|
|
|
@ -12,10 +12,10 @@ int main() |
|
|
|
|
|
|
|
|
|
// Set up training data
|
|
|
|
|
float labels[4] = {1.0, -1.0, -1.0, -1.0}; |
|
|
|
|
Mat labelsMat(3, 1, CV_32FC1, labels); |
|
|
|
|
Mat labelsMat(4, 1, CV_32FC1, labels); |
|
|
|
|
|
|
|
|
|
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} }; |
|
|
|
|
Mat trainingDataMat(3, 2, CV_32FC1, trainingData); |
|
|
|
|
Mat trainingDataMat(4, 2, CV_32FC1, trainingData); |
|
|
|
|
|
|
|
|
|
// Set up SVM's parameters
|
|
|
|
|
CvSVMParams params; |
|
|
|
@ -26,7 +26,7 @@ int main() |
|
|
|
|
// Train the SVM
|
|
|
|
|
CvSVM SVM; |
|
|
|
|
SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Vec3b green(0,255,0), blue (255,0,0); |
|
|
|
|
// Show the decision regions given by the SVM
|
|
|
|
|
for (int i = 0; i < image.rows; ++i) |
|
|
|
@ -37,7 +37,7 @@ int main() |
|
|
|
|
|
|
|
|
|
if (response == 1) |
|
|
|
|
image.at<Vec3b>(j, i) = green; |
|
|
|
|
else if (response == -1)
|
|
|
|
|
else if (response == -1) |
|
|
|
|
image.at<Vec3b>(j, i) = blue; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -60,7 +60,7 @@ int main() |
|
|
|
|
circle( image, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thickness, lineType); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
imwrite("result.png", image); // save the image
|
|
|
|
|
imwrite("result.png", image); // save the image
|
|
|
|
|
|
|
|
|
|
imshow("SVM Simple Example", image); // show it to the user
|
|
|
|
|
waitKey(0); |
|
|
|
|