Refactored deep learning layers fusion

pull/10821/head
Dmitry Kurtaev 7 years ago
parent 7474ad81d9
commit 514e6df460
  1. 1
      modules/dnn/include/opencv2/dnn/all_layers.hpp
  2. 24
      modules/dnn/include/opencv2/dnn/dnn.hpp
  3. 55
      modules/dnn/src/dnn.cpp
  4. 336
      modules/dnn/src/layers/convolution_layer.cpp
  5. 30
      modules/dnn/src/layers/mvn_layer.cpp
  6. 6
      modules/dnn/src/layers/scale_layer.cpp
  7. 6
      modules/dnn/src/layers/shift_layer.cpp

@ -472,7 +472,6 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
bool hasWeights, hasBias;
float epsilon;
virtual void getScaleShift(Mat& scale, Mat& shift) const = 0;
static Ptr<BatchNormLayer> create(const LayerParams &params);
};

@ -281,20 +281,26 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
virtual bool setActivation(const Ptr<ActivationLayer>& layer);
/**
* @brief Tries to attach to the layer the subsequent batch normalization layer, i.e. do the layer fusion in a partial case.
* @param[in] layer The subsequent batch normalization layer.
*
* Returns true if the batch normalization layer has been attached successfully.
* @brief Try to fuse current layer with a next one
* @param[in] top Next layer to be fused.
* @returns True if fusion was performed.
*/
virtual bool setBatchNorm(const Ptr<BatchNormLayer>& layer);
virtual bool tryFuse(Ptr<Layer>& top);
/**
* @brief Tries to attach to the layer the subsequent scaling layer, i.e. do the layer fusion in a partial case.
* @param[in] layer The subsequent scaling layer.
* @brief Returns parameters of layers with channel-wise multiplication and addition.
* @param[out] scale Channel-wise multipliers. Total number of values should
* be equal to number of channels.
* @param[out] shift Channel-wise offsets. Total number of values should
* be equal to number of channels.
*
* Returns true if the scaling layer has been attached successfully.
* Some layers can fuse their transformations with further layers.
* In example, convolution + batch normalization. This way base layer
* use weights from layer after it. Fused layer is skipped.
* By default, @p scale and @p shift are empty that means layer has no
* element-wise multiplications or additions.
*/
virtual bool setScale(const Ptr<ScaleLayer>& layer);
virtual void getScaleShift(Mat& scale, Mat& shift) const;
/**
* @brief "Deattaches" all the layers, attached to particular layer.

@ -1407,46 +1407,30 @@ struct Net::Impl
if( ld.consumers.size() == 1 && pinsToKeep.count(LayerPin(lid, 0)) == 0 )
{
LayerData* nextData = &layers[ld.consumers[0].lid];
Ptr<BatchNormLayer> nextBNormLayer =
nextData->layerInstance.dynamicCast<BatchNormLayer>();
LayerPin lpNext(ld.consumers[0].lid, 0);
if( !nextBNormLayer.empty() && pinsToKeep.count(lpNext) == 0 )
while (nextData)
{
LayerData* bnormData = nextData;
nextData = 0;
if( currLayer->setBatchNorm(nextBNormLayer) )
Ptr<Layer> nextLayer = nextData->layerInstance;
if (currLayer->tryFuse(nextLayer))
{
printf_(("\tfused with %s\n", nextBNormLayer->name.c_str()));
bnormData->skip = true;
printf_(("\tfused with %s\n", nextLayer->name.c_str()));
nextData->skip = true;
ld.outputBlobs = layers[lpNext.lid].outputBlobs;
ld.outputBlobsWrappers = layers[lpNext.lid].outputBlobsWrappers;
if( bnormData->consumers.size() == 1 )
if (nextData->consumers.size() == 1)
{
nextData = &layers[bnormData->consumers[0].lid];
lpNext = LayerPin(bnormData->consumers[0].lid, 0);
int nextLayerId = nextData->consumers[0].lid;
nextData = &layers[nextLayerId];
lpNext = LayerPin(nextLayerId, 0);
}
}
}
Ptr<ScaleLayer> nextScaleLayer;
if( nextData )
nextScaleLayer = nextData->layerInstance.dynamicCast<ScaleLayer>();
if( !nextScaleLayer.empty() && pinsToKeep.count(lpNext) == 0 )
{
LayerData* scaleData = nextData;
nextData = 0;
if( currLayer->setScale(nextScaleLayer) )
{
printf_(("\tfused with %s\n", nextScaleLayer->name.c_str()));
scaleData->skip = true;
ld.outputBlobs = layers[lpNext.lid].outputBlobs;
ld.outputBlobsWrappers = layers[lpNext.lid].outputBlobsWrappers;
if( scaleData->consumers.size() == 1 )
else
{
nextData = &layers[scaleData->consumers[0].lid];
lpNext = LayerPin(scaleData->consumers[0].lid, 0);
nextData = 0;
break;
}
}
else
break;
}
// For now, OpenCL target support fusion with activation of ReLU/ChannelsPReLU/Power/Tanh
@ -2627,13 +2611,16 @@ Ptr<BackendNode> Layer::tryAttach(const Ptr<BackendNode>& node)
}
bool Layer::setActivation(const Ptr<ActivationLayer>&) { return false; }
bool Layer::setBatchNorm(const Ptr<BatchNormLayer>&) { return false; }
bool Layer::setScale(const Ptr<ScaleLayer>&) { return false; }
bool Layer::tryFuse(Ptr<Layer>&) { return false; }
void Layer::getScaleShift(Mat& scale, Mat& shift) const
{
scale = Mat();
shift = Mat();
}
void Layer::unsetAttached()
{
setActivation(Ptr<ActivationLayer>());
setBatchNorm(Ptr<BatchNormLayer>());
setScale(Ptr<ScaleLayer>());
}
template <typename T>

@ -61,7 +61,23 @@ namespace dnn
class BaseConvolutionLayerImpl : public ConvolutionLayer
{
public:
BaseConvolutionLayerImpl() {}
BaseConvolutionLayerImpl(const LayerParams &params)
{
setParamsFrom(params);
getConvolutionKernelParams(params, kernel.height, kernel.width, pad.height,
pad.width, stride.height, stride.width, dilation.height,
dilation.width, padMode);
numOutput = params.get<int>("num_output");
int ngroups = params.get<int>("group", 1);
adjustPad.height = params.get<int>("adj_h", 0);
adjustPad.width = params.get<int>("adj_w", 0);
CV_Assert(numOutput % ngroups == 0);
CV_Assert(adjustPad.width < stride.width &&
adjustPad.height < stride.height);
}
virtual bool supportBackend(int backendId)
{
@ -153,12 +169,10 @@ class ConvolutionLayerImpl : public BaseConvolutionLayerImpl
{
public:
enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F };
Mat weightsMat;
Mat weightsMat, weightsMat_doubles;
std::vector<float> biasvec;
std::vector<float> reluslope;
Ptr<ActivationLayer> activ;
Ptr<BatchNormLayer> bnorm;
Ptr<ScaleLayer> scaleLayer;
#ifdef HAVE_OPENCL
Ptr<OCL4DNNConvSpatial<float> > convolutionOp;
@ -169,7 +183,7 @@ public:
ocl4dnnFusedActiv_t activType;
float power;
#endif
ConvolutionLayerImpl()
ConvolutionLayerImpl(const LayerParams &params) : BaseConvolutionLayerImpl(params)
{
#ifdef HAVE_OPENCL
fusedBias = false;
@ -225,6 +239,42 @@ public:
return false;
}
virtual void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs)
{
BaseConvolutionLayerImpl::finalize(inputs, outputs);
CV_Assert(!blobs.empty());
const int outCn = blobs[0].size[0];
// prepare weightsMat where each row is aligned and has enough zero padding on the right to
// use vectorized (i.e. with intrinsics) loops without tail processing
Mat wm = blobs[0].reshape(1, outCn).clone();
if( wm.step1() % VEC_ALIGN != 0 )
{
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
Mat wm_buffer = Mat(outCn, newcols, wm.type());
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
wm_padding.setTo(Scalar::all(0.));
Mat wm_aligned = wm_buffer.colRange(0, wm.cols);
wm.copyTo(wm_aligned);
wm = wm_aligned;
}
weightsMat = wm;
weightsMat.convertTo(weightsMat_doubles, CV_64F);
Mat biasMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat();
biasvec.resize(outCn+2);
if( biasMat.empty() )
{
for(int i = 0; i < outCn; i++ )
biasvec[i] = 0.f;
}
else
{
for(int i = 0; i < outCn; i++ )
biasvec[i] = biasMat.at<float>(i);
}
}
bool setActivation(const Ptr<ActivationLayer>& layer)
{
activ = layer;
@ -240,10 +290,11 @@ public:
if (!activ_power.empty())
{
if (activ_power->scale != 1.f || activ_power->shift != 0.f)
newWeightAndBias = true;
if (activ_power->scale != 1.f)
weightsMat.release();
{
const int outCh = blobs[0].size[0];
fuseWeights(Mat(1, outCh, CV_32F, Scalar(activ_power->scale)),
Mat(1, outCh, CV_32F, Scalar(activ_power->shift)));
}
power = activ_power->power;
activType = OCL4DNN_CONV_FUSED_ACTIV_POWER;
@ -258,35 +309,49 @@ public:
return !activ.empty();
}
bool setBatchNorm(const Ptr<BatchNormLayer>& layer )
virtual bool tryFuse(Ptr<Layer>& top)
{
// for now the scale layer followed by the batch norm cannot be fused, only vice versa.
if( !scaleLayer.empty() )
return false;
bnorm = layer;
// we will need to re-compute the weights with the batch
// norm coefficients taken into account
weightsMat.release();
#ifdef HAVE_OPENCL
newWeightAndBias = true;
fusedBias = false;
#endif
return !bnorm.empty();
Mat w, b;
top->getScaleShift(w, b);
if (!w.empty() || !b.empty())
{
fuseWeights(w, b);
return true;
}
return false;
}
bool setScale(const Ptr<ScaleLayer>& layer)
void fuseWeights(const Mat& w, const Mat& b)
{
if (layer.empty() || layer->blobs.empty())
return false;
scaleLayer = layer;
// we will need to re-compute the weights with the scaling
// coefficients taken into account
weightsMat.release();
// Convolution weights have OIHW data layout. Parameters fusion in case of
// (conv(I) + b1 ) * w + b2
// means to replace convolution's weights to [w*conv(I)] and bias to [b1 * w + b2]
const int outCn = weightsMat.size[0];
CV_Assert(!weightsMat.empty(), biasvec.size() == outCn + 2,
w.empty() || outCn == w.total(), b.empty() || outCn == b.total());
if (!w.empty())
{
for (int i = 0; i < outCn; ++i)
{
double wi = w.at<float>(i);
cv::multiply(slice(weightsMat_doubles, i), wi, slice(weightsMat_doubles, i));
biasvec[i] *= wi;
}
weightsMat_doubles.convertTo(weightsMat, weightsMat.type());
}
if (!b.empty())
{
for (int i = 0; i < outCn; ++i)
biasvec[i] += b.at<float>(i);
}
#ifdef HAVE_OPENCL
newWeightAndBias = true;
fusedBias = false;
newWeightAndBias = !w.empty() || !b.empty();
fusedBias = hasBias() || !b.empty();
#endif
return true;
biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1];
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
@ -776,97 +841,7 @@ public:
convolutionOp = Ptr<OCL4DNNConvSpatial<float> >(new OCL4DNNConvSpatial<float>(config));
}
int k, outCn = umat_blobs[0].size[0];
if( weightsMat.empty() )
{
// prepare weightsMat where each row is aligned and has enough zero padding on the right to
// use vectorized (i.e. with intrinsics) loops without tail processing
Mat wm = blobs[0].reshape(1, outCn).clone();
if( wm.step1() % VEC_ALIGN != 0 )
{
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
Mat wm_buffer = Mat(outCn, newcols, wm.type());
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
wm_padding.setTo(Scalar::all(0.));
Mat wm_aligned = wm_buffer.colRange(0, wm.cols);
wm.copyTo(wm_aligned);
wm = wm_aligned;
}
weightsMat = wm;
Mat biasMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat();
biasvec.resize(outCn+2);
if( biasMat.empty() )
{
for( k = 0; k < outCn; k++ )
biasvec[k] = 0.f;
}
else
{
for( k = 0; k < outCn; k++ )
biasvec[k] = biasMat.at<float>(k);
}
if( !bnorm.empty() || !scaleLayer.empty() || IS_POWER_LAYER(activ))
{
Mat scale, shift, scale2, shift2;
const float *scaleptr = 0, *shiftptr = 0;
const float *scaleptr2 = 0, *shiftptr2 = 0;
float a = 1.f, b = 0.f;
if( !bnorm.empty() )
{
bnorm->getScaleShift(scale, shift);
CV_Assert( scale.isContinuous() && shift.isContinuous() &&
scale.type() == CV_32F && shift.type() == CV_32F &&
scale.total() == (size_t)outCn &&
shift.total() == (size_t)outCn );
scaleptr = scale.ptr<float>();
shiftptr = shift.ptr<float>();
}
if( !scaleLayer.empty() )
{
scale2 = scaleLayer->blobs[0];
CV_Assert( scale2.isContinuous() && scale2.type() == CV_32F &&
scale2.total() == (size_t)outCn );
scaleptr2 = scale2.ptr<float>();
if( scaleLayer->hasBias )
{
shift2 = scaleLayer->blobs[1];
CV_Assert( shift2.isContinuous() && shift2.type() == CV_32F &&
shift2.total() == (size_t)outCn );
shiftptr2 = shift2.ptr<float>();
}
}
if( IS_POWER_LAYER(activ) )
{
Ptr<PowerLayer> activ_power = activ.dynamicCast<PowerLayer>();
CV_Assert(activ_power);
a = activ_power->scale;
b = activ_power->shift;
}
if (shiftptr || shiftptr2 || b != 0.f)
fusedBias = true;
for( int i = 0; i < outCn; i++ )
{
float s1 = scaleptr ? scaleptr[i] : 1.f;
float delta1 = shiftptr ? shiftptr[i] : 0.f;
float s2 = scaleptr2 ? scaleptr2[i] : 1.f;
float delta2 = shiftptr2 ? shiftptr2[i] : 0.f;
float* w_i = weightsMat.ptr<float>(i);
int j, wcols = weightsMat.cols;
for( j = 0; j < wcols; j++ )
w_i[j] *= (s1*s2*a);
biasvec[i] = biasvec[i]*(s1*s2*a) + (delta1*s2*a + delta2*a + b);
}
}
biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1];
}
int outCn = umat_blobs[0].size[0];
reluslope.clear();
if( activ )
@ -973,86 +948,7 @@ public:
int ngroups = inputs[0]->size[1]/blobs[0].size[1];
CV_Assert(outputs[0].size[1] % ngroups == 0);
int k, outCn = blobs[0].size[0];
if( weightsMat.empty() )
{
// prepare weightsMat where each row is aligned and has enough zero padding on the right to
// use vectorized (i.e. with intrinsics) loops without tail processing
Mat wm = blobs[0].reshape(1, outCn).clone();
if( wm.step1() % VEC_ALIGN != 0 )
{
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
Mat wm_buffer = Mat(outCn, newcols, wm.type());
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
wm_padding.setTo(Scalar::all(0.));
Mat wm_aligned = wm_buffer.colRange(0, wm.cols);
wm.copyTo(wm_aligned);
wm = wm_aligned;
}
weightsMat = wm;
Mat biasMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat();
biasvec.resize(outCn+2);
if( biasMat.empty() )
{
for( k = 0; k < outCn; k++ )
biasvec[k] = 0.f;
}
else
{
for( k = 0; k < outCn; k++ )
biasvec[k] = biasMat.at<float>(k);
}
if( !bnorm.empty() || !scaleLayer.empty() )
{
Mat scale, shift, scale2, shift2;
const float *scaleptr = 0, *shiftptr = 0;
const float *scaleptr2 = 0, *shiftptr2 = 0;
if( !bnorm.empty() )
{
bnorm->getScaleShift(scale, shift);
CV_Assert( scale.isContinuous() && shift.isContinuous() &&
scale.type() == CV_32F && shift.type() == CV_32F &&
scale.total() == (size_t)outCn &&
shift.total() == (size_t)outCn );
scaleptr = scale.ptr<float>();
shiftptr = shift.ptr<float>();
}
if( !scaleLayer.empty() )
{
scale2 = scaleLayer->blobs[0];
CV_Assert( scale2.isContinuous() && scale2.type() == CV_32F &&
scale2.total() == (size_t)outCn );
scaleptr2 = scale2.ptr<float>();
if( scaleLayer->hasBias )
{
shift2 = scaleLayer->blobs[1];
CV_Assert( shift2.isContinuous() && shift2.type() == CV_32F &&
shift2.total() == (size_t)outCn );
shiftptr2 = shift2.ptr<float>();
}
}
for( int i = 0; i < outCn; i++ )
{
float s1 = scaleptr ? scaleptr[i] : 1.f;
float delta1 = shiftptr ? shiftptr[i] : 0.f;
float s2 = scaleptr2 ? scaleptr2[i] : 1.f;
float delta2 = shiftptr2 ? shiftptr2[i] : 0.f;
float* w_i = weightsMat.ptr<float>(i);
int j, wcols = weightsMat.cols;
for( j = 0; j < wcols; j++ )
w_i[j] *= (s1*s2);
biasvec[i] = biasvec[i]*(s1*s2) + (delta1*s2 + delta2);
}
}
biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1];
}
int outCn = blobs[0].size[0];
reluslope.clear();
if( activ )
@ -1103,6 +999,8 @@ public:
UMat umat_weights;
UMat umat_biases;
DeConvolutionLayerImpl(const LayerParams& params) : BaseConvolutionLayerImpl(params) {}
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const
{
int inpCn = inpShape[1];
@ -1619,36 +1517,15 @@ public:
}
};
//Convolution and Deconvolution
static void initConvDeconvLayerFromCaffe(Ptr<BaseConvolutionLayer> l, const LayerParams &params)
{
l->setParamsFrom(params);
getConvolutionKernelParams(params, l->kernel.height, l->kernel.width, l->pad.height,
l->pad.width, l->stride.height, l->stride.width, l->dilation.height,
l->dilation.width, l->padMode);
l->numOutput = params.get<int>("num_output");
int ngroups = params.get<int>("group", 1);
l->adjustPad.height = params.get<int>("adj_h", 0);
l->adjustPad.width = params.get<int>("adj_w", 0);
CV_Assert(l->numOutput % ngroups == 0);
CV_Assert(l->adjustPad.width < l->stride.width &&
l->adjustPad.height < l->stride.height);
}
Ptr<BaseConvolutionLayer> ConvolutionLayer::create(const LayerParams &params)
{
ConvolutionLayerImpl* conv_ptr = new ConvolutionLayerImpl;
Ptr<BaseConvolutionLayer> l(conv_ptr);
initConvDeconvLayerFromCaffe(l, params);
Ptr<ConvolutionLayerImpl> l(new ConvolutionLayerImpl(params));
#ifdef HAVE_OPENCL
size_t n = params.blobs.size();
conv_ptr->umat_blobs.resize(n);
l->umat_blobs.resize(n);
for (int i = 0; i < n; i++)
conv_ptr->umat_blobs[i] = params.blobs[i].getUMat(ACCESS_READ);
l->umat_blobs[i] = params.blobs[i].getUMat(ACCESS_READ);
#endif
return l;
@ -1656,10 +1533,7 @@ Ptr<BaseConvolutionLayer> ConvolutionLayer::create(const LayerParams &params)
Ptr<BaseConvolutionLayer> DeconvolutionLayer::create(const LayerParams &params)
{
Ptr<BaseConvolutionLayer> l(new DeConvolutionLayerImpl);
initConvDeconvLayerFromCaffe(l, params);
return l;
return Ptr<BaseConvolutionLayer>(new DeConvolutionLayerImpl(params));
}
}

@ -65,16 +65,18 @@ public:
relu_slope = 0.f;
}
Ptr<BatchNormLayer> bnorm;
Mat scale, shift;
UMat bnorm_weight, bnorm_bias;
bool fuse_batch_norm;
bool setBatchNorm(const Ptr<BatchNormLayer>& layer )
virtual bool tryFuse(Ptr<Layer>& top)
{
bnorm = layer;
fuse_batch_norm = !bnorm.empty() && (preferableTarget == DNN_TARGET_OPENCL);
return fuse_batch_norm;
if (preferableTarget == DNN_TARGET_OPENCL && !fuse_batch_norm)
{
top->getScaleShift(scale, shift);
fuse_batch_norm = !scale.empty() || !shift.empty();
return fuse_batch_norm;
}
return false;
}
Ptr<ReLULayer> activ_relu;
@ -95,12 +97,8 @@ public:
#ifdef HAVE_OPENCL
bool fast_forward_ocl(std::vector<UMat> &inputs, std::vector<UMat> &outputs)
{
if( fuse_batch_norm && scale.empty())
{
bnorm->getScaleShift(scale, shift);
bnorm_weight = scale.getUMat(ACCESS_READ);
bnorm_bias = shift.getUMat(ACCESS_READ);
}
UMat bnorm_weight = scale.empty() ? UMat() : scale.getUMat(ACCESS_READ);
UMat bnorm_bias = shift.empty() ? UMat() : shift.getUMat(ACCESS_READ);
int splitDim = (acrossChannels) ? 1 : 2;
for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++)
@ -171,12 +169,8 @@ public:
return ret;
}
if( fuse_batch_norm && scale.empty())
{
bnorm->getScaleShift(scale, shift);
bnorm_weight = scale.getUMat(ACCESS_READ);
bnorm_bias = shift.getUMat(ACCESS_READ);
}
UMat bnorm_weight = scale.empty() ? UMat() : scale.getUMat(ACCESS_READ);
UMat bnorm_bias = shift.empty() ? UMat() : shift.getUMat(ACCESS_READ);
for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++)
{

@ -201,6 +201,12 @@ public:
return Ptr<BackendNode>();
}
void getScaleShift(Mat& scale, Mat& shift) const
{
scale = !blobs.empty() ? blobs[0] : Mat();
shift = hasBias ? blobs[1] : Mat();
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const
{

@ -136,6 +136,12 @@ public:
return Ptr<BackendNode>();
}
void getScaleShift(Mat& scale, Mat& shift) const
{
scale = Mat();
shift = blobs[0];
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const
{

Loading…
Cancel
Save