n, var_n = samples.shape |
||||
new_samples = np.zeros((sample_n * self.class_n, var_n+1), np.float32) |
||||
new_samples[:,:-1] = np.repeat(samples, self.class_n, axis=0) |
||||
new_samples[:,-1] = np.tile(np.arange(self.class_n), sample_n) |
||||
return new_samples |
||||
|
||||
def unroll_responses(self, responses): |
||||
sample_n = len(responses) |
||||
new_responses = np.zeros(sample_n*self.class_n, np.int32) |
||||
resp_idx = np.int32( responses + np.arange(sample_n)*self.class_n ) |
||||
new_responses[resp_idx] = 1 |
||||
return new_responses |
||||
|
||||
class RTrees(LetterStatModel): |
||||
def __init__(self): |
||||
self.model = cv2.ml.RTrees_create() |
||||
|
||||
def train(self, samples, responses): |
||||
sample_n, var_n = samples.shape |
||||
self.model.setMaxDepth(20) |
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int)) |
||||
|
||||
def predict(self, samples): |
||||
ret, resp = self.model.predict(samples) |
||||
return resp.ravel() |
||||
|
||||
|
||||
class KNearest(LetterStatModel): |
||||
def __init__(self): |
||||
self.model = cv2.ml.KNearest_create() |
||||
|
||||
def train(self, samples, responses): |
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses) |
||||
|
||||
def predict(self, samples): |
||||
retval, results, neigh_resp, dists = self.model.findNearest(samples, k = 10) |
||||
return results.ravel() |
||||
|
||||
|
||||
class Boost(LetterStatModel): |
||||
def __init__(self): |
||||
self.model = cv2.ml.Boost_create() |
||||
|
||||
def train(self, samples, responses): |
||||
sample_n, var_n = samples.shape |
||||
new_samples = self.unroll_samples(samples) |
||||
new_responses = self.unroll_responses(responses) |
||||
var_types = np.array([cv2.ml.VAR_NUMERICAL] * var_n + [cv2.ml.VAR_CATEGORICAL, cv2.ml.VAR_CATEGORICAL], np.uint8) |
||||
|
||||
self.model.setWeakCount(15) |
||||
self.model.setMaxDepth(10) |
||||
self.model.train(cv2.ml.TrainData_create(new_samples, cv2.ml.ROW_SAMPLE, new_responses.astype(int), varType = var_types)) |
||||
|
||||
def predict(self, samples): |
||||
new_samples = self.unroll_samples(samples) |
||||
ret, resp = self.model.predict(new_samples) |
||||
|
||||
return resp.ravel().reshape(-1, self.class_n).argmax(1) |
||||
|
||||
|
||||
class SVM(LetterStatModel): |
||||
def __init__(self): |
||||
self.model = cv2.ml.SVM_create() |
||||
|
||||
def train(self, samples, responses): |
||||
self.model.setType(cv2.ml.SVM_C_SVC) |
||||
self.model.setC(1) |
||||
self.model.setKernel(cv2.ml.SVM_RBF) |
||||
self.model.setGamma(.1) |
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int)) |
||||
|
||||
def predict(self, samples): |
||||
ret, resp = self.model.predict(samples) |
||||
return resp.ravel() |
||||
|
||||
|
||||
class MLP(LetterStatModel): |
||||
def __init__(self): |
||||
self.model = cv2.ml.ANN_MLP_create() |
||||
|
||||
def train(self, samples, responses): |
||||
sample_n, var_n = samples.shape |
||||
new_responses = self.unroll_responses(responses).reshape(-1, self.class_n) |
||||
layer_sizes = np.int32([var_n, 100, 100, self.class_n]) |
||||
|
||||
self.model.setLayerSizes(layer_sizes) |
||||
self.model.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP) |
||||
self.model.setBackpropMomentumScale(0) |
||||
self.model.setBackpropWeightScale(0.001) |
||||
self.model.setTermCriteria((cv2.TERM_CRITERIA_COUNT, 20, 0.01)) |
||||
self.model.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM, 2, 1) |
||||
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, np.float32(new_responses)) |
||||
|
||||
def predict(self, samples): |
||||
ret, resp = self.model.predict(samples) |
||||
return resp.argmax(-1) |
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
class letter_recog_test(NewOpenCVTests): |
||||
|
||||
def test_letter_recog(self): |
||||
|
||||
eps = 0.01 |
||||
|
||||
models = [RTrees, KNearest, Boost, SVM, MLP] |
||||
models = dict( [(cls.__name__.lower(), cls) for cls in models] ) |
||||
testErrors = {RTrees: (98.930000, 92.390000), KNearest: (94.960000, 92.010000), |
||||
Boost: (85.970000, 74.920000), SVM: (99.780000, 95.680000), MLP: (90.060000, 87.410000)} |
||||
|
||||
for model in models: |
||||
Model = models[model] |
||||
classifier = Model() |
||||
|
||||
samples, responses = load_base(self.repoPath + '/samples/data/letter-recognition.data') |
||||
train_n = int(len(samples)*classifier.train_ratio) |
||||
|
||||
classifier.train(samples[:train_n], responses[:train_n]) |
||||
train_rate = np.mean(classifier.predict(samples[:train_n]) == responses[:train_n].astype(int)) |
||||
test_rate = np.mean(classifier.predict(samples[train_n:]) == responses[train_n:].astype(int)) |
||||
|
||||
self.assertLess(train_rate - testErrors[Model][0], eps) |
||||
self.assertLess(test_rate - testErrors[Model][1], eps) |
@ -0,0 +1,73 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
''' |
||||
example to detect upright people in images using HOG features |
||||
''' |
||||
|
||||
# Python 2/3 compatibility |
||||
from __future__ import print_function |
||||
|
||||
import numpy as np |
||||
import cv2 |
||||
|
||||
|
||||
def inside(r, q): |
||||
rx, ry, rw, rh = r |
||||
qx, qy, qw, qh = q |
||||
return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh |
||||
|
||||
def intersectionRate(s1, s2): |
||||
|
||||
x1, y1, x2, y2 = s1 |
||||
s1 = [[x1, y1], [x2,y1], [x2, y2], [x1, y2] ] |
||||
|
||||
x1, y1, x2, y2 = s2 |
||||
s2 = [[x1, y1], [x2,y1], [x2, y2], [x1, y2] ] |
||||
area, intersection = cv2.intersectConvexConvex(np.array(s1), np.array(s2)) |
||||
|
||||
return 2 * area / (cv2.contourArea(np.array(s1)) + cv2.contourArea(np.array(s2))) |
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
class peopledetect_test(NewOpenCVTests): |
||||
def test_peopledetect(self): |
||||
|
||||
hog = cv2.HOGDescriptor() |
||||
hog.setSVMDetector( cv2.HOGDescriptor_getDefaultPeopleDetector() ) |
||||
|
||||
dirPath = 'samples/data/' |
||||
samples = ['basketball1.png', 'basketball2.png'] |
||||
|
||||
testPeople = [ |
||||
[[23, 76, 164, 477], [440, 22, 637, 478]], |
||||
[[23, 76, 164, 477], [440, 22, 637, 478]] |
||||
] |
||||
|
||||
eps = 0.5 |
||||
|
||||
for sample in samples: |
||||
|
||||
img = self.get_sample(dirPath + sample, 0) |
||||
|
||||
found, w = hog.detectMultiScale(img, winStride=(8,8), padding=(32,32), scale=1.05) |
||||
found_filtered = [] |
||||
for ri, r in enumerate(found): |
||||
for qi, q in enumerate(found): |
||||
if ri != qi and inside(r, q): |
||||
break |
||||
else: |
||||
found_filtered.append(r) |
||||
|
||||
matches = 0 |
||||
|
||||
for i in range(len(found_filtered)): |
||||
for j in range(len(testPeople)): |
||||
|
||||
found_rect = (found_filtered[i][0], found_filtered[i][1], |
||||
found_filtered[i][0] + found_filtered[i][2], |
||||
found_filtered[i][1] + found_filtered[i][3]) |
||||
|
||||
if intersectionRate(found_rect, testPeople[j][0]) > eps or intersectionRate(found_rect, testPeople[j][1]) > eps: |
||||
matches += 1 |
||||
|
||||
self.assertGreater(matches, 0) |
@ -0,0 +1,67 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
|
||||
# Python 2/3 compatibility |
||||
from __future__ import print_function |
||||
|
||||
import numpy as np |
||||
from numpy import pi, sin, cos |
||||
|
||||
import cv2 |
||||
|
||||
defaultSize = 512 |
||||
|
||||
class TestSceneRender(): |
||||
|
||||
def __init__(self, bgImg = None, **params): |
||||
self.time = 0.0 |
||||
self.timeStep = 1.0 / 30.0 |
||||
|
||||
if bgImg != None: |
||||
self.sceneBg = bgImg.copy() |
||||
else: |
||||
self.sceneBg = np.zeros((defaultSize, defaultSize, 3), np.uint8) |
||||
|
||||
self.w = self.sceneBg.shape[0] |
||||
self.h = self.sceneBg.shape[1] |
||||
|
||||
self.initialRect = np.array([ (self.h/2, self.w/2), (self.h/2, self.w/2 + self.w/10), |
||||
(self.h/2 + self.h/10, self.w/2 + self.w/10), (self.h/2 + self.h/10, self.w/2)]) |
||||
self.currentRect = self.initialRect |
||||
|
||||
def setInitialRect(self, rect): |
||||
self.initialRect = rect |
||||
|
||||
def getCurrentRect(self): |
||||
x0, y0 = self.currentRect[0] |
||||
x1, y1 = self.currentRect[2] |
||||
return np.array([x0, y0, x1, y1]) |
||||
|
||||
def getNextFrame(self): |
||||
self.time += self.timeStep |
||||
img = self.sceneBg.copy() |
||||
|
||||
self.currentRect = self.initialRect + np.int( 30*cos(self.time) + 50*sin(self.time/3)) |
||||
cv2.fillConvexPoly(img, self.currentRect, (0, 0, 255)) |
||||
|
||||
return img |
||||
|
||||
def resetTime(self): |
||||
self.time = 0.0 |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
|
||||
backGr = cv2.imread('../../../samples/data/lena.jpg') |
||||
|
||||
render = TestSceneRender(backGr) |
||||
|
||||
while True: |
||||
|
||||
img = render.getNextFrame() |
||||
cv2.imshow('img', img) |
||||
|
||||
ch = 0xFF & cv2.waitKey(3) |
||||
if ch == 27: |
||||
break |
||||
cv2.destroyAllWindows() |
Loading…
Reference in new issue