|
|
|
@ -248,9 +248,6 @@ private: |
|
|
|
|
// Holds the data dimension.
|
|
|
|
|
int n; |
|
|
|
|
|
|
|
|
|
// Stores real/imag part of a complex division.
|
|
|
|
|
double cdivr, cdivi; |
|
|
|
|
|
|
|
|
|
// Pointer to internal memory.
|
|
|
|
|
double *d, *e, *ort; |
|
|
|
|
double **V, **H; |
|
|
|
@ -297,8 +294,9 @@ private: |
|
|
|
|
return arr; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cdiv(double xr, double xi, double yr, double yi) { |
|
|
|
|
static void complex_div(double xr, double xi, double yr, double yi, double& cdivr, double& cdivi) { |
|
|
|
|
double r, dv; |
|
|
|
|
CV_DbgAssert(std::abs(yr) + std::abs(yi) > 0.0); |
|
|
|
|
if (std::abs(yr) > std::abs(yi)) { |
|
|
|
|
r = yi / yr; |
|
|
|
|
dv = yr + r * yi; |
|
|
|
@ -324,24 +322,25 @@ private: |
|
|
|
|
// Initialize
|
|
|
|
|
const int max_iters_count = 1000 * this->n; |
|
|
|
|
|
|
|
|
|
int nn = this->n; |
|
|
|
|
const int nn = this->n; CV_Assert(nn > 0); |
|
|
|
|
int n1 = nn - 1; |
|
|
|
|
int low = 0; |
|
|
|
|
int high = nn - 1; |
|
|
|
|
double eps = std::pow(2.0, -52.0); |
|
|
|
|
const int low = 0; |
|
|
|
|
const int high = nn - 1; |
|
|
|
|
const double eps = std::numeric_limits<double>::epsilon(); |
|
|
|
|
double exshift = 0.0; |
|
|
|
|
double p = 0, q = 0, r = 0, s = 0, z = 0, t, w, x, y; |
|
|
|
|
|
|
|
|
|
// Store roots isolated by balanc and compute matrix norm
|
|
|
|
|
|
|
|
|
|
double norm = 0.0; |
|
|
|
|
for (int i = 0; i < nn; i++) { |
|
|
|
|
#if 0 // 'if' condition is always false
|
|
|
|
|
if (i < low || i > high) { |
|
|
|
|
d[i] = H[i][i]; |
|
|
|
|
e[i] = 0.0; |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
for (int j = std::max(i - 1, 0); j < nn; j++) { |
|
|
|
|
norm = norm + std::abs(H[i][j]); |
|
|
|
|
norm += std::abs(H[i][j]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -355,7 +354,7 @@ private: |
|
|
|
|
if (norm < FLT_EPSILON) { |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
s = std::abs(H[l - 1][l - 1]) + std::abs(H[l][l]); |
|
|
|
|
double s = std::abs(H[l - 1][l - 1]) + std::abs(H[l][l]); |
|
|
|
|
if (s == 0.0) { |
|
|
|
|
s = norm; |
|
|
|
|
} |
|
|
|
@ -366,29 +365,26 @@ private: |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Check for convergence
|
|
|
|
|
// One root found
|
|
|
|
|
|
|
|
|
|
if (l == n1) { |
|
|
|
|
// One root found
|
|
|
|
|
H[n1][n1] = H[n1][n1] + exshift; |
|
|
|
|
d[n1] = H[n1][n1]; |
|
|
|
|
e[n1] = 0.0; |
|
|
|
|
n1--; |
|
|
|
|
iter = 0; |
|
|
|
|
|
|
|
|
|
// Two roots found
|
|
|
|
|
|
|
|
|
|
} else if (l == n1 - 1) { |
|
|
|
|
w = H[n1][n1 - 1] * H[n1 - 1][n1]; |
|
|
|
|
p = (H[n1 - 1][n1 - 1] - H[n1][n1]) / 2.0; |
|
|
|
|
q = p * p + w; |
|
|
|
|
z = std::sqrt(std::abs(q)); |
|
|
|
|
// Two roots found
|
|
|
|
|
double w = H[n1][n1 - 1] * H[n1 - 1][n1]; |
|
|
|
|
double p = (H[n1 - 1][n1 - 1] - H[n1][n1]) * 0.5; |
|
|
|
|
double q = p * p + w; |
|
|
|
|
double z = std::sqrt(std::abs(q)); |
|
|
|
|
H[n1][n1] = H[n1][n1] + exshift; |
|
|
|
|
H[n1 - 1][n1 - 1] = H[n1 - 1][n1 - 1] + exshift; |
|
|
|
|
x = H[n1][n1]; |
|
|
|
|
|
|
|
|
|
// Real pair
|
|
|
|
|
double x = H[n1][n1]; |
|
|
|
|
|
|
|
|
|
if (q >= 0) { |
|
|
|
|
// Real pair
|
|
|
|
|
if (p >= 0) { |
|
|
|
|
z = p + z; |
|
|
|
|
} else { |
|
|
|
@ -402,10 +398,10 @@ private: |
|
|
|
|
e[n1 - 1] = 0.0; |
|
|
|
|
e[n1] = 0.0; |
|
|
|
|
x = H[n1][n1 - 1]; |
|
|
|
|
s = std::abs(x) + std::abs(z); |
|
|
|
|
double s = std::abs(x) + std::abs(z); |
|
|
|
|
p = x / s; |
|
|
|
|
q = z / s; |
|
|
|
|
r = std::sqrt(p * p + q * q); |
|
|
|
|
double r = std::sqrt(p * p + q * q); |
|
|
|
|
p = p / r; |
|
|
|
|
q = q / r; |
|
|
|
|
|
|
|
|
@ -433,9 +429,8 @@ private: |
|
|
|
|
V[i][n1] = q * V[i][n1] - p * z; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Complex pair
|
|
|
|
|
|
|
|
|
|
} else { |
|
|
|
|
// Complex pair
|
|
|
|
|
d[n1 - 1] = x + p; |
|
|
|
|
d[n1] = x + p; |
|
|
|
|
e[n1 - 1] = z; |
|
|
|
@ -444,28 +439,25 @@ private: |
|
|
|
|
n1 = n1 - 2; |
|
|
|
|
iter = 0; |
|
|
|
|
|
|
|
|
|
// No convergence yet
|
|
|
|
|
|
|
|
|
|
} else { |
|
|
|
|
// No convergence yet
|
|
|
|
|
|
|
|
|
|
// Form shift
|
|
|
|
|
|
|
|
|
|
x = H[n1][n1]; |
|
|
|
|
y = 0.0; |
|
|
|
|
w = 0.0; |
|
|
|
|
double x = H[n1][n1]; |
|
|
|
|
double y = 0.0; |
|
|
|
|
double w = 0.0; |
|
|
|
|
if (l < n1) { |
|
|
|
|
y = H[n1 - 1][n1 - 1]; |
|
|
|
|
w = H[n1][n1 - 1] * H[n1 - 1][n1]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Wilkinson's original ad hoc shift
|
|
|
|
|
|
|
|
|
|
if (iter == 10) { |
|
|
|
|
exshift += x; |
|
|
|
|
for (int i = low; i <= n1; i++) { |
|
|
|
|
H[i][i] -= x; |
|
|
|
|
} |
|
|
|
|
s = std::abs(H[n1][n1 - 1]) + std::abs(H[n1 - 1][n1 - 2]); |
|
|
|
|
double s = std::abs(H[n1][n1 - 1]) + std::abs(H[n1 - 1][n1 - 2]); |
|
|
|
|
x = y = 0.75 * s; |
|
|
|
|
w = -0.4375 * s * s; |
|
|
|
|
} |
|
|
|
@ -473,14 +465,14 @@ private: |
|
|
|
|
// MATLAB's new ad hoc shift
|
|
|
|
|
|
|
|
|
|
if (iter == 30) { |
|
|
|
|
s = (y - x) / 2.0; |
|
|
|
|
double s = (y - x) * 0.5; |
|
|
|
|
s = s * s + w; |
|
|
|
|
if (s > 0) { |
|
|
|
|
s = std::sqrt(s); |
|
|
|
|
if (y < x) { |
|
|
|
|
s = -s; |
|
|
|
|
} |
|
|
|
|
s = x - w / ((y - x) / 2.0 + s); |
|
|
|
|
s = x - w / ((y - x) * 0.5 + s); |
|
|
|
|
for (int i = low; i <= n1; i++) { |
|
|
|
|
H[i][i] -= s; |
|
|
|
|
} |
|
|
|
@ -493,12 +485,16 @@ private: |
|
|
|
|
if (iter > max_iters_count) |
|
|
|
|
CV_Error(Error::StsNoConv, "Algorithm doesn't converge (complex eigen values?)"); |
|
|
|
|
|
|
|
|
|
double p = std::numeric_limits<double>::quiet_NaN(); |
|
|
|
|
double q = std::numeric_limits<double>::quiet_NaN(); |
|
|
|
|
double r = std::numeric_limits<double>::quiet_NaN(); |
|
|
|
|
|
|
|
|
|
// Look for two consecutive small sub-diagonal elements
|
|
|
|
|
int m = n1 - 2; |
|
|
|
|
while (m >= l) { |
|
|
|
|
z = H[m][m]; |
|
|
|
|
double z = H[m][m]; |
|
|
|
|
r = x - z; |
|
|
|
|
s = y - z; |
|
|
|
|
double s = y - z; |
|
|
|
|
p = (r * s - w) / H[m + 1][m] + H[m][m + 1]; |
|
|
|
|
q = H[m + 1][m + 1] - z - r - s; |
|
|
|
|
r = H[m + 2][m + 1]; |
|
|
|
@ -527,6 +523,7 @@ private: |
|
|
|
|
// Double QR step involving rows l:n and columns m:n
|
|
|
|
|
|
|
|
|
|
for (int k = m; k < n1; k++) { |
|
|
|
|
|
|
|
|
|
bool notlast = (k != n1 - 1); |
|
|
|
|
if (k != m) { |
|
|
|
|
p = H[k][k - 1]; |
|
|
|
@ -542,7 +539,7 @@ private: |
|
|
|
|
if (x == 0.0) { |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
s = std::sqrt(p * p + q * q + r * r); |
|
|
|
|
double s = std::sqrt(p * p + q * q + r * r); |
|
|
|
|
if (p < 0) { |
|
|
|
|
s = -s; |
|
|
|
|
} |
|
|
|
@ -555,7 +552,7 @@ private: |
|
|
|
|
p = p + s; |
|
|
|
|
x = p / s; |
|
|
|
|
y = q / s; |
|
|
|
|
z = r / s; |
|
|
|
|
double z = r / s; |
|
|
|
|
q = q / p; |
|
|
|
|
r = r / p; |
|
|
|
|
|
|
|
|
@ -567,8 +564,8 @@ private: |
|
|
|
|
p = p + r * H[k + 2][j]; |
|
|
|
|
H[k + 2][j] = H[k + 2][j] - p * z; |
|
|
|
|
} |
|
|
|
|
H[k][j] = H[k][j] - p * x; |
|
|
|
|
H[k + 1][j] = H[k + 1][j] - p * y; |
|
|
|
|
H[k][j] -= p * x; |
|
|
|
|
H[k + 1][j] -= p * y; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Column modification
|
|
|
|
@ -579,8 +576,8 @@ private: |
|
|
|
|
p = p + z * H[i][k + 2]; |
|
|
|
|
H[i][k + 2] = H[i][k + 2] - p * r; |
|
|
|
|
} |
|
|
|
|
H[i][k] = H[i][k] - p; |
|
|
|
|
H[i][k + 1] = H[i][k + 1] - p * q; |
|
|
|
|
H[i][k] -= p; |
|
|
|
|
H[i][k + 1] -= p * q; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Accumulate transformations
|
|
|
|
@ -606,17 +603,19 @@ private: |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (n1 = nn - 1; n1 >= 0; n1--) { |
|
|
|
|
p = d[n1]; |
|
|
|
|
q = e[n1]; |
|
|
|
|
|
|
|
|
|
// Real vector
|
|
|
|
|
double p = d[n1]; |
|
|
|
|
double q = e[n1]; |
|
|
|
|
|
|
|
|
|
if (q == 0) { |
|
|
|
|
// Real vector
|
|
|
|
|
double z = std::numeric_limits<double>::quiet_NaN(); |
|
|
|
|
double s = std::numeric_limits<double>::quiet_NaN(); |
|
|
|
|
|
|
|
|
|
int l = n1; |
|
|
|
|
H[n1][n1] = 1.0; |
|
|
|
|
for (int i = n1 - 1; i >= 0; i--) { |
|
|
|
|
w = H[i][i] - p; |
|
|
|
|
r = 0.0; |
|
|
|
|
double w = H[i][i] - p; |
|
|
|
|
double r = 0.0; |
|
|
|
|
for (int j = l; j <= n1; j++) { |
|
|
|
|
r = r + H[i][j] * H[j][n1]; |
|
|
|
|
} |
|
|
|
@ -631,34 +630,38 @@ private: |
|
|
|
|
} else { |
|
|
|
|
H[i][n1] = -r / (eps * norm); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Solve real equations
|
|
|
|
|
|
|
|
|
|
} else { |
|
|
|
|
x = H[i][i + 1]; |
|
|
|
|
y = H[i + 1][i]; |
|
|
|
|
// Solve real equations
|
|
|
|
|
CV_DbgAssert(!cvIsNaN(z)); |
|
|
|
|
double x = H[i][i + 1]; |
|
|
|
|
double y = H[i + 1][i]; |
|
|
|
|
q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; |
|
|
|
|
t = (x * s - z * r) / q; |
|
|
|
|
double t = (x * s - z * r) / q; |
|
|
|
|
H[i][n1] = t; |
|
|
|
|
if (std::abs(x) > std::abs(z)) { |
|
|
|
|
H[i + 1][n1] = (-r - w * t) / x; |
|
|
|
|
} else { |
|
|
|
|
CV_DbgAssert(z != 0.0); |
|
|
|
|
H[i + 1][n1] = (-s - y * t) / z; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Overflow control
|
|
|
|
|
|
|
|
|
|
t = std::abs(H[i][n1]); |
|
|
|
|
double t = std::abs(H[i][n1]); |
|
|
|
|
if ((eps * t) * t > 1) { |
|
|
|
|
double inv_t = 1.0 / t; |
|
|
|
|
for (int j = i; j <= n1; j++) { |
|
|
|
|
H[j][n1] = H[j][n1] / t; |
|
|
|
|
H[j][n1] *= inv_t; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
// Complex vector
|
|
|
|
|
} else if (q < 0) { |
|
|
|
|
// Complex vector
|
|
|
|
|
double z = std::numeric_limits<double>::quiet_NaN(); |
|
|
|
|
double r = std::numeric_limits<double>::quiet_NaN(); |
|
|
|
|
double s = std::numeric_limits<double>::quiet_NaN(); |
|
|
|
|
|
|
|
|
|
int l = n1 - 1; |
|
|
|
|
|
|
|
|
|
// Last vector component imaginary so matrix is triangular
|
|
|
|
@ -667,9 +670,11 @@ private: |
|
|
|
|
H[n1 - 1][n1 - 1] = q / H[n1][n1 - 1]; |
|
|
|
|
H[n1 - 1][n1] = -(H[n1][n1] - p) / H[n1][n1 - 1]; |
|
|
|
|
} else { |
|
|
|
|
cdiv(0.0, -H[n1 - 1][n1], H[n1 - 1][n1 - 1] - p, q); |
|
|
|
|
H[n1 - 1][n1 - 1] = cdivr; |
|
|
|
|
H[n1 - 1][n1] = cdivi; |
|
|
|
|
complex_div( |
|
|
|
|
0.0, -H[n1 - 1][n1], |
|
|
|
|
H[n1 - 1][n1 - 1] - p, q, |
|
|
|
|
H[n1 - 1][n1 - 1], H[n1 - 1][n1] |
|
|
|
|
); |
|
|
|
|
} |
|
|
|
|
H[n1][n1 - 1] = 0.0; |
|
|
|
|
H[n1][n1] = 1.0; |
|
|
|
@ -681,7 +686,7 @@ private: |
|
|
|
|
ra = ra + H[i][j] * H[j][n1 - 1]; |
|
|
|
|
sa = sa + H[i][j] * H[j][n1]; |
|
|
|
|
} |
|
|
|
|
w = H[i][i] - p; |
|
|
|
|
double w = H[i][i] - p; |
|
|
|
|
|
|
|
|
|
if (e[i] < 0.0) { |
|
|
|
|
z = w; |
|
|
|
@ -690,41 +695,42 @@ private: |
|
|
|
|
} else { |
|
|
|
|
l = i; |
|
|
|
|
if (e[i] == 0) { |
|
|
|
|
cdiv(-ra, -sa, w, q); |
|
|
|
|
H[i][n1 - 1] = cdivr; |
|
|
|
|
H[i][n1] = cdivi; |
|
|
|
|
complex_div( |
|
|
|
|
-ra, -sa, |
|
|
|
|
w, q, |
|
|
|
|
H[i][n1 - 1], H[i][n1] |
|
|
|
|
); |
|
|
|
|
} else { |
|
|
|
|
|
|
|
|
|
// Solve complex equations
|
|
|
|
|
|
|
|
|
|
x = H[i][i + 1]; |
|
|
|
|
y = H[i + 1][i]; |
|
|
|
|
double x = H[i][i + 1]; |
|
|
|
|
double y = H[i + 1][i]; |
|
|
|
|
vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; |
|
|
|
|
vi = (d[i] - p) * 2.0 * q; |
|
|
|
|
if (vr == 0.0 && vi == 0.0) { |
|
|
|
|
vr = eps * norm * (std::abs(w) + std::abs(q) + std::abs(x) |
|
|
|
|
+ std::abs(y) + std::abs(z)); |
|
|
|
|
} |
|
|
|
|
cdiv(x * r - z * ra + q * sa, |
|
|
|
|
x * s - z * sa - q * ra, vr, vi); |
|
|
|
|
H[i][n1 - 1] = cdivr; |
|
|
|
|
H[i][n1] = cdivi; |
|
|
|
|
complex_div( |
|
|
|
|
x * r - z * ra + q * sa, x * s - z * sa - q * ra, |
|
|
|
|
vr, vi, |
|
|
|
|
H[i][n1 - 1], H[i][n1]); |
|
|
|
|
if (std::abs(x) > (std::abs(z) + std::abs(q))) { |
|
|
|
|
H[i + 1][n1 - 1] = (-ra - w * H[i][n1 - 1] + q |
|
|
|
|
* H[i][n1]) / x; |
|
|
|
|
H[i + 1][n1] = (-sa - w * H[i][n1] - q * H[i][n1 |
|
|
|
|
- 1]) / x; |
|
|
|
|
} else { |
|
|
|
|
cdiv(-r - y * H[i][n1 - 1], -s - y * H[i][n1], z, |
|
|
|
|
q); |
|
|
|
|
H[i + 1][n1 - 1] = cdivr; |
|
|
|
|
H[i + 1][n1] = cdivi; |
|
|
|
|
complex_div( |
|
|
|
|
-r - y * H[i][n1 - 1], -s - y * H[i][n1], |
|
|
|
|
z, q, |
|
|
|
|
H[i + 1][n1 - 1], H[i + 1][n1]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Overflow control
|
|
|
|
|
|
|
|
|
|
t = std::max(std::abs(H[i][n1 - 1]), std::abs(H[i][n1])); |
|
|
|
|
double t = std::max(std::abs(H[i][n1 - 1]), std::abs(H[i][n1])); |
|
|
|
|
if ((eps * t) * t > 1) { |
|
|
|
|
for (int j = i; j <= n1; j++) { |
|
|
|
|
H[j][n1 - 1] = H[j][n1 - 1] / t; |
|
|
|
@ -738,6 +744,7 @@ private: |
|
|
|
|
|
|
|
|
|
// Vectors of isolated roots
|
|
|
|
|
|
|
|
|
|
#if 0 // 'if' condition is always false
|
|
|
|
|
for (int i = 0; i < nn; i++) { |
|
|
|
|
if (i < low || i > high) { |
|
|
|
|
for (int j = i; j < nn; j++) { |
|
|
|
@ -745,14 +752,15 @@ private: |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
// Back transformation to get eigenvectors of original matrix
|
|
|
|
|
|
|
|
|
|
for (int j = nn - 1; j >= low; j--) { |
|
|
|
|
for (int i = low; i <= high; i++) { |
|
|
|
|
z = 0.0; |
|
|
|
|
double z = 0.0; |
|
|
|
|
for (int k = low; k <= std::min(j, high); k++) { |
|
|
|
|
z = z + V[i][k] * H[k][j]; |
|
|
|
|
z += V[i][k] * H[k][j]; |
|
|
|
|
} |
|
|
|
|
V[i][j] = z; |
|
|
|
|
} |
|
|
|
@ -852,15 +860,15 @@ private: |
|
|
|
|
// Releases all internal working memory.
|
|
|
|
|
void release() { |
|
|
|
|
// releases the working data
|
|
|
|
|
delete[] d; |
|
|
|
|
delete[] e; |
|
|
|
|
delete[] ort; |
|
|
|
|
delete[] d; d = NULL; |
|
|
|
|
delete[] e; e = NULL; |
|
|
|
|
delete[] ort; ort = NULL; |
|
|
|
|
for (int i = 0; i < n; i++) { |
|
|
|
|
delete[] H[i]; |
|
|
|
|
delete[] V[i]; |
|
|
|
|
if (H) delete[] H[i]; |
|
|
|
|
if (V) delete[] V[i]; |
|
|
|
|
} |
|
|
|
|
delete[] H; |
|
|
|
|
delete[] V; |
|
|
|
|
delete[] H; H = NULL; |
|
|
|
|
delete[] V; V = NULL; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Computes the Eigenvalue Decomposition for a matrix given in H.
|
|
|
|
@ -870,7 +878,7 @@ private: |
|
|
|
|
d = alloc_1d<double> (n); |
|
|
|
|
e = alloc_1d<double> (n); |
|
|
|
|
ort = alloc_1d<double> (n); |
|
|
|
|
try { |
|
|
|
|
{ |
|
|
|
|
// Reduce to Hessenberg form.
|
|
|
|
|
orthes(); |
|
|
|
|
// Reduce Hessenberg to real Schur form.
|
|
|
|
@ -888,11 +896,6 @@ private: |
|
|
|
|
// Deallocate the memory by releasing all internal working data.
|
|
|
|
|
release(); |
|
|
|
|
} |
|
|
|
|
catch (...) |
|
|
|
|
{ |
|
|
|
|
release(); |
|
|
|
|
throw; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
public: |
|
|
|
@ -900,7 +903,11 @@ public: |
|
|
|
|
// given in src. This function is a port of the EigenvalueSolver in JAMA,
|
|
|
|
|
// which has been released to public domain by The MathWorks and the
|
|
|
|
|
// National Institute of Standards and Technology (NIST).
|
|
|
|
|
EigenvalueDecomposition(InputArray src, bool fallbackSymmetric = true) { |
|
|
|
|
EigenvalueDecomposition(InputArray src, bool fallbackSymmetric = true) : |
|
|
|
|
n(0), |
|
|
|
|
d(NULL), e(NULL), ort(NULL), |
|
|
|
|
V(NULL), H(NULL) |
|
|
|
|
{ |
|
|
|
|
compute(src, fallbackSymmetric); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -938,7 +945,7 @@ public: |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
~EigenvalueDecomposition() {} |
|
|
|
|
~EigenvalueDecomposition() { release(); } |
|
|
|
|
|
|
|
|
|
// Returns the eigenvalues of the Eigenvalue Decomposition.
|
|
|
|
|
Mat eigenvalues() const { return _eigenvalues; } |
|
|
|
|