|
|
|
@ -12,32 +12,60 @@ |
|
|
|
|
|
|
|
|
|
namespace opencv_test { namespace { |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_HALIDE |
|
|
|
|
using namespace cv; |
|
|
|
|
using namespace cv::dnn; |
|
|
|
|
using namespace testing; |
|
|
|
|
|
|
|
|
|
static void test(LayerParams& params, Mat& input) |
|
|
|
|
static void test(Mat& input, Net& net, int backendId, int targetId) |
|
|
|
|
{ |
|
|
|
|
DNNTestLayer::checkBackend(backendId, targetId); |
|
|
|
|
randu(input, -1.0f, 1.0f); |
|
|
|
|
|
|
|
|
|
Net net; |
|
|
|
|
int lid = net.addLayer(params.name, params.type, params); |
|
|
|
|
net.connect(0, 0, lid, 0); |
|
|
|
|
|
|
|
|
|
net.setInput(input); |
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
|
Mat outputDefault = net.forward(params.name).clone(); |
|
|
|
|
Mat outputDefault = net.forward().clone(); |
|
|
|
|
|
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_HALIDE); |
|
|
|
|
Mat outputHalide = net.forward(params.name).clone(); |
|
|
|
|
normAssert(outputDefault, outputHalide); |
|
|
|
|
net.setPreferableBackend(backendId); |
|
|
|
|
net.setPreferableTarget(targetId); |
|
|
|
|
Mat outputHalide = net.forward().clone(); |
|
|
|
|
|
|
|
|
|
double l1, lInf; |
|
|
|
|
DNNTestLayer::getDefaultThresholds(backendId, targetId, &l1, &lInf); |
|
|
|
|
normAssert(outputDefault, outputHalide, "", l1, lInf); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static void test(LayerParams& params, Mat& input, int backendId, int targetId) |
|
|
|
|
{ |
|
|
|
|
Net net; |
|
|
|
|
net.addLayerToPrev(params.name, params.type, params); |
|
|
|
|
test(input, net, backendId, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static testing::internal::ParamGenerator<tuple<DNNBackend, DNNTarget> > dnnBackendsAndTargetsWithHalide() |
|
|
|
|
{ |
|
|
|
|
static const tuple<DNNBackend, DNNTarget> testCases[] = { |
|
|
|
|
#ifdef HAVE_HALIDE |
|
|
|
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_CPU), |
|
|
|
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_OPENCL), |
|
|
|
|
#endif |
|
|
|
|
#ifdef HAVE_INF_ENGINE |
|
|
|
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_CPU), |
|
|
|
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL), |
|
|
|
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL_FP16), |
|
|
|
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_MYRIAD), |
|
|
|
|
#endif |
|
|
|
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL), |
|
|
|
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL_FP16) |
|
|
|
|
}; |
|
|
|
|
return testing::ValuesIn(testCases); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
class Test_Halide_layers : public DNNTestLayer {}; |
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Padding
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
TEST(Padding_Halide, Accuracy) |
|
|
|
|
TEST_P(Test_Halide_layers, Padding) |
|
|
|
|
{ |
|
|
|
|
static const int kNumRuns = 10; |
|
|
|
|
std::vector<int> paddings(8); |
|
|
|
@ -52,15 +80,16 @@ TEST(Padding_Halide, Accuracy) |
|
|
|
|
lp.type = "Padding"; |
|
|
|
|
lp.name = "testLayer"; |
|
|
|
|
|
|
|
|
|
Mat input({1 + rng(10), 1 + rng(10), 1 + rng(10), 1 + rng(10)}, CV_32F); |
|
|
|
|
test(lp, input); |
|
|
|
|
int sz[] = {1 + (int)rng(10), 1 + (int)rng(10), 1 + (int)rng(10), 1 + (int)rng(10)}; |
|
|
|
|
Mat input(4, &sz[0], CV_32F); |
|
|
|
|
test(lp, input, backend, target); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Convolution
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Size, bool> > Convolution; |
|
|
|
|
typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Size, bool, tuple<DNNBackend, DNNTarget> > > Convolution; |
|
|
|
|
TEST_P(Convolution, Accuracy) |
|
|
|
|
{ |
|
|
|
|
int inChannels = get<0>(GetParam())[0]; |
|
|
|
@ -72,8 +101,15 @@ TEST_P(Convolution, Accuracy) |
|
|
|
|
Size pad = get<4>(GetParam()); |
|
|
|
|
Size dilation = get<5>(GetParam()); |
|
|
|
|
bool hasBias = get<6>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<7>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<7>(GetParam())); |
|
|
|
|
|
|
|
|
|
if ((backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_MYRIAD) || |
|
|
|
|
(backendId == DNN_BACKEND_OPENCV && targetId == DNN_TARGET_OPENCL_FP16)) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
|
|
|
|
|
Mat weights({outChannels, inChannels / group, kernel.height, kernel.width}, CV_32F); |
|
|
|
|
int sz[] = {outChannels, inChannels / group, kernel.height, kernel.width}; |
|
|
|
|
Mat weights(4, &sz[0], CV_32F); |
|
|
|
|
randu(weights, -1.0f, 1.0f); |
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
@ -93,12 +129,13 @@ TEST_P(Convolution, Accuracy) |
|
|
|
|
lp.blobs.push_back(weights); |
|
|
|
|
if (hasBias) |
|
|
|
|
{ |
|
|
|
|
Mat bias({outChannels}, CV_32F); |
|
|
|
|
Mat bias(1, outChannels, CV_32F); |
|
|
|
|
randu(bias, -1.0f, 1.0f); |
|
|
|
|
lp.blobs.push_back(bias); |
|
|
|
|
} |
|
|
|
|
Mat input({1, inChannels, inSize.height, inSize.width}, CV_32F); |
|
|
|
|
test(lp, input); |
|
|
|
|
int inpSz[] = {1, inChannels, inSize.height, inSize.width}; |
|
|
|
|
Mat input(4, &inpSz[0], CV_32F); |
|
|
|
|
test(lp, input, backendId, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Convolution, Combine( |
|
|
|
@ -110,13 +147,14 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Convolution, Combine( |
|
|
|
|
/*stride*/ Values(Size(1, 1), Size(2, 2)), |
|
|
|
|
/*pad*/ Values(Size(1, 0), Size(0, 1)), |
|
|
|
|
/*dilation*/ Values(Size(1, 1), Size(2, 2)), |
|
|
|
|
/*has bias*/ Bool() |
|
|
|
|
/*has bias*/ Bool(), |
|
|
|
|
dnnBackendsAndTargetsWithHalide() |
|
|
|
|
)); |
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Deconvolution
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Vec4i, bool> > Deconvolution; |
|
|
|
|
typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Vec4i, bool, tuple<DNNBackend, DNNTarget> > > Deconvolution; |
|
|
|
|
TEST_P(Deconvolution, Accuracy) |
|
|
|
|
{ |
|
|
|
|
int inChannels = get<0>(GetParam())[0]; |
|
|
|
@ -129,8 +167,14 @@ TEST_P(Deconvolution, Accuracy) |
|
|
|
|
Size stride = Size(get<5>(GetParam())[0], get<5>(GetParam())[1]); |
|
|
|
|
Size adjPad = Size(get<5>(GetParam())[2], get<5>(GetParam())[3]); |
|
|
|
|
bool hasBias = get<6>(GetParam()); |
|
|
|
|
|
|
|
|
|
Mat weights({inChannels, outChannels / group, kernel.height, kernel.width}, CV_32F); |
|
|
|
|
int backendId = get<0>(get<7>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<7>(GetParam())); |
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_CPU && |
|
|
|
|
dilation.width == 2 && dilation.height == 2) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
|
|
|
|
|
int sz[] = {inChannels, outChannels / group, kernel.height, kernel.width}; |
|
|
|
|
Mat weights(4, &sz[0], CV_32F); |
|
|
|
|
randu(weights, -1.0f, 1.0f); |
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
@ -152,12 +196,13 @@ TEST_P(Deconvolution, Accuracy) |
|
|
|
|
lp.blobs.push_back(weights); |
|
|
|
|
if (hasBias) |
|
|
|
|
{ |
|
|
|
|
Mat bias({outChannels}, CV_32F); |
|
|
|
|
Mat bias(1, outChannels, CV_32F); |
|
|
|
|
randu(bias, -1.0f, 1.0f); |
|
|
|
|
lp.blobs.push_back(bias); |
|
|
|
|
} |
|
|
|
|
Mat input({1, inChannels, inSize.height, inSize.width}, CV_32F); |
|
|
|
|
test(lp, input); |
|
|
|
|
int inpSz[] = {1, inChannels, inSize.height, inSize.width}; |
|
|
|
|
Mat input(4, &inpSz[0], CV_32F); |
|
|
|
|
test(lp, input, backendId, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Deconvolution, Combine( |
|
|
|
@ -168,13 +213,14 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Deconvolution, Combine( |
|
|
|
|
/*pad*/ Values(Size(1, 0), Size(0, 1)), |
|
|
|
|
/*dilation*/ Values(Size(1, 1), Size(2, 2)), |
|
|
|
|
/*stride, adj. pad*/ Values(Vec4i(1,1, 0,0), Vec4i(2,2, 1,0), Vec4i(1,2, 0,1)), |
|
|
|
|
/*has bias*/ Bool() |
|
|
|
|
/*has bias*/ Bool(), |
|
|
|
|
dnnBackendsAndTargetsWithHalide() |
|
|
|
|
)); |
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// LRN
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
typedef TestWithParam<tuple<Vec3i, int, Vec3f, bool, std::string> > LRN; |
|
|
|
|
typedef TestWithParam<tuple<Vec3i, int, Vec3f, bool, std::string, tuple<DNNBackend, DNNTarget> > > LRN; |
|
|
|
|
TEST_P(LRN, Accuracy) |
|
|
|
|
{ |
|
|
|
|
int inChannels = get<0>(GetParam())[0]; |
|
|
|
@ -185,6 +231,10 @@ TEST_P(LRN, Accuracy) |
|
|
|
|
float bias = get<2>(GetParam())[2]; |
|
|
|
|
bool normBySize = get<3>(GetParam()); |
|
|
|
|
std::string nrmType = get<4>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<5>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<5>(GetParam())); |
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.set("norm_region", nrmType); |
|
|
|
@ -196,8 +246,9 @@ TEST_P(LRN, Accuracy) |
|
|
|
|
lp.type = "LRN"; |
|
|
|
|
lp.name = "testLayer"; |
|
|
|
|
|
|
|
|
|
Mat input({1, inChannels, inSize.height, inSize.width}, CV_32F); |
|
|
|
|
test(lp, input); |
|
|
|
|
int sz[] = {1, inChannels, inSize.height, inSize.width}; |
|
|
|
|
Mat input(4, &sz[0], CV_32F); |
|
|
|
|
test(lp, input, backendId, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, LRN, Combine( |
|
|
|
@ -207,19 +258,24 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, LRN, Combine( |
|
|
|
|
/*alpha, beta,*/ Vec3f(1.0f, 0.9f, 1.1f), Vec3f(1.0f, 1.1f, 0.9f), |
|
|
|
|
/*bias */ Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)), |
|
|
|
|
/*norm_by_size*/ Bool(), |
|
|
|
|
/*norm_type*/ Values("ACROSS_CHANNELS", "WITHIN_CHANNEL") |
|
|
|
|
/*norm_type*/ Values("ACROSS_CHANNELS", "WITHIN_CHANNEL"), |
|
|
|
|
dnnBackendsAndTargetsWithHalide() |
|
|
|
|
)); |
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Average pooling
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
typedef TestWithParam<tuple<int, Size, Size, Size> > AvePooling; |
|
|
|
|
typedef TestWithParam<tuple<int, Size, Size, Size, tuple<DNNBackend, DNNTarget> > > AvePooling; |
|
|
|
|
TEST_P(AvePooling, Accuracy) |
|
|
|
|
{ |
|
|
|
|
int inChannels = get<0>(GetParam()); |
|
|
|
|
Size outSize = get<1>(GetParam());; // Input size will be computed from parameters.
|
|
|
|
|
Size kernel = get<2>(GetParam()); |
|
|
|
|
Size stride = get<3>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<4>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<4>(GetParam())); |
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_MYRIAD) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
|
|
|
|
|
const int inWidth = (outSize.width - 1) * stride.width + kernel.width; |
|
|
|
|
const int inHeight = (outSize.height - 1) * stride.height + kernel.height; |
|
|
|
@ -233,21 +289,23 @@ TEST_P(AvePooling, Accuracy) |
|
|
|
|
lp.type = "Pooling"; |
|
|
|
|
lp.name = "testLayer"; |
|
|
|
|
|
|
|
|
|
Mat input({1, inChannels, inHeight, inWidth}, CV_32F); |
|
|
|
|
test(lp, input); |
|
|
|
|
int sz[] = {1, inChannels, inHeight, inWidth}; |
|
|
|
|
Mat input(4, &sz[0], CV_32F); |
|
|
|
|
test(lp, input, backendId, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, AvePooling, Combine( |
|
|
|
|
/*in channels*/ Values(3, 4), |
|
|
|
|
/*out size*/ Values(Size(1, 1), Size(2, 2), Size(3, 2), Size(4, 7)), |
|
|
|
|
/*kernel*/ Values(Size(1, 1), Size(2, 2), Size(3, 3), Size(3, 2)), |
|
|
|
|
/*stride*/ Values(Size(1, 1), Size(2, 2), Size(3, 2)) |
|
|
|
|
/*stride*/ Values(Size(1, 1), Size(2, 2), Size(3, 2)), |
|
|
|
|
dnnBackendsAndTargetsWithHalide() |
|
|
|
|
)); |
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Maximum pooling
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
typedef TestWithParam<tuple<int, Size, Size, Size, Size> > MaxPooling; |
|
|
|
|
typedef TestWithParam<tuple<int, Size, Size, Size, Size, tuple<DNNBackend, DNNTarget> > > MaxPooling; |
|
|
|
|
TEST_P(MaxPooling, Accuracy) |
|
|
|
|
{ |
|
|
|
|
int inChannels = get<0>(GetParam()); |
|
|
|
@ -255,6 +313,8 @@ TEST_P(MaxPooling, Accuracy) |
|
|
|
|
Size kernel = get<2>(GetParam()); |
|
|
|
|
Size stride = get<3>(GetParam()); |
|
|
|
|
Size pad = get<4>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<5>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<5>(GetParam())); |
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.set("pool", "max"); |
|
|
|
@ -267,8 +327,9 @@ TEST_P(MaxPooling, Accuracy) |
|
|
|
|
lp.type = "Pooling"; |
|
|
|
|
lp.name = "testLayer"; |
|
|
|
|
|
|
|
|
|
Mat input({1, inChannels, inSize.height, inSize.width}, CV_32F); |
|
|
|
|
test(lp, input); |
|
|
|
|
int sz[] = {1, inChannels, inSize.height, inSize.width}; |
|
|
|
|
Mat input(4, &sz[0], CV_32F); |
|
|
|
|
test(lp, input, backendId, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, MaxPooling, Combine( |
|
|
|
@ -276,19 +337,25 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, MaxPooling, Combine( |
|
|
|
|
/*in size*/ Values(Size(5, 5), Size(7, 6)), |
|
|
|
|
/*kernel*/ Values(Size(2, 2), Size(3, 3), Size(3, 2)), |
|
|
|
|
/*stride*/ Values(Size(1, 1), Size(2, 2), Size(3, 2)), |
|
|
|
|
/*pad*/ Values(Size(0, 0), Size(1, 1), Size(0, 1)) |
|
|
|
|
/*pad*/ Values(Size(0, 0), Size(1, 1), Size(0, 1)), |
|
|
|
|
dnnBackendsAndTargetsWithHalide() |
|
|
|
|
)); |
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Fully-connected
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
typedef TestWithParam<tuple<int, Size, int, bool> > FullyConnected; |
|
|
|
|
typedef TestWithParam<tuple<int, Size, int, bool, tuple<DNNBackend, DNNTarget> > > FullyConnected; |
|
|
|
|
TEST_P(FullyConnected, Accuracy) |
|
|
|
|
{ |
|
|
|
|
int inChannels = get<0>(GetParam()); |
|
|
|
|
Size inSize = get<1>(GetParam()); |
|
|
|
|
int outChannels = get<2>(GetParam()); |
|
|
|
|
bool hasBias = get<3>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<4>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<4>(GetParam())); |
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE || |
|
|
|
|
(backendId == DNN_BACKEND_OPENCV && targetId == DNN_TARGET_OPENCL_FP16)) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
|
|
|
|
|
Mat weights(outChannels, inChannels * inSize.height * inSize.width, CV_32F); |
|
|
|
|
randu(weights, -1.0f, 1.0f); |
|
|
|
@ -304,39 +371,50 @@ TEST_P(FullyConnected, Accuracy) |
|
|
|
|
lp.type = "InnerProduct"; |
|
|
|
|
lp.name = "testLayer"; |
|
|
|
|
|
|
|
|
|
Mat input({1, inChannels, inSize.height, inSize.width}, CV_32F); |
|
|
|
|
test(lp, input); |
|
|
|
|
int sz[] = {1, inChannels, inSize.height, inSize.width}; |
|
|
|
|
Mat input(4, &sz[0], CV_32F); |
|
|
|
|
test(lp, input, backendId, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, FullyConnected, Combine( |
|
|
|
|
/*in channels*/ Values(3, 4), |
|
|
|
|
/*in size*/ Values(Size(5, 4), Size(4, 5), Size(1, 1)), |
|
|
|
|
/*out channels*/ Values(3, 4), |
|
|
|
|
/*has bias*/ Bool() |
|
|
|
|
/*has bias*/ Bool(), |
|
|
|
|
dnnBackendsAndTargetsWithHalide() |
|
|
|
|
)); |
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// SoftMax
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
typedef TestWithParam<tuple<int> > SoftMax; |
|
|
|
|
typedef TestWithParam<tuple<int, tuple<DNNBackend, DNNTarget> > > SoftMax; |
|
|
|
|
TEST_P(SoftMax, Accuracy) |
|
|
|
|
{ |
|
|
|
|
int inChannels = get<0>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<1>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<1>(GetParam())); |
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.type = "SoftMax"; |
|
|
|
|
lp.name = "testLayer"; |
|
|
|
|
|
|
|
|
|
Mat input({1, inChannels, 1, 1}, CV_32F); |
|
|
|
|
test(lp, input); |
|
|
|
|
int sz[] = {1, inChannels, 1, 1}; |
|
|
|
|
Mat input(4, &sz[0], CV_32F); |
|
|
|
|
test(lp, input, backendId, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, SoftMax, Values(3, 4, 5, 1024)); |
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, SoftMax, Combine( |
|
|
|
|
Values(3, 4, 5, 1024), |
|
|
|
|
dnnBackendsAndTargetsWithHalide() |
|
|
|
|
)); |
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Max pooling - unpooling
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
TEST(MaxPoolUnpool_Halide, Accuracy) |
|
|
|
|
TEST_P(Test_Halide_layers, MaxPoolUnpool) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
|
|
|
|
|
LayerParams pool; |
|
|
|
|
pool.set("pool", "max"); |
|
|
|
|
pool.set("kernel_w", 2); |
|
|
|
@ -366,16 +444,9 @@ TEST(MaxPoolUnpool_Halide, Accuracy) |
|
|
|
|
net.connect(poolId, 0, unpoolId, 0); |
|
|
|
|
net.connect(poolId, 1, unpoolId, 1); |
|
|
|
|
|
|
|
|
|
Mat input({1, 1, 4, 4}, CV_32F); |
|
|
|
|
randu(input, -1.0f, 1.0f); |
|
|
|
|
net.setInput(input); |
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
|
Mat outputDefault = net.forward("testUnpool").clone(); |
|
|
|
|
|
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_HALIDE); |
|
|
|
|
net.setInput(input); |
|
|
|
|
Mat outputHalide = net.forward("testUnpool").clone(); |
|
|
|
|
normAssert(outputDefault, outputHalide); |
|
|
|
|
int sz[] = {1, 1, 4, 4}; |
|
|
|
|
Mat input(4, &sz[0], CV_32F); |
|
|
|
|
test(input, net, backend, target); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
@ -383,7 +454,7 @@ TEST(MaxPoolUnpool_Halide, Accuracy) |
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
static const int kNumChannels = 3; |
|
|
|
|
|
|
|
|
|
void testInPlaceActivation(LayerParams& lp) |
|
|
|
|
void testInPlaceActivation(LayerParams& lp, int backendId, int targetId) |
|
|
|
|
{ |
|
|
|
|
EXPECT_FALSE(lp.name.empty()); |
|
|
|
|
|
|
|
|
@ -400,24 +471,19 @@ void testInPlaceActivation(LayerParams& lp) |
|
|
|
|
net.connect(0, 0, poolId, 0); |
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
|
|
|
|
|
|
|
|
Mat input({1, kNumChannels, 10, 10}, CV_32F); |
|
|
|
|
randu(input, -1.0f, 1.0f); |
|
|
|
|
net.setInput(input); |
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
|
Mat outputDefault = net.forward(lp.name).clone(); |
|
|
|
|
|
|
|
|
|
net.setInput(input); |
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_HALIDE); |
|
|
|
|
Mat outputHalide = net.forward(lp.name).clone(); |
|
|
|
|
normAssert(outputDefault, outputHalide); |
|
|
|
|
int sz[] = {1, kNumChannels, 10, 10}; |
|
|
|
|
Mat input(4, &sz[0], CV_32F); |
|
|
|
|
test(input, net, backendId, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
typedef TestWithParam<tuple<bool, bool, float> > BatchNorm; |
|
|
|
|
typedef TestWithParam<tuple<bool, bool, float, tuple<DNNBackend, DNNTarget> > > BatchNorm; |
|
|
|
|
TEST_P(BatchNorm, Accuracy) |
|
|
|
|
{ |
|
|
|
|
bool hasWeights = get<0>(GetParam()); |
|
|
|
|
bool hasBias = get<1>(GetParam()); |
|
|
|
|
float epsilon = get<2>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<3>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<3>(GetParam())); |
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.set("has_weight", hasWeights); |
|
|
|
@ -428,56 +494,66 @@ TEST_P(BatchNorm, Accuracy) |
|
|
|
|
|
|
|
|
|
lp.blobs.reserve(4); |
|
|
|
|
for (int i = 0; i < 3; ++i) |
|
|
|
|
lp.blobs.push_back(Mat({kNumChannels}, CV_32F)); |
|
|
|
|
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); |
|
|
|
|
if (hasBias || hasWeights) |
|
|
|
|
lp.blobs.push_back(Mat({kNumChannels}, CV_32F)); |
|
|
|
|
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); |
|
|
|
|
|
|
|
|
|
for (Mat& m : lp.blobs) |
|
|
|
|
randu(m, 0.0f, 1.0f); |
|
|
|
|
for (int i = 0; i < lp.blobs.size(); ++i) |
|
|
|
|
randu(lp.blobs[i], 0.0f, 1.0f); |
|
|
|
|
|
|
|
|
|
testInPlaceActivation(lp); |
|
|
|
|
testInPlaceActivation(lp, backendId, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, BatchNorm, Combine( |
|
|
|
|
/*has weights*/ Bool(), |
|
|
|
|
/*has bias*/ Bool(), |
|
|
|
|
/*epsilon*/ Values(1e-3f, 1e-5f) |
|
|
|
|
/*epsilon*/ Values(1e-3f, 1e-5f), |
|
|
|
|
dnnBackendsAndTargetsWithHalide() |
|
|
|
|
)); |
|
|
|
|
|
|
|
|
|
typedef TestWithParam<tuple<float> > ReLU; |
|
|
|
|
typedef TestWithParam<tuple<float, tuple<DNNBackend, DNNTarget> > > ReLU; |
|
|
|
|
TEST_P(ReLU, Accuracy) |
|
|
|
|
{ |
|
|
|
|
float negativeSlope = get<0>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<1>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<1>(GetParam())); |
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.set("negative_slope", negativeSlope); |
|
|
|
|
lp.type = "ReLU"; |
|
|
|
|
lp.name = "testLayer"; |
|
|
|
|
testInPlaceActivation(lp); |
|
|
|
|
testInPlaceActivation(lp, backendId, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, ReLU, Values( |
|
|
|
|
/*negative slope*/ 2.0f, 0.3f, -0.1f, 0.0f |
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, ReLU, Combine( |
|
|
|
|
/*negative slope*/ Values(2.0f, 0.3f, -0.1f, 0.0f), |
|
|
|
|
dnnBackendsAndTargetsWithHalide() |
|
|
|
|
)); |
|
|
|
|
|
|
|
|
|
typedef TestWithParam<tuple<std::string> > NoParamActivation; |
|
|
|
|
typedef TestWithParam<tuple<std::string, tuple<DNNBackend, DNNTarget> > > NoParamActivation; |
|
|
|
|
TEST_P(NoParamActivation, Accuracy) |
|
|
|
|
{ |
|
|
|
|
int backendId = get<0>(get<1>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<1>(GetParam())); |
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.type = get<0>(GetParam()); |
|
|
|
|
lp.name = "testLayer"; |
|
|
|
|
testInPlaceActivation(lp); |
|
|
|
|
testInPlaceActivation(lp, backendId, targetId); |
|
|
|
|
} |
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, NoParamActivation, Values( |
|
|
|
|
/*type*/ "TanH", "Sigmoid", "AbsVal", "BNLL" |
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, NoParamActivation, Combine( |
|
|
|
|
/*type*/ Values("TanH", "Sigmoid", "AbsVal", "BNLL"), |
|
|
|
|
dnnBackendsAndTargetsWithHalide() |
|
|
|
|
)); |
|
|
|
|
|
|
|
|
|
typedef TestWithParam<tuple<Vec3f> > Power; |
|
|
|
|
typedef TestWithParam<tuple<Vec3f, tuple<DNNBackend, DNNTarget> > > Power; |
|
|
|
|
TEST_P(Power, Accuracy) |
|
|
|
|
{ |
|
|
|
|
float power = get<0>(GetParam())[0]; |
|
|
|
|
float scale = get<0>(GetParam())[1]; |
|
|
|
|
float shift = get<0>(GetParam())[2]; |
|
|
|
|
int backendId = get<0>(get<1>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<1>(GetParam())); |
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.set("power", power); |
|
|
|
@ -485,46 +561,52 @@ TEST_P(Power, Accuracy) |
|
|
|
|
lp.set("shift", shift); |
|
|
|
|
lp.type = "Power"; |
|
|
|
|
lp.name = "testLayer"; |
|
|
|
|
testInPlaceActivation(lp); |
|
|
|
|
testInPlaceActivation(lp, backendId, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Power, |
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Power, Combine( |
|
|
|
|
/*power, scale, shift*/ Values(Vec3f(0.9f, 1.0f, 1.1f), Vec3f(0.9f, 1.1f, 1.0f), |
|
|
|
|
Vec3f(1.0f, 0.9f, 1.1f), Vec3f(1.0f, 1.1f, 0.9f), |
|
|
|
|
Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)) |
|
|
|
|
); |
|
|
|
|
Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)), |
|
|
|
|
dnnBackendsAndTargetsWithHalide() |
|
|
|
|
)); |
|
|
|
|
|
|
|
|
|
TEST(ChannelsPReLU, Accuracy) |
|
|
|
|
TEST_P(Test_Halide_layers, ChannelsPReLU) |
|
|
|
|
{ |
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.type = "ChannelsPReLU"; |
|
|
|
|
lp.name = "testLayer"; |
|
|
|
|
lp.blobs.push_back(Mat({kNumChannels}, CV_32F)); |
|
|
|
|
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); |
|
|
|
|
randu(lp.blobs[0], -1.0f, 1.0f); |
|
|
|
|
|
|
|
|
|
testInPlaceActivation(lp); |
|
|
|
|
testInPlaceActivation(lp, backend, target); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
typedef TestWithParam<tuple<bool> > Scale; |
|
|
|
|
typedef TestWithParam<tuple<bool, tuple<DNNBackend, DNNTarget> > > Scale; |
|
|
|
|
TEST_P(Scale, Accuracy) |
|
|
|
|
{ |
|
|
|
|
bool hasBias = get<0>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<1>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<1>(GetParam())); |
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
|
lp.set("bias_term", hasBias); |
|
|
|
|
lp.type = "Scale"; |
|
|
|
|
lp.name = "testLayer"; |
|
|
|
|
lp.blobs.push_back(Mat({kNumChannels}, CV_32F)); |
|
|
|
|
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); |
|
|
|
|
randu(lp.blobs[0], -1.0f, 1.0f); |
|
|
|
|
if (hasBias) |
|
|
|
|
{ |
|
|
|
|
lp.blobs.push_back(Mat({kNumChannels}, CV_32F)); |
|
|
|
|
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); |
|
|
|
|
randu(lp.blobs[1], -1.0f, 1.0f); |
|
|
|
|
} |
|
|
|
|
testInPlaceActivation(lp); |
|
|
|
|
testInPlaceActivation(lp, backendId, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Scale, Values(true, false)); |
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Scale, Combine( |
|
|
|
|
Bool(), |
|
|
|
|
dnnBackendsAndTargetsWithHalide() |
|
|
|
|
)); |
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Concat layer
|
|
|
|
@ -534,11 +616,13 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Scale, Values(true, false)); |
|
|
|
|
// `--- conv ----^ ^ ^
|
|
|
|
|
// `---- ... ------' '
|
|
|
|
|
// `-----------------'
|
|
|
|
|
typedef TestWithParam<tuple<Vec3i, Vec3i> > Concat; |
|
|
|
|
typedef TestWithParam<tuple<Vec3i, Vec3i, tuple<DNNBackend, DNNTarget> > > Concat; |
|
|
|
|
TEST_P(Concat, Accuracy) |
|
|
|
|
{ |
|
|
|
|
Vec3i inSize = get<0>(GetParam()); |
|
|
|
|
Vec3i numChannels = get<1>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<2>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<2>(GetParam())); |
|
|
|
|
|
|
|
|
|
Net net; |
|
|
|
|
|
|
|
|
@ -549,7 +633,8 @@ TEST_P(Concat, Accuracy) |
|
|
|
|
if (!numChannels[i]) |
|
|
|
|
break; |
|
|
|
|
|
|
|
|
|
Mat weights({numChannels[i], inSize[0], 1, 1}, CV_32F); |
|
|
|
|
int sz[] = {numChannels[i], inSize[0], 1, 1}; |
|
|
|
|
Mat weights(4, &sz[0], CV_32F); |
|
|
|
|
randu(weights, -1.0f, 1.0f); |
|
|
|
|
|
|
|
|
|
LayerParams convParam; |
|
|
|
@ -578,21 +663,15 @@ TEST_P(Concat, Accuracy) |
|
|
|
|
net.connect(convLayerIds[i], 0, concatId, i + 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat input({1, inSize[0], inSize[1], inSize[2]}, CV_32F); |
|
|
|
|
randu(input, -1.0f, 1.0f); |
|
|
|
|
|
|
|
|
|
net.setInput(input); |
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
|
Mat outputDefault = net.forward(concatParam.name).clone(); |
|
|
|
|
|
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_HALIDE); |
|
|
|
|
Mat outputHalide = net.forward(concatParam.name).clone(); |
|
|
|
|
normAssert(outputDefault, outputHalide); |
|
|
|
|
int sz[] = {1, inSize[0], inSize[1], inSize[2]}; |
|
|
|
|
Mat input(4, &sz[0], CV_32F); |
|
|
|
|
test(input, net, backendId, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Concat, Combine( |
|
|
|
|
/*input size*/ Values(Vec3i(1, 4, 5), Vec3i(2, 8, 6)), |
|
|
|
|
/*channels*/ Values(Vec3i(2, 0, 0), Vec3i(3, 4, 0), Vec3i(1, 6, 2)) |
|
|
|
|
/*channels*/ Values(Vec3i(2, 0, 0), Vec3i(3, 4, 0), Vec3i(1, 6, 2)), |
|
|
|
|
dnnBackendsAndTargetsWithHalide() |
|
|
|
|
)); |
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
@ -603,20 +682,27 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Concat, Combine( |
|
|
|
|
// `--- conv ----^ ^ ^
|
|
|
|
|
// `---- ... ------' '
|
|
|
|
|
// `-----------------'
|
|
|
|
|
typedef TestWithParam<tuple<Vec3i, std::string, int, bool> > Eltwise; |
|
|
|
|
typedef TestWithParam<tuple<Vec3i, std::string, int, bool, tuple<DNNBackend, DNNTarget> > > Eltwise; |
|
|
|
|
TEST_P(Eltwise, Accuracy) |
|
|
|
|
{ |
|
|
|
|
Vec3i inSize = get<0>(GetParam()); |
|
|
|
|
std::string op = get<1>(GetParam()); |
|
|
|
|
int numConv = get<2>(GetParam()); |
|
|
|
|
bool weighted = get<3>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<4>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<4>(GetParam())); |
|
|
|
|
|
|
|
|
|
if (backendId == DNN_BACKEND_OPENCV && |
|
|
|
|
(targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16)) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
|
|
|
|
|
Net net; |
|
|
|
|
|
|
|
|
|
std::vector<int> convLayerIds(numConv); |
|
|
|
|
for (int i = 0; i < numConv; ++i) |
|
|
|
|
{ |
|
|
|
|
Mat weights({inSize[0], inSize[0], 1, 1}, CV_32F); |
|
|
|
|
int sz[] = {inSize[0], inSize[0], 1, 1}; |
|
|
|
|
Mat weights(4, &sz[0], CV_32F); |
|
|
|
|
randu(weights, -1.0f, 1.0f); |
|
|
|
|
|
|
|
|
|
LayerParams convParam; |
|
|
|
@ -655,28 +741,23 @@ TEST_P(Eltwise, Accuracy) |
|
|
|
|
net.connect(convLayerIds[i], 0, eltwiseId, i + 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat input({1, inSize[0], inSize[1], inSize[2]}, CV_32F); |
|
|
|
|
randu(input, -1.0f, 1.0f); |
|
|
|
|
|
|
|
|
|
net.setInput(input); |
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
|
Mat outputDefault = net.forward(eltwiseParam.name).clone(); |
|
|
|
|
|
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_HALIDE); |
|
|
|
|
Mat outputHalide = net.forward(eltwiseParam.name).clone(); |
|
|
|
|
normAssert(outputDefault, outputHalide); |
|
|
|
|
int sz[] = {1, inSize[0], inSize[1], inSize[2]}; |
|
|
|
|
Mat input(4, &sz[0], CV_32F); |
|
|
|
|
test(input, net, backendId, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Eltwise, Combine( |
|
|
|
|
/*input size*/ Values(Vec3i(1, 4, 5), Vec3i(2, 8, 6)), |
|
|
|
|
/*operation*/ Values("prod", "sum", "max"), |
|
|
|
|
/*num convs*/ Values(1, 2, 3), |
|
|
|
|
/*weighted(for sum only)*/ Bool() |
|
|
|
|
/*weighted(for sum only)*/ Bool(), |
|
|
|
|
dnnBackendsAndTargetsWithHalide() |
|
|
|
|
)); |
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Mixed backends
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
#ifdef HAVE_HALIDE |
|
|
|
|
TEST(MixedBackends_Halide_Default_Halide, Accuracy) |
|
|
|
|
{ |
|
|
|
|
// Just a layer that supports Halide backend.
|
|
|
|
@ -700,7 +781,8 @@ TEST(MixedBackends_Halide_Default_Halide, Accuracy) |
|
|
|
|
net.addLayerToPrev(mvn.name, mvn.type, mvn); |
|
|
|
|
net.addLayerToPrev(lrn2.name, lrn2.type, lrn2); |
|
|
|
|
|
|
|
|
|
Mat input({4, 3, 5, 6}, CV_32F); |
|
|
|
|
int sz[] = {4, 3, 5, 6}; |
|
|
|
|
Mat input(4, &sz[0], CV_32F); |
|
|
|
|
randu(input, -1.0f, 1.0f); |
|
|
|
|
net.setInput(input); |
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
@ -718,4 +800,6 @@ TEST(MixedBackends_Halide_Default_Halide, Accuracy) |
|
|
|
|
} |
|
|
|
|
#endif // HAVE_HALIDE
|
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_Halide_layers, dnnBackendsAndTargetsWithHalide()); |
|
|
|
|
|
|
|
|
|
}} // namespace
|
|
|
|
|