parent
07f28d3309
commit
53f7a50fa2
1 changed files with 57 additions and 0 deletions
@ -0,0 +1,57 @@ |
|||||||
|
import numpy as np |
||||||
|
from numpy import random |
||||||
|
import cv2, cv |
||||||
|
|
||||||
|
|
||||||
|
def make_gaussians(cluster_n, img_size): |
||||||
|
points = [] |
||||||
|
ref_distrs = [] |
||||||
|
for i in xrange(cluster_n): |
||||||
|
mean = (0.1 + 0.8*random.rand(2)) * img_size |
||||||
|
a = (random.rand(2, 2)-0.5)*img_size*0.1 |
||||||
|
cov = np.dot(a.T, a) + img_size*0.05*np.eye(2) |
||||||
|
n = 100 + random.randint(900) |
||||||
|
pts = random.multivariate_normal(mean, cov, n) |
||||||
|
points.append( pts ) |
||||||
|
ref_distrs.append( (mean, cov) ) |
||||||
|
points = np.float32( np.vstack(points) ) |
||||||
|
return points, ref_distrs |
||||||
|
|
||||||
|
def draw_gaussain(img, mean, cov, color): |
||||||
|
x, y = np.int32(mean) |
||||||
|
w, u, vt = cv2.SVDecomp(cov) |
||||||
|
ang = np.rad2deg( np.arctan2(u[1, 0], u[0, 0]) ) |
||||||
|
s1, s2 = np.sqrt(w)*3.0 |
||||||
|
cv2.ellipse(img, (x, y), (s1, s2), ang, 0, 360, color, 1, cv.CV_AA) |
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__': |
||||||
|
cluster_n = 5 |
||||||
|
img_size = 512 |
||||||
|
|
||||||
|
print 'press any key to update distributions, ESC - exit\n' |
||||||
|
|
||||||
|
while True: |
||||||
|
print 'sampling distributions...' |
||||||
|
points, ref_distrs = make_gaussians(cluster_n, img_size) |
||||||
|
|
||||||
|
print 'EM (opencv) ...' |
||||||
|
em = cv2.EM(points, params = dict( nclusters = cluster_n, cov_mat_type = cv2.EM_COV_MAT_GENERIC) ) |
||||||
|
means = em.getMeans() |
||||||
|
covs = np.zeros((cluster_n, 2, 2), np.float32) |
||||||
|
covs = em.getCovs(covs) # FIXME |
||||||
|
found_distrs = zip(means, covs) |
||||||
|
print 'ready!\n' |
||||||
|
|
||||||
|
img = np.zeros((img_size, img_size, 3), np.uint8) |
||||||
|
for x, y in np.int32(points): |
||||||
|
cv2.circle(img, (x, y), 1, (255, 255, 255), -1) |
||||||
|
for m, cov in ref_distrs: |
||||||
|
draw_gaussain(img, m, cov, (0, 255, 0)) |
||||||
|
for m, cov in found_distrs: |
||||||
|
draw_gaussain(img, m, cov, (0, 0, 255)) |
||||||
|
|
||||||
|
cv2.imshow('gaussian mixture', img) |
||||||
|
ch = cv2.waitKey(0) |
||||||
|
if ch == 27: |
||||||
|
break |
Loading…
Reference in new issue