Added rest Elena's changes

pull/2996/head
Alexander Karsakov 11 years ago
parent 7791264525
commit 52f76a3283
  1. 6
      modules/core/perf/opencl/perf_dxt.cpp
  2. 123
      modules/core/src/dxt.cpp
  3. 686
      modules/core/src/opencl/fft.cl
  4. 32
      modules/core/test/ocl/test_dft.cpp

@ -65,10 +65,10 @@ enum OCL_FFT_TYPE
typedef tuple<OCL_FFT_TYPE, Size, int> DftParams;
typedef TestBaseWithParam<DftParams> DftFixture;
OCL_PERF_TEST_P(DftFixture, Dft, ::testing::Combine(Values(C2C/*, R2R, C2R, R2C*/),
OCL_PERF_TEST_P(DftFixture, Dft, ::testing::Combine(Values(C2C, R2R, C2R, R2C),
Values(OCL_SIZE_1, OCL_SIZE_2, OCL_SIZE_3, Size(1024, 1024), Size(512, 512), Size(2048, 2048)),
Values((int) 0, (int)DFT_ROWS, (int)DFT_SCALE, (int)DFT_INVERSE,
/*(int)DFT_INVERSE | DFT_SCALE,*/ (int)DFT_ROWS | DFT_INVERSE)))
Values((int) 0, (int)DFT_ROWS, (int)DFT_SCALE/*, (int)DFT_INVERSE,
(int)DFT_INVERSE | DFT_SCALE, (int)DFT_ROWS | DFT_INVERSE*/)))
{
const DftParams params = GetParam();
const int dft_type = get<0>(params);

@ -1791,14 +1791,6 @@ namespace cv {
CV_Assert(s == CLFFT_SUCCESS); \
}
enum FftType
{
R2R = 0, // real to real
C2R = 1, // opencl HERMITIAN_INTERLEAVED to real
R2C = 2, // real to opencl HERMITIAN_INTERLEAVED
C2C = 3 // complex to complex
};
class PlanCache
{
struct FftPlan
@ -2034,6 +2026,14 @@ namespace cv
#ifdef HAVE_OPENCL
enum FftType
{
R2R = 0,
C2R = 1,
R2C = 2,
C2C = 3
};
static std::vector<int> ocl_getRadixes(int cols, std::vector<int>& radixes, std::vector<int>& blocks, int& min_radix)
{
int factors[34];
@ -2054,13 +2054,19 @@ static std::vector<int> ocl_getRadixes(int cols, std::vector<int>& radixes, std:
else if (4*n <= factors[0])
{
radix = 4;
if (cols % 8 == 0)
if (cols % 12 == 0)
block = 3;
else if (cols % 8 == 0)
block = 2;
}
else
{
if (cols % 8 == 0)
if (cols % 10 == 0)
block = 5;
else if (cols % 8 == 0)
block = 4;
else if (cols % 6 == 0)
block = 3;
else if (cols % 4 == 0)
block = 2;
}
@ -2081,6 +2087,8 @@ static std::vector<int> ocl_getRadixes(int cols, std::vector<int>& radixes, std:
{
if (cols % 12 == 0)
block = 4;
else if (cols % 9 == 0)
block = 3;
else if (cols % 6 == 0)
block = 2;
}
@ -2143,7 +2151,6 @@ struct OCL_FftPlan
int radix = radixes[i];
n *= radix;
for (int j=1; j<radix; j++)
{
double theta = -CV_TWO_PI*j/n;
@ -2160,7 +2167,7 @@ struct OCL_FftPlan
dft_size, dft_size/thread_count, radix_processing.c_str());
}
bool enqueueTransform(InputArray _src, OutputArray _dst, int dft_size, int flags, bool rows = true) const
bool enqueueTransform(InputArray _src, OutputArray _dst, int dft_size, int flags, int fftType, bool rows = true) const
{
if (!status)
return false;
@ -2195,13 +2202,26 @@ struct OCL_FftPlan
if (src.channels() == 1)
options += " -D REAL_INPUT";
else
options += " -D COMPLEX_INPUT";
if (dst.channels() == 1)
options += " -D CCS_OUTPUT";
if ((is1d && src.channels() == 1) || (rows && (flags & DFT_REAL_OUTPUT)))
options += " -D NO_CONJUGATE";
options += " -D REAL_OUTPUT";
if (is1d)
options += " -D IS_1D";
if (!inv)
{
if ((is1d && src.channels() == 1) || (rows && (fftType == R2R)))
options += " -D NO_CONJUGATE";
}
else
{
if (is1d && fftType == C2R || (rows && fftType == R2R))
options += " -D NO_CONJUGATE";
if (dst.cols % 2 == 0)
options += " -D EVEN";
}
ocl::Kernel k(kernel_name.c_str(), ocl::core::fft_oclsrc, options);
if (k.empty())
return false;
@ -2253,16 +2273,16 @@ protected:
std::vector<OCL_FftPlan*> planStorage;
};
static bool ocl_dft_C2C_rows(InputArray _src, OutputArray _dst, int nonzero_rows, int flags)
static bool ocl_dft_C2C_rows(InputArray _src, OutputArray _dst, int nonzero_rows, int flags, int fftType)
{
const OCL_FftPlan* plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.cols(), flags);
return plan->enqueueTransform(_src, _dst, nonzero_rows, flags, true);
return plan->enqueueTransform(_src, _dst, nonzero_rows, flags, fftType, true);
}
static bool ocl_dft_C2C_cols(InputArray _src, OutputArray _dst, int nonzero_cols, int flags)
static bool ocl_dft_C2C_cols(InputArray _src, OutputArray _dst, int nonzero_cols, int flags, int fftType)
{
const OCL_FftPlan* plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.rows(), flags);
return plan->enqueueTransform(_src, _dst, nonzero_cols, flags, false);
return plan->enqueueTransform(_src, _dst, nonzero_cols, flags, fftType, false);
}
static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_rows)
@ -2298,29 +2318,26 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro
complex_output = 1;
}
FftType fftType = (FftType)(complex_input << 0 | complex_output << 1);
// Forward Complex to CCS not supported
if (complex_input && real_output && !inv)
{
flags ^= DFT_REAL_OUTPUT;
flags |= DFT_COMPLEX_OUTPUT;
real_output = 0;
complex_output = 1;
}
if (fftType == C2R && !inv)
fftType = C2C;
// Inverse CCS to Complex not supported
if (real_input && complex_output && inv)
{
complex_output = 0;
real_output = 1;
}
if (fftType == R2C && inv)
fftType = R2R;
UMat output;
if (complex_output)
if (fftType == C2C || fftType == R2C)
{
// complex output
_dst.create(src.size(), CV_32FC2);
output = _dst.getUMat();
}
else
{
// real output
if (is1d)
{
_dst.create(src.size(), CV_32FC1);
@ -2333,17 +2350,49 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro
}
}
if (!ocl_dft_C2C_rows(src, output, nonzero_rows, flags))
if (!inv)
{
if (!ocl_dft_C2C_rows(src, output, nonzero_rows, flags, fftType))
return false;
if (!is1d)
{
int nonzero_cols = real_input && real_output ? output.cols/2 + 1 : output.cols;
if (!ocl_dft_C2C_cols(output, _dst, nonzero_cols, flags))
int nonzero_cols = fftType == R2R ? output.cols/2 + 1 : output.cols;
if (!ocl_dft_C2C_cols(output, _dst, nonzero_cols, flags, fftType))
return false;
} else
}
}
else
{
_dst.assign(output);
if (fftType == C2C)
{
// complex output
if (!ocl_dft_C2C_rows(src, output, nonzero_rows, flags, fftType))
return false;
if (!is1d)
{
if (!ocl_dft_C2C_cols(output, output, output.cols, flags, fftType))
return false;
}
}
else
{
if (is1d)
{
if (!ocl_dft_C2C_rows(src, output, nonzero_rows, flags, fftType))
return false;
}
else
{
int nonzero_cols = src.cols/2 + 1;// : src.cols;
if (!ocl_dft_C2C_cols(src, output, nonzero_cols, flags, fftType))
return false;
if (!ocl_dft_C2C_rows(output, _dst, nonzero_rows, flags, fftType))
return false;
}
}
}
return true;
}

@ -16,106 +16,224 @@ float2 twiddle(float2 a) {
}
__attribute__((always_inline))
void fft_radix2(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
void butterfly2(float2 a0, float2 a1, __local float2* smem, __constant const float2* twiddles,
const int x, const int block_size)
{
const int k = x & (block_size - 1);
a1 = mul_float2(twiddles[k], a1);
const int dst_ind = (x << 1) - k;
smem[dst_ind] = a0 + a1;
smem[dst_ind+block_size] = a0 - a1;
}
__attribute__((always_inline))
void butterfly4(float2 a0, float2 a1, float2 a2, float2 a3, __local float2* smem, __constant const float2* twiddles,
const int x, const int block_size)
{
const int k = x & (block_size - 1);
a1 = mul_float2(twiddles[k], a1);
a2 = mul_float2(twiddles[k + block_size], a2);
a3 = mul_float2(twiddles[k + 2*block_size], a3);
const int dst_ind = ((x - k) << 2) + k;
float2 b0 = a0 + a2;
a2 = a0 - a2;
float2 b1 = a1 + a3;
a3 = twiddle(a1 - a3);
smem[dst_ind] = b0 + b1;
smem[dst_ind + block_size] = a2 + a3;
smem[dst_ind + 2*block_size] = b0 - b1;
smem[dst_ind + 3*block_size] = a2 - a3;
}
__attribute__((always_inline))
void butterfly3(float2 a0, float2 a1, float2 a2, __local float2* smem, __constant const float2* twiddles,
const int x, const int block_size)
{
const int k = x & (block_size - 1);
a1 = mul_float2(twiddles[k], a1);
a2 = mul_float2(twiddles[k+block_size], a2);
const int dst_ind = ((x - k) * 3) + k;
float2 b1 = a1 + a2;
a2 = twiddle(sin_120*(a1 - a2));
float2 b0 = a0 - (float2)(0.5f)*b1;
smem[dst_ind] = a0 + b1;
smem[dst_ind + block_size] = b0 + a2;
smem[dst_ind + 2*block_size] = b0 - a2;
}
__attribute__((always_inline))
void butterfly5(float2 a0, float2 a1, float2 a2, float2 a3, float2 a4, __local float2* smem, __constant const float2* twiddles,
const int x, const int block_size)
{
const int k = x & (block_size - 1);
a1 = mul_float2(twiddles[k], a1);
a2 = mul_float2(twiddles[k + block_size], a2);
a3 = mul_float2(twiddles[k+2*block_size], a3);
a4 = mul_float2(twiddles[k+3*block_size], a4);
const int dst_ind = ((x - k) * 5) + k;
__local float2* dst = smem + dst_ind;
float2 b0, b1, b5;
b1 = a1 + a4;
a1 -= a4;
a4 = a3 + a2;
a3 -= a2;
a2 = b1 + a4;
b0 = a0 - (float2)0.25f * a2;
b1 = fft5_2 * (b1 - a4);
a4 = fft5_3 * (float2)(-a1.y - a3.y, a1.x + a3.x);
b5 = (float2)(a4.x - fft5_5 * a1.y, a4.y + fft5_5 * a1.x);
a4.x += fft5_4 * a3.y;
a4.y -= fft5_4 * a3.x;
a1 = b0 + b1;
b0 -= b1;
dst[0] = a0 + a2;
dst[block_size] = a1 + a4;
dst[2 * block_size] = b0 + b5;
dst[3 * block_size] = b0 - b5;
dst[4 * block_size] = a1 - a4;
}
__attribute__((always_inline))
void fft_radix2(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
{
float2 a0, a1;
if (x < t)
{
a0 = smem[x];
a1 = mul_float2(twiddles[k],smem[x+t]);
a1 = smem[x+t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < t)
butterfly2(a0, a1, smem, twiddles, x, block_size);
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix2_B2(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
{
const int dst_ind = (x << 1) - k;
const int x2 = x1 + t/2;
float2 a0, a1, a2, a3;
smem[dst_ind] = a0 + a1;
smem[dst_ind+block_size] = a0 - a1;
if (x1 < t/2)
{
a0 = smem[x1]; a1 = smem[x1+t];
a2 = smem[x2]; a3 = smem[x2+t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x1 < t/2)
{
butterfly2(a0, a1, smem, twiddles, x1, block_size);
butterfly2(a2, a3, smem, twiddles, x2, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix2_B2(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
void fft_radix2_B3(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
{
const int k1 = x & (block_size - 1);
const int x2 = x + t/2;
const int k2 = x2 & (block_size - 1);
float2 a0, a1, a2, a3;
const int x2 = x1 + t/3;
const int x3 = x1 + 2*t/3;
float2 a0, a1, a2, a3, a4, a5;
if (x < t/2)
if (x1 < t/3)
{
a0 = smem[x];
a1 = mul_float2(twiddles[k1],smem[x+t]);
a2 = smem[x2];
a3 = mul_float2(twiddles[k2],smem[x2+t]);
a0 = smem[x1]; a1 = smem[x1+t];
a2 = smem[x2]; a3 = smem[x2+t];
a4 = smem[x3]; a5 = smem[x3+t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < t/2)
if (x1 < t/3)
{
int dst_ind = (x << 1) - k1;
smem[dst_ind] = a0 + a1;
smem[dst_ind+block_size] = a0 - a1;
dst_ind = (x2 << 1) - k2;
smem[dst_ind] = a2 + a3;
smem[dst_ind+block_size] = a2 - a3;
butterfly2(a0, a1, smem, twiddles, x1, block_size);
butterfly2(a2, a3, smem, twiddles, x2, block_size);
butterfly2(a4, a5, smem, twiddles, x3, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix2_B4(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
void fft_radix2_B4(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
{
const int thread_block = t/4;
const int k1 = x & (block_size - 1);
const int x2 = x + thread_block;
const int k2 = x2 & (block_size - 1);
const int x3 = x + 2*thread_block;
const int k3 = x3 & (block_size - 1);
const int x4 = x + 3*thread_block;
const int k4 = x4 & (block_size - 1);
const int x2 = x1 + thread_block;
const int x3 = x1 + 2*thread_block;
const int x4 = x1 + 3*thread_block;
float2 a0, a1, a2, a3, a4, a5, a6, a7;
if (x < t/4)
if (x1 < t/4)
{
a0 = smem[x];
a1 = mul_float2(twiddles[k1],smem[x+t]);
a2 = smem[x2];
a3 = mul_float2(twiddles[k2],smem[x2+t]);
a4 = smem[x3];
a5 = mul_float2(twiddles[k3],smem[x3+t]);
a6 = smem[x4];
a7 = mul_float2(twiddles[k4],smem[x4+t]);
a0 = smem[x1]; a1 = smem[x1+t];
a2 = smem[x2]; a3 = smem[x2+t];
a4 = smem[x3]; a5 = smem[x3+t];
a6 = smem[x4]; a7 = smem[x4+t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < t/4)
if (x1 < t/4)
{
int dst_ind = (x << 1) - k1;
smem[dst_ind] = a0 + a1;
smem[dst_ind+block_size] = a0 - a1;
butterfly2(a0, a1, smem, twiddles, x1, block_size);
butterfly2(a2, a3, smem, twiddles, x2, block_size);
butterfly2(a4, a5, smem, twiddles, x3, block_size);
butterfly2(a6, a7, smem, twiddles, x4, block_size);
}
dst_ind = (x2 << 1) - k2;
smem[dst_ind] = a2 + a3;
smem[dst_ind+block_size] = a2 - a3;
barrier(CLK_LOCAL_MEM_FENCE);
}
dst_ind = (x3 << 1) - k3;
smem[dst_ind] = a4 + a5;
smem[dst_ind+block_size] = a4 - a5;
__attribute__((always_inline))
void fft_radix2_B5(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
{
const int thread_block = t/5;
const int x2 = x1 + thread_block;
const int x3 = x1 + 2*thread_block;
const int x4 = x1 + 3*thread_block;
const int x5 = x1 + 4*thread_block;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
dst_ind = (x4 << 1) - k4;
smem[dst_ind] = a6 + a7;
smem[dst_ind+block_size] = a6 - a7;
if (x1 < t/5)
{
a0 = smem[x1]; a1 = smem[x1+t];
a2 = smem[x2]; a3 = smem[x2+t];
a4 = smem[x3]; a5 = smem[x3+t];
a6 = smem[x4]; a7 = smem[x4+t];
a8 = smem[x5]; a9 = smem[x5+t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x1 < t/5)
{
butterfly2(a0, a1, smem, twiddles, x1, block_size);
butterfly2(a2, a3, smem, twiddles, x2, block_size);
butterfly2(a4, a5, smem, twiddles, x3, block_size);
butterfly2(a6, a7, smem, twiddles, x4, block_size);
butterfly2(a8, a9, smem, twiddles, x5, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
@ -124,85 +242,65 @@ void fft_radix2_B4(__local float2* smem, __constant const float2* twiddles, cons
__attribute__((always_inline))
void fft_radix4(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
{
const int k = x & (block_size - 1);
float2 a0, a1, a2, a3;
if (x < t)
{
const int twiddle_block = block_size / 4;
a0 = smem[x];
a1 = mul_float2(twiddles[k],smem[x+t]);
a2 = mul_float2(twiddles[k + block_size],smem[x+2*t]);
a3 = mul_float2(twiddles[k + 2*block_size],smem[x+3*t]);
a0 = smem[x]; a1 = smem[x+t]; a2 = smem[x+2*t]; a3 = smem[x+3*t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < t)
{
const int dst_ind = ((x - k) << 2) + k;
float2 b0 = a0 + a2;
a2 = a0 - a2;
float2 b1 = a1 + a3;
a3 = twiddle(a1 - a3);
smem[dst_ind] = b0 + b1;
smem[dst_ind + block_size] = a2 + a3;
smem[dst_ind + 2*block_size] = b0 - b1;
smem[dst_ind + 3*block_size] = a2 - a3;
}
butterfly4(a0, a1, a2, a3, smem, twiddles, x, block_size);
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix4_B2(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
void fft_radix4_B2(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
{
const int k = x & (block_size - 1);
const int x2 = x + t/2;
const int k2 = x2 & (block_size - 1);
const int x2 = x1 + t/2;
float2 a0, a1, a2, a3, a4, a5, a6, a7;
if (x < t/2)
if (x1 < t/2)
{
a0 = smem[x];
a1 = mul_float2(twiddles[k], smem[x+t]);
a2 = mul_float2(twiddles[k + block_size],smem[x+2*t]);
a3 = mul_float2(twiddles[k + 2*block_size],smem[x+3*t]);
a4 = smem[x2];
a5 = mul_float2(twiddles[k2], smem[x2+t]);
a6 = mul_float2(twiddles[k2 + block_size],smem[x2+2*t]);
a7 = mul_float2(twiddles[k2 + 2*block_size],smem[x2+3*t]);
a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t]; a3 = smem[x1+3*t];
a4 = smem[x2]; a5 = smem[x2+t]; a6 = smem[x2+2*t]; a7 = smem[x2+3*t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < t/2)
if (x1 < t/2)
{
int dst_ind = ((x - k) << 2) + k;
butterfly4(a0, a1, a2, a3, smem, twiddles, x1, block_size);
butterfly4(a4, a5, a6, a7, smem, twiddles, x2, block_size);
}
float2 b0 = a0 + a2;
a2 = a0 - a2;
float2 b1 = a1 + a3;
a3 = twiddle(a1 - a3);
barrier(CLK_LOCAL_MEM_FENCE);
}
smem[dst_ind] = b0 + b1;
smem[dst_ind + block_size] = a2 + a3;
smem[dst_ind + 2*block_size] = b0 - b1;
smem[dst_ind + 3*block_size] = a2 - a3;
__attribute__((always_inline))
void fft_radix4_B3(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/3;
const int x3 = x2 + t/3;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11;
dst_ind = ((x2 - k2) << 2) + k2;
b0 = a4 + a6;
a6 = a4 - a6;
b1 = a5 + a7;
a7 = twiddle(a5 - a7);
if (x1 < t/3)
{
a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t]; a3 = smem[x1+3*t];
a4 = smem[x2]; a5 = smem[x2+t]; a6 = smem[x2+2*t]; a7 = smem[x2+3*t];
a8 = smem[x3]; a9 = smem[x3+t]; a10 = smem[x3+2*t]; a11 = smem[x3+3*t];
}
smem[dst_ind] = b0 + b1;
smem[dst_ind + block_size] = a6 + a7;
smem[dst_ind + 2*block_size] = b0 - b1;
smem[dst_ind + 3*block_size] = a6 - a7;
barrier(CLK_LOCAL_MEM_FENCE);
if (x1 < t/3)
{
butterfly4(a0, a1, a2, a3, smem, twiddles, x1, block_size);
butterfly4(a4, a5, a6, a7, smem, twiddles, x2, block_size);
butterfly4(a8, a9, a10, a11, smem, twiddles, x3, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
@ -274,156 +372,95 @@ void fft_radix8(__local float2* smem, __constant const float2* twiddles, const i
__attribute__((always_inline))
void fft_radix3(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
{
const int k = x % block_size;
float2 a0, a1, a2;
if (x < t)
{
a0 = smem[x];
a1 = mul_float2(twiddles[k], smem[x+t]);
a2 = mul_float2(twiddles[k+block_size], smem[x+2*t]);
a0 = smem[x]; a1 = smem[x+t]; a2 = smem[x+2*t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < t)
{
const int dst_ind = ((x - k) * 3) + k;
float2 b1 = a1 + a2;
a2 = twiddle(sin_120*(a1 - a2));
float2 b0 = a0 - (float2)(0.5f)*b1;
smem[dst_ind] = a0 + b1;
smem[dst_ind + block_size] = b0 + a2;
smem[dst_ind + 2*block_size] = b0 - a2;
}
butterfly3(a0, a1, a2, smem, twiddles, x, block_size);
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix3_B2(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
void fft_radix3_B2(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
{
const int k = x % block_size;
const int x2 = x + t/2;
const int k2 = x2 % block_size;
const int x2 = x1 + t/2;
float2 a0, a1, a2, a3, a4, a5;
if (x < t/2)
if (x1 < t/2)
{
a0 = smem[x];
a1 = mul_float2(twiddles[k], smem[x+t]);
a2 = mul_float2(twiddles[k+block_size], smem[x+2*t]);
a3 = smem[x2];
a4 = mul_float2(twiddles[k2], smem[x2+t]);
a5 = mul_float2(twiddles[k2+block_size], smem[x2+2*t]);
a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t];
a3 = smem[x2]; a4 = smem[x2+t]; a5 = smem[x2+2*t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < t/2)
if (x1 < t/2)
{
int dst_ind = ((x - k) * 3) + k;
butterfly3(a0, a1, a2, smem, twiddles, x1, block_size);
butterfly3(a3, a4, a5, smem, twiddles, x2, block_size);
}
float2 b1 = a1 + a2;
a2 = twiddle(sin_120*(a1 - a2));
float2 b0 = a0 - (float2)(0.5f)*b1;
barrier(CLK_LOCAL_MEM_FENCE);
}
smem[dst_ind] = a0 + b1;
smem[dst_ind + block_size] = b0 + a2;
smem[dst_ind + 2*block_size] = b0 - a2;
__attribute__((always_inline))
void fft_radix3_B3(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/3;
const int x3 = x2 + t/3;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8;
dst_ind = ((x2 - k2) * 3) + k2;
if (x1 < t/2)
{
a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t];
a3 = smem[x2]; a4 = smem[x2+t]; a5 = smem[x2+2*t];
a6 = smem[x3]; a7 = smem[x3+t]; a8 = smem[x3+2*t];
}
b1 = a4 + a5;
a5 = twiddle(sin_120*(a4 - a5));
b0 = a3 - (float2)(0.5f)*b1;
barrier(CLK_LOCAL_MEM_FENCE);
smem[dst_ind] = a3 + b1;
smem[dst_ind + block_size] = b0 + a5;
smem[dst_ind + 2*block_size] = b0 - a5;
if (x1 < t/2)
{
butterfly3(a0, a1, a2, smem, twiddles, x1, block_size);
butterfly3(a3, a4, a5, smem, twiddles, x2, block_size);
butterfly3(a6, a7, a8, smem, twiddles, x3, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix3_B4(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
void fft_radix3_B4(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
{
const int thread_block = t/4;
const int k = x % block_size;
const int x2 = x + thread_block;
const int k2 = x2 % block_size;
const int x3 = x + 2*thread_block;
const int k3 = x3 % block_size;
const int x4 = x + 3*thread_block;
const int k4 = x4 % block_size;
const int x2 = x1 + thread_block;
const int x3 = x1 + 2*thread_block;
const int x4 = x1 + 3*thread_block;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11;
if (x < t/4)
if (x1 < t/4)
{
a0 = smem[x];
a1 = mul_float2(twiddles[k], smem[x+t]);
a2 = mul_float2(twiddles[k+block_size], smem[x+2*t]);
a3 = smem[x2];
a4 = mul_float2(twiddles[k2], smem[x2+t]);
a5 = mul_float2(twiddles[k2+block_size], smem[x2+2*t]);
a6 = smem[x3];
a7 = mul_float2(twiddles[k3], smem[x3+t]);
a8 = mul_float2(twiddles[k3+block_size], smem[x3+2*t]);
a9 = smem[x4];
a10 = mul_float2(twiddles[k4], smem[x4+t]);
a11 = mul_float2(twiddles[k4+block_size], smem[x4+2*t]);
a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t];
a3 = smem[x2]; a4 = smem[x2+t]; a5 = smem[x2+2*t];
a6 = smem[x3]; a7 = smem[x3+t]; a8 = smem[x3+2*t];
a9 = smem[x4]; a10 = smem[x4+t]; a11 = smem[x4+2*t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < t/4)
if (x1 < t/4)
{
int dst_ind = ((x - k) * 3) + k;
float2 b1 = a1 + a2;
a2 = twiddle(sin_120*(a1 - a2));
float2 b0 = a0 - (float2)(0.5f)*b1;
smem[dst_ind] = a0 + b1;
smem[dst_ind + block_size] = b0 + a2;
smem[dst_ind + 2*block_size] = b0 - a2;
dst_ind = ((x2 - k2) * 3) + k2;
b1 = a4 + a5;
a5 = twiddle(sin_120*(a4 - a5));
b0 = a3 - (float2)(0.5f)*b1;
smem[dst_ind] = a3 + b1;
smem[dst_ind + block_size] = b0 + a5;
smem[dst_ind + 2*block_size] = b0 - a5;
dst_ind = ((x3 - k3) * 3) + k3;
b1 = a7 + a8;
a8 = twiddle(sin_120*(a7 - a8));
b0 = a6 - (float2)(0.5f)*b1;
smem[dst_ind] = a6 + b1;
smem[dst_ind + block_size] = b0 + a8;
smem[dst_ind + 2*block_size] = b0 - a8;
dst_ind = ((x4 - k4) * 3) + k4;
b1 = a10 + a11;
a11 = twiddle(sin_120*(a10 - a11));
b0 = a9 - (float2)(0.5f)*b1;
smem[dst_ind] = a9 + b1;
smem[dst_ind + block_size] = b0 + a11;
smem[dst_ind + 2*block_size] = b0 - a11;
butterfly3(a0, a1, a2, smem, twiddles, x1, block_size);
butterfly3(a3, a4, a5, smem, twiddles, x2, block_size);
butterfly3(a6, a7, a8, smem, twiddles, x3, block_size);
butterfly3(a9, a10, a11, smem, twiddles, x4, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
@ -437,135 +474,35 @@ void fft_radix5(__local float2* smem, __constant const float2* twiddles, const i
if (x < t)
{
a0 = smem[x];
a1 = mul_float2(twiddles[k], smem[x + t]);
a2 = mul_float2(twiddles[k + block_size],smem[x+2*t]);
a3 = mul_float2(twiddles[k+2*block_size],smem[x+3*t]);
a4 = mul_float2(twiddles[k+3*block_size],smem[x+4*t]);
a0 = smem[x]; a1 = smem[x + t]; a2 = smem[x+2*t]; a3 = smem[x+3*t]; a4 = smem[x+4*t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < t)
{
const int dst_ind = ((x - k) * 5) + k;
__local float2* dst = smem + dst_ind;
float2 b0, b1, b5;
b1 = a1 + a4;
a1 -= a4;
a4 = a3 + a2;
a3 -= a2;
a2 = b1 + a4;
b0 = a0 - (float2)0.25f * a2;
b1 = fft5_2 * (b1 - a4);
a4 = fft5_3 * (float2)(-a1.y - a3.y, a1.x + a3.x);
b5 = (float2)(a4.x - fft5_5 * a1.y, a4.y + fft5_5 * a1.x);
a4.x += fft5_4 * a3.y;
a4.y -= fft5_4 * a3.x;
a1 = b0 + b1;
b0 -= b1;
dst[0] = a0 + a2;
dst[block_size] = a1 + a4;
dst[2 * block_size] = b0 + b5;
dst[3 * block_size] = b0 - b5;
dst[4 * block_size] = a1 - a4;
}
butterfly5(a0, a1, a2, a3, a4, smem, twiddles, x, block_size);
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix5_B2(__local float2* smem, __constant const float2* twiddles, const int x, const int block_size, const int t)
void fft_radix5_B2(__local float2* smem, __constant const float2* twiddles, const int x1, const int block_size, const int t)
{
const int k = x % block_size;
const int x2 = x+t/2;
const int k2 = x2 % block_size;
const int x2 = x1+t/2;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
if (x < t/2)
if (x1 < t/2)
{
a0 = smem[x];
a1 = mul_float2(twiddles[k], smem[x + t]);
a2 = mul_float2(twiddles[k + block_size],smem[x+2*t]);
a3 = mul_float2(twiddles[k+2*block_size],smem[x+3*t]);
a4 = mul_float2(twiddles[k+3*block_size],smem[x+4*t]);
a5 = smem[x2];
a6 = mul_float2(twiddles[k2], smem[x2 + t]);
a7 = mul_float2(twiddles[k2 + block_size],smem[x2+2*t]);
a8 = mul_float2(twiddles[k2+2*block_size],smem[x2+3*t]);
a9 = mul_float2(twiddles[k2+3*block_size],smem[x2+4*t]);
a0 = smem[x1]; a1 = smem[x1 + t]; a2 = smem[x1+2*t]; a3 = smem[x1+3*t]; a4 = smem[x1+4*t];
a5 = smem[x2]; a6 = smem[x2 + t]; a7 = smem[x2+2*t]; a8 = smem[x2+3*t]; a9 = smem[x2+4*t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < t/2)
if (x1 < t/2)
{
int dst_ind = ((x - k) * 5) + k;
__local float2* dst = smem + dst_ind;
float2 b0, b1, b5;
b1 = a1 + a4;
a1 -= a4;
a4 = a3 + a2;
a3 -= a2;
a2 = b1 + a4;
b0 = a0 - (float2)0.25f * a2;
b1 = fft5_2 * (b1 - a4);
a4 = fft5_3 * (float2)(-a1.y - a3.y, a1.x + a3.x);
b5 = (float2)(a4.x - fft5_5 * a1.y, a4.y + fft5_5 * a1.x);
a4.x += fft5_4 * a3.y;
a4.y -= fft5_4 * a3.x;
a1 = b0 + b1;
b0 -= b1;
dst[0] = a0 + a2;
dst[block_size] = a1 + a4;
dst[2 * block_size] = b0 + b5;
dst[3 * block_size] = b0 - b5;
dst[4 * block_size] = a1 - a4;
dst_ind = ((x2 - k2) * 5) + k2;
dst = smem + dst_ind;
b1 = a6 + a9;
a6 -= a9;
a9 = a8 + a7;
a8 -= a7;
a7 = b1 + a9;
b0 = a5 - (float2)0.25f * a7;
b1 = fft5_2 * (b1 - a9);
a9 = fft5_3 * (float2)(-a6.y - a8.y, a6.x + a8.x);
b5 = (float2)(a9.x - fft5_5 * a6.y, a9.y + fft5_5 * a6.x);
a9.x += fft5_4 * a8.y;
a9.y -= fft5_4 * a8.x;
a6 = b0 + b1;
b0 -= b1;
dst[0] = a5 + a7;
dst[block_size] = a6 + a9;
dst[2 * block_size] = b0 + b5;
dst[3 * block_size] = b0 - b5;
dst[4 * block_size] = a6 - a9;
butterfly5(a0, a1, a2, a3, a4, smem, twiddles, x1, block_size);
butterfly5(a5, a6, a7, a8, a9, smem, twiddles, x2, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
@ -611,7 +548,7 @@ __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
RADIX_PROCESS;
#ifndef CCS_OUTPUT
#ifndef REAL_OUTPUT
#ifdef NO_CONJUGATE
// copy result without complex conjugate
const int cols = dst_cols/2 + 1;
@ -659,7 +596,7 @@ __kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
RADIX_PROCESS;
#ifndef CCS_OUTPUT
#ifndef REAL_OUTPUT
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset));
#pragma unroll
for (int i=0; i<kercn; i++)
@ -696,8 +633,8 @@ __kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
}
}
__kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset,
__global uchar* dst_ptr, int dst_step, int dst_offset,
__constant float2 * twiddles_ptr, const int t, const int nz)
{
const int x = get_global_id(0);
@ -709,13 +646,8 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
__constant const float2* twiddles = (__constant float2*) twiddles_ptr;
const int ind = x;
const int block_size = LOCAL_SIZE/kercn;
#ifdef IS_1D
float scale = 1.f/dst_cols;
#else
float scale = 1.f/(dst_cols*dst_rows);
#endif
#ifndef REAL_INPUT
#ifndef REAL
__global const float2* src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
@ -724,7 +656,13 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
smem[x+i*block_size].y = -src[i*block_size].y;
}
#else
__global const float2* src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(1, (int)sizeof(float), src_offset)));
__global const float2* src;
#ifdef COMPLEX_INPUT
src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(2, (int)sizeof(float), src_offset)));
#else
src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(1, (int)sizeof(float), src_offset)));
#endif
#pragma unroll
for (int i=x; i<(LOCAL_SIZE-1)/2; i+=block_size)
{
@ -750,13 +688,13 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
RADIX_PROCESS;
// copy data to dst
#ifndef REAL_INPUT
#ifndef REAL
__global float2* dst = (__global float*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
{
dst[i*block_size].x = VAL(smem[x + i*block_size].x, scale);
dst[i*block_size].y = VAL(-smem[x + i*block_size].y, scale);
dst[i*block_size].x = smem[x + i*block_size].x;
dst[i*block_size].y = -smem[x + i*block_size].y;
}
#else
__global float* dst = (__global float*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)), dst_offset)));
@ -769,13 +707,14 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
}
}
__kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset,
__global uchar* dst_ptr, int dst_step, int dst_offset,
__constant float2 * twiddles_ptr, const int t, const int nz)
{
const int x = get_group_id(0);
const int y = get_global_id(1);
#ifndef REAL
if (x < nz)
{
__local float2 smem[LOCAL_SIZE];
@ -784,7 +723,6 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
__constant const float2* twiddles = (__constant float2*) twiddles_ptr;
const int ind = y;
const int block_size = LOCAL_SIZE/kercn;
float scale = 1.f/(dst_rows*dst_cols);
#pragma unroll
for (int i=0; i<kercn; i++)
@ -802,9 +740,75 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
#pragma unroll
for (int i=0; i<kercn; i++)
{
__global float2* rez = (__global float2*)(dst + i*block_size*src_step);
rez[0].x = VAL(smem[y + i*block_size].x, scale);
rez[0].y = VAL(-smem[y + i*block_size].y, scale);
__global float2* rez = (__global float2*)(dst + i*block_size*dst_step);
rez[0].x = smem[y + i*block_size].x;
rez[0].y = -smem[y + i*block_size].y;
}
}
#else
if (x < nz)
{
__constant const float2* twiddles = (__constant float2*) twiddles_ptr;
const int ind = y;
const int block_size = LOCAL_SIZE/kercn;
__local float2 smem[LOCAL_SIZE];
#ifdef EVEN
if (x!=0 && (x!=(nz-1)))
#else
if (x!=0)
#endif
{
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(2*x-1, (int)sizeof(float), src_offset));
#pragma unroll
for (int i=0; i<kercn; i++)
{
float2 temp = *((__global const float2*)(src + i*block_size*src_step));
smem[y+i*block_size].x = temp.x;
smem[y+i*block_size].y = -temp.y;
}
}
else
{
int ind = x==0 ? 0: 2*x-1;
__global const float* src = (__global const float*)(src_ptr + mad24(1, src_step, mad24(ind, (int)sizeof(float), src_offset)));
int step = src_step/(int)sizeof(float);
#pragma unroll
for (int i=y; i<(LOCAL_SIZE-1)/2; i+=block_size)
{
smem[i+1].x = src[2*i*step];
smem[i+1].y = -src[(2*i+1)*step];
smem[LOCAL_SIZE-i-1].x = src[2*i*step];;
smem[LOCAL_SIZE-i-1].y = src[(2*i+1)*step];
}
if (y==0)
{
smem[0].x = *(__global const float*)(src_ptr + mad24(ind, (int)sizeof(float), src_offset));
smem[0].y = 0.f;
if(LOCAL_SIZE % 2 ==0)
{
smem[LOCAL_SIZE/2].x = src[(LOCAL_SIZE-2)*step];
smem[LOCAL_SIZE/2].y = 0.f;
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
RADIX_PROCESS;
// copy data to dst
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)), dst_offset));
#pragma unroll
for (int i=0; i<kercn; i++)
{
__global float2* rez = (__global float2*)(dst + i*block_size*dst_step);
rez[0].x = smem[y + i*block_size].x;
rez[0].y = -smem[y + i*block_size].y;
}
}
#endif
}

@ -50,10 +50,10 @@
enum OCL_FFT_TYPE
{
R2R = 0, // real to real (CCS)
C2R = 1, // complex to real (CCS)
R2C = 2, // real (CCS) to complex
C2C = 3 // complex to complex
R2R = 0,
C2R = 1,
R2C = 2,
C2C = 3
};
namespace cvtest {
@ -62,7 +62,7 @@ namespace ocl {
////////////////////////////////////////////////////////////////////////////
// Dft
PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool, bool)
PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool, bool, bool)
{
cv::Size dft_size;
int dft_flags, depth, cn, dft_type;
@ -88,12 +88,12 @@ PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool, bool)
}
if (GET_PARAM(2))
dft_flags |= cv::DFT_ROWS;
dft_flags |= cv::DFT_INVERSE;
if (GET_PARAM(3))
dft_flags |= cv::DFT_ROWS;
if (GET_PARAM(4))
dft_flags |= cv::DFT_SCALE;
/*if (GET_PARAM(4))
dft_flags |= cv::DFT_INVERSE;*/
inplace = GET_PARAM(4);
inplace = GET_PARAM(5);
is1d = (dft_flags & DFT_ROWS) != 0 || dft_size.height == 1;
@ -116,16 +116,16 @@ OCL_TEST_P(Dft, Mat)
OCL_OFF(cv::dft(src, dst, dft_flags));
OCL_ON(cv::dft(usrc, udst, dft_flags));
if (dft_type == R2C && is1d)
if (dft_type == R2C && is1d && (dft_flags & cv::DFT_INVERSE) == 0)
{
dst = dst(cv::Range(0, dst.rows), cv::Range(0, dst.cols/2 + 1));
udst = udst(cv::Range(0, udst.rows), cv::Range(0, udst.cols/2 + 1));
}
//Mat gpu = udst.getMat(ACCESS_READ);
//std::cout << src << std::endl;
//std::cout << dst << std::endl;
//std::cout << gpu << std::endl;
Mat gpu = udst.getMat(ACCESS_READ);
std::cout << src << std::endl;
std::cout << dst << std::endl;
std::cout << gpu << std::endl;
//int cn = udst.channels();
//
@ -188,12 +188,12 @@ OCL_TEST_P(MulSpectrums, Mat)
OCL_INSTANTIATE_TEST_CASE_P(OCL_ImgProc, MulSpectrums, testing::Combine(Bool(), Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Core, Dft, Combine(Values(cv::Size(16, 4), cv::Size(5, 8), cv::Size(6, 6),
OCL_INSTANTIATE_TEST_CASE_P(Core, Dft, Combine(Values(cv::Size(4, 1), cv::Size(5, 8), cv::Size(6, 6),
cv::Size(512, 1), cv::Size(1280, 768)),
Values((OCL_FFT_TYPE) R2C, (OCL_FFT_TYPE) C2C, (OCL_FFT_TYPE) R2R, (OCL_FFT_TYPE) C2R),
Bool(), // DFT_INVERSE
Bool(), // DFT_ROWS
Bool(), // DFT_SCALE
//Bool(), // DFT_INVERSE
Bool() // inplace
)
);

Loading…
Cancel
Save