Merge pull request #24569 from Abdurrahheem:ash/padding_value_fix

Add support for custom padding in DNN preprocessing #24569

This PR add functionality for specifying value in padding.
It is required in many preprocessing pipelines in DNNs such as Yolox object detection model

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
pull/24599/head
Abduragim Shtanchaev 1 year ago committed by GitHub
parent e9f35610a5
commit 5278560252
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 3
      modules/dnn/include/opencv2/dnn/dnn.hpp
  2. 6
      modules/dnn/src/dnn_utils.cpp
  3. 33
      modules/dnn/test/test_misc.cpp

@ -1212,7 +1212,7 @@ CV__DNN_INLINE_NS_BEGIN
CV_WRAP Image2BlobParams();
CV_WRAP Image2BlobParams(const Scalar& scalefactor, const Size& size = Size(), const Scalar& mean = Scalar(),
bool swapRB = false, int ddepth = CV_32F, DataLayout datalayout = DNN_LAYOUT_NCHW,
ImagePaddingMode mode = DNN_PMODE_NULL);
ImagePaddingMode mode = DNN_PMODE_NULL, Scalar borderValue = 0.0);
CV_PROP_RW Scalar scalefactor; //!< scalefactor multiplier for input image values.
CV_PROP_RW Size size; //!< Spatial size for output image.
@ -1221,6 +1221,7 @@ CV__DNN_INLINE_NS_BEGIN
CV_PROP_RW int ddepth; //!< Depth of output blob. Choose CV_32F or CV_8U.
CV_PROP_RW DataLayout datalayout; //!< Order of output dimensions. Choose DNN_LAYOUT_NCHW or DNN_LAYOUT_NHWC.
CV_PROP_RW ImagePaddingMode paddingmode; //!< Image padding mode. @see ImagePaddingMode.
CV_PROP_RW Scalar borderValue; //!< Value used in padding mode for padding.
};
/** @brief Creates 4-dimensional blob from image with given params.

@ -17,9 +17,9 @@ Image2BlobParams::Image2BlobParams():scalefactor(Scalar::all(1.0)), size(Size())
{}
Image2BlobParams::Image2BlobParams(const Scalar& scalefactor_, const Size& size_, const Scalar& mean_, bool swapRB_,
int ddepth_, DataLayout datalayout_, ImagePaddingMode mode_):
int ddepth_, DataLayout datalayout_, ImagePaddingMode mode_, Scalar borderValue_):
scalefactor(scalefactor_), size(size_), mean(mean_), swapRB(swapRB_), ddepth(ddepth_),
datalayout(datalayout_), paddingmode(mode_)
datalayout(datalayout_), paddingmode(mode_), borderValue(borderValue_)
{}
void getVector(InputArrayOfArrays images_, std::vector<Mat>& images) {
@ -196,7 +196,7 @@ void blobFromImagesWithParamsImpl(InputArrayOfArrays images_, Tmat& blob_, const
int bottom = size.height - top - rh;
int left = (size.width - rw)/2;
int right = size.width - left - rw;
copyMakeBorder(images[i], images[i], top, bottom, left, right, BORDER_CONSTANT);
copyMakeBorder(images[i], images[i], top, bottom, left, right, BORDER_CONSTANT, param.borderValue);
}
else
{

@ -93,6 +93,39 @@ TEST(blobFromImageWithParams_4ch, NHWC_scalar_scale)
}
}
TEST(blobFromImageWithParams_CustomPadding, letter_box)
{
Mat img(40, 20, CV_8UC4, Scalar(0, 1, 2, 3));
// Custom padding value that you have added
Scalar customPaddingValue(5, 6, 7, 8); // Example padding value
Size targetSize(20, 20);
Mat targetImg = img.clone();
cv::copyMakeBorder(
targetImg, targetImg, 0, 0,
targetSize.width / 2,
targetSize.width / 2,
BORDER_CONSTANT,
customPaddingValue);
// Set up Image2BlobParams with your new functionality
Image2BlobParams param;
param.size = targetSize;
param.paddingmode = DNN_PMODE_LETTERBOX;
param.borderValue = customPaddingValue; // Use your new feature here
// Create blob with custom padding
Mat blob = dnn::blobFromImageWithParams(img, param);
// Create target blob for comparison
Mat targetBlob = dnn::blobFromImage(targetImg, 1.0, targetSize);
EXPECT_EQ(0, cvtest::norm(targetBlob, blob, NORM_INF));
}
TEST(blobFromImageWithParams_4ch, letter_box)
{
Mat img(40, 20, CV_8UC4, cv::Scalar(0,1,2,3));

Loading…
Cancel
Save