|
|
|
@ -100,7 +100,7 @@ protected: |
|
|
|
|
double tau; |
|
|
|
|
double lambda; |
|
|
|
|
double theta; |
|
|
|
|
double gamma; |
|
|
|
|
double gamma; |
|
|
|
|
int nscales; |
|
|
|
|
int warps; |
|
|
|
|
double epsilon; |
|
|
|
@ -111,7 +111,7 @@ protected: |
|
|
|
|
int medianFiltering; |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
void procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2); |
|
|
|
|
void procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2, Mat_<float>& u3); |
|
|
|
|
|
|
|
|
|
bool procOneScale_ocl(const UMat& I0, const UMat& I1, UMat& u1, UMat& u2); |
|
|
|
|
|
|
|
|
@ -121,8 +121,8 @@ private: |
|
|
|
|
std::vector<Mat_<float> > I0s; |
|
|
|
|
std::vector<Mat_<float> > I1s; |
|
|
|
|
std::vector<Mat_<float> > u1s; |
|
|
|
|
std::vector<Mat_<float> > u2s; |
|
|
|
|
std::vector<Mat_<float> > u3s; |
|
|
|
|
std::vector<Mat_<float> > u2s; |
|
|
|
|
std::vector<Mat_<float> > u3s; |
|
|
|
|
|
|
|
|
|
Mat_<float> I1x_buf; |
|
|
|
|
Mat_<float> I1y_buf; |
|
|
|
@ -138,25 +138,26 @@ private: |
|
|
|
|
Mat_<float> rho_c_buf; |
|
|
|
|
|
|
|
|
|
Mat_<float> v1_buf; |
|
|
|
|
Mat_<float> v2_buf; |
|
|
|
|
Mat_<float> v2_buf; |
|
|
|
|
Mat_<float> v3_buf; |
|
|
|
|
|
|
|
|
|
Mat_<float> p11_buf; |
|
|
|
|
Mat_<float> p12_buf; |
|
|
|
|
Mat_<float> p21_buf; |
|
|
|
|
Mat_<float> p22_buf; |
|
|
|
|
Mat_<float> p31_buf; |
|
|
|
|
Mat_<float> p32_buf; |
|
|
|
|
Mat_<float> p22_buf; |
|
|
|
|
Mat_<float> p31_buf; |
|
|
|
|
Mat_<float> p32_buf; |
|
|
|
|
|
|
|
|
|
Mat_<float> div_p1_buf; |
|
|
|
|
Mat_<float> div_p2_buf; |
|
|
|
|
Mat_<float> div_p3_buf; |
|
|
|
|
Mat_<float> div_p2_buf; |
|
|
|
|
Mat_<float> div_p3_buf; |
|
|
|
|
|
|
|
|
|
Mat_<float> u1x_buf; |
|
|
|
|
Mat_<float> u1y_buf; |
|
|
|
|
Mat_<float> u2x_buf; |
|
|
|
|
Mat_<float> u2y_buf; |
|
|
|
|
Mat_<float> u3x_buf; |
|
|
|
|
Mat_<float> u3y_buf; |
|
|
|
|
Mat_<float> u2y_buf; |
|
|
|
|
Mat_<float> u3x_buf; |
|
|
|
|
Mat_<float> u3y_buf; |
|
|
|
|
} dm; |
|
|
|
|
struct dataUMat |
|
|
|
|
{ |
|
|
|
@ -350,7 +351,7 @@ OpticalFlowDual_TVL1::OpticalFlowDual_TVL1() |
|
|
|
|
nscales = 5; |
|
|
|
|
warps = 5; |
|
|
|
|
epsilon = 0.01; |
|
|
|
|
gamma = 1.; |
|
|
|
|
gamma = 0.01; |
|
|
|
|
innerIterations = 30; |
|
|
|
|
outerIterations = 10; |
|
|
|
|
useInitialFlow = false; |
|
|
|
@ -375,15 +376,15 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray |
|
|
|
|
dm.I0s.resize(nscales); |
|
|
|
|
dm.I1s.resize(nscales); |
|
|
|
|
dm.u1s.resize(nscales); |
|
|
|
|
dm.u2s.resize(nscales); |
|
|
|
|
dm.u3s.resize(nscales); |
|
|
|
|
dm.u2s.resize(nscales); |
|
|
|
|
dm.u3s.resize(nscales); |
|
|
|
|
|
|
|
|
|
I0.convertTo(dm.I0s[0], dm.I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0); |
|
|
|
|
I1.convertTo(dm.I1s[0], dm.I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0); |
|
|
|
|
|
|
|
|
|
dm.u1s[0].create(I0.size()); |
|
|
|
|
dm.u2s[0].create(I0.size()); |
|
|
|
|
dm.u3s[0].create(I0.size()); |
|
|
|
|
dm.u2s[0].create(I0.size()); |
|
|
|
|
dm.u3s[0].create(I0.size()); |
|
|
|
|
|
|
|
|
|
if (useInitialFlow) |
|
|
|
|
{ |
|
|
|
@ -405,25 +406,26 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray |
|
|
|
|
dm.rho_c_buf.create(I0.size()); |
|
|
|
|
|
|
|
|
|
dm.v1_buf.create(I0.size()); |
|
|
|
|
dm.v2_buf.create(I0.size()); |
|
|
|
|
dm.v2_buf.create(I0.size()); |
|
|
|
|
dm.v3_buf.create(I0.size()); |
|
|
|
|
|
|
|
|
|
dm.p11_buf.create(I0.size()); |
|
|
|
|
dm.p12_buf.create(I0.size()); |
|
|
|
|
dm.p21_buf.create(I0.size()); |
|
|
|
|
dm.p22_buf.create(I0.size()); |
|
|
|
|
dm.p31_buf.create(I0.size()); |
|
|
|
|
dm.p32_buf.create(I0.size()); |
|
|
|
|
dm.p22_buf.create(I0.size()); |
|
|
|
|
dm.p31_buf.create(I0.size()); |
|
|
|
|
dm.p32_buf.create(I0.size()); |
|
|
|
|
|
|
|
|
|
dm.div_p1_buf.create(I0.size()); |
|
|
|
|
dm.div_p2_buf.create(I0.size()); |
|
|
|
|
dm.div_p3_buf.create(I0.size()); |
|
|
|
|
dm.div_p2_buf.create(I0.size()); |
|
|
|
|
dm.div_p3_buf.create(I0.size()); |
|
|
|
|
|
|
|
|
|
dm.u1x_buf.create(I0.size()); |
|
|
|
|
dm.u1y_buf.create(I0.size()); |
|
|
|
|
dm.u2x_buf.create(I0.size()); |
|
|
|
|
dm.u2y_buf.create(I0.size()); |
|
|
|
|
dm.u3x_buf.create(I0.size()); |
|
|
|
|
dm.u3y_buf.create(I0.size()); |
|
|
|
|
dm.u2y_buf.create(I0.size()); |
|
|
|
|
dm.u3x_buf.create(I0.size()); |
|
|
|
|
dm.u3y_buf.create(I0.size()); |
|
|
|
|
|
|
|
|
|
// create the scales
|
|
|
|
|
for (int s = 1; s < nscales; ++s) |
|
|
|
@ -448,21 +450,21 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
dm.u1s[s].create(dm.I0s[s].size()); |
|
|
|
|
dm.u2s[s].create(dm.I0s[s].size()); |
|
|
|
|
dm.u2s[s].create(dm.I0s[s].size()); |
|
|
|
|
} |
|
|
|
|
dm.u3s[s].create(dm.I0s[s].size()); |
|
|
|
|
dm.u3s[s].create(dm.I0s[s].size()); |
|
|
|
|
} |
|
|
|
|
if (!useInitialFlow) |
|
|
|
|
{ |
|
|
|
|
dm.u1s[nscales - 1].setTo(Scalar::all(0)); |
|
|
|
|
dm.u2s[nscales - 1].setTo(Scalar::all(0)); |
|
|
|
|
}
|
|
|
|
|
dm.u3s[nscales - 1].setTo(Scalar::all(0)); |
|
|
|
|
}
|
|
|
|
|
dm.u3s[nscales - 1].setTo(Scalar::all(0)); |
|
|
|
|
// pyramidal structure for computing the optical flow
|
|
|
|
|
for (int s = nscales - 1; s >= 0; --s) |
|
|
|
|
{ |
|
|
|
|
// compute the optical flow at the current scale
|
|
|
|
|
procOneScale(dm.I0s[s], dm.I1s[s], dm.u1s[s], dm.u2s[s]); |
|
|
|
|
procOneScale(dm.I0s[s], dm.I1s[s], dm.u1s[s], dm.u2s[s], dm.u3s[s]); |
|
|
|
|
|
|
|
|
|
// if this was the last scale, finish now
|
|
|
|
|
if (s == 0) |
|
|
|
@ -472,7 +474,7 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray |
|
|
|
|
|
|
|
|
|
// zoom the optical flow for the next finer scale
|
|
|
|
|
resize(dm.u1s[s], dm.u1s[s - 1], dm.I0s[s - 1].size()); |
|
|
|
|
resize(dm.u2s[s], dm.u2s[s - 1], dm.I0s[s - 1].size()); |
|
|
|
|
resize(dm.u2s[s], dm.u2s[s - 1], dm.I0s[s - 1].size()); |
|
|
|
|
resize(dm.u3s[s], dm.u3s[s - 1], dm.I0s[s - 1].size()); |
|
|
|
|
|
|
|
|
|
// scale the optical flow with the appropriate zoom factor (don't scale u3!)
|
|
|
|
@ -888,10 +890,10 @@ void CalcGradRhoBody::operator() (const Range& range) const |
|
|
|
|
|
|
|
|
|
// compute the constant part of the rho function
|
|
|
|
|
rhoRow[x] = (I1wRow[x] - I1wxRow[x] * u1Row[x] - I1wyRow[x] * u2Row[x] - I0Row[x]); |
|
|
|
|
//It = I1wRow[x] - I0Row[x]
|
|
|
|
|
//(u - u0)*i_X = I1wxRow[x] * u1Row[x]
|
|
|
|
|
//(v - v0)*i_Y = I1wyRow[x] * u2Row[x]
|
|
|
|
|
// gamma * w = gamma * u3
|
|
|
|
|
//It = I1wRow[x] - I0Row[x]
|
|
|
|
|
//(u - u0)*i_X = I1wxRow[x] * u1Row[x]
|
|
|
|
|
//(v - v0)*i_Y = I1wyRow[x] * u2Row[x]
|
|
|
|
|
// gamma * w = gamma * u3
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -931,15 +933,15 @@ struct EstimateVBody : ParallelLoopBody |
|
|
|
|
Mat_<float> I1wx; |
|
|
|
|
Mat_<float> I1wy; |
|
|
|
|
Mat_<float> u1; |
|
|
|
|
Mat_<float> u2; |
|
|
|
|
Mat_<float> u3; |
|
|
|
|
Mat_<float> u2; |
|
|
|
|
Mat_<float> u3; |
|
|
|
|
Mat_<float> grad; |
|
|
|
|
Mat_<float> rho_c; |
|
|
|
|
mutable Mat_<float> v1; |
|
|
|
|
mutable Mat_<float> v2; |
|
|
|
|
mutable Mat_<float> v3; |
|
|
|
|
mutable Mat_<float> v2; |
|
|
|
|
mutable Mat_<float> v3; |
|
|
|
|
float l_t; |
|
|
|
|
float gamma; |
|
|
|
|
float gamma; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
void EstimateVBody::operator() (const Range& range) const |
|
|
|
@ -949,14 +951,14 @@ void EstimateVBody::operator() (const Range& range) const |
|
|
|
|
const float* I1wxRow = I1wx[y]; |
|
|
|
|
const float* I1wyRow = I1wy[y]; |
|
|
|
|
const float* u1Row = u1[y]; |
|
|
|
|
const float* u2Row = u2[y]; |
|
|
|
|
const float* u3Row = u3[y]; |
|
|
|
|
const float* u2Row = u2[y]; |
|
|
|
|
const float* u3Row = u3[y]; |
|
|
|
|
const float* gradRow = grad[y]; |
|
|
|
|
const float* rhoRow = rho_c[y]; |
|
|
|
|
|
|
|
|
|
float* v1Row = v1[y]; |
|
|
|
|
float* v2Row = v2[y]; |
|
|
|
|
float* v3Row = v3[y]; |
|
|
|
|
float* v2Row = v2[y]; |
|
|
|
|
float* v3Row = v3[y]; |
|
|
|
|
|
|
|
|
|
for (int x = 0; x < I1wx.cols; ++x) |
|
|
|
|
{ |
|
|
|
@ -964,37 +966,37 @@ void EstimateVBody::operator() (const Range& range) const |
|
|
|
|
|
|
|
|
|
float d1 = 0.0f; |
|
|
|
|
float d2 = 0.0f; |
|
|
|
|
float d3 = 0.0f; |
|
|
|
|
float d3 = 0.0f; |
|
|
|
|
// add d3 for 3 cases
|
|
|
|
|
if (rho < -l_t * gradRow[x]) |
|
|
|
|
{ |
|
|
|
|
d1 = l_t * I1wxRow[x]; |
|
|
|
|
d2 = l_t * I1wyRow[x]; |
|
|
|
|
d3 = l_t * gamma; |
|
|
|
|
d3 = l_t * gamma; |
|
|
|
|
} |
|
|
|
|
else if (rho > l_t * gradRow[x]) |
|
|
|
|
{ |
|
|
|
|
d1 = -l_t * I1wxRow[x]; |
|
|
|
|
d2 = -l_t * I1wyRow[x]; |
|
|
|
|
d3 = -l_t * gamma; |
|
|
|
|
d2 = -l_t * I1wyRow[x]; |
|
|
|
|
d3 = -l_t * gamma; |
|
|
|
|
} |
|
|
|
|
else if (gradRow[x] > std::numeric_limits<float>::epsilon()) |
|
|
|
|
{ |
|
|
|
|
float fi = -rho / gradRow[x]; |
|
|
|
|
d1 = fi * I1wxRow[x]; |
|
|
|
|
d2 = fi * I1wyRow[x]; |
|
|
|
|
d3 = fi * gamma; |
|
|
|
|
d3 = fi * gamma; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
v1Row[x] = u1Row[x] + d1; |
|
|
|
|
v2Row[x] = u2Row[x] + d2; |
|
|
|
|
v3Row[x] = u3Row[x] + d3; |
|
|
|
|
v2Row[x] = u2Row[x] + d2; |
|
|
|
|
v3Row[x] = u3Row[x] + d3; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2, const Mat_<float>& u3, const Mat_<float>& grad, const Mat_<float>& rho_c, |
|
|
|
|
Mat_<float>& v1, Mat_<float>& v2, Mat_<float>& v3, float l_t, float gamma) |
|
|
|
|
Mat_<float>& v1, Mat_<float>& v2, Mat_<float>& v3, float l_t, float gamma) |
|
|
|
|
{ |
|
|
|
|
CV_DbgAssert( I1wy.size() == I1wx.size() ); |
|
|
|
|
CV_DbgAssert( u1.size() == I1wx.size() ); |
|
|
|
@ -1011,15 +1013,15 @@ void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<floa |
|
|
|
|
body.I1wx = I1wx; |
|
|
|
|
body.I1wy = I1wy; |
|
|
|
|
body.u1 = u1; |
|
|
|
|
body.u2 = u2; |
|
|
|
|
body.u3 = u3; |
|
|
|
|
body.u2 = u2; |
|
|
|
|
body.u3 = u3; |
|
|
|
|
body.grad = grad; |
|
|
|
|
body.rho_c = rho_c; |
|
|
|
|
body.v1 = v1; |
|
|
|
|
body.v2 = v2; |
|
|
|
|
body.v3 = v3; |
|
|
|
|
body.l_t = l_t; |
|
|
|
|
body.gamma = gamma; |
|
|
|
|
body.v2 = v2; |
|
|
|
|
body.v3 = v3; |
|
|
|
|
body.l_t = l_t; |
|
|
|
|
body.gamma = gamma; |
|
|
|
|
|
|
|
|
|
parallel_for_(Range(0, I1wx.rows), body); |
|
|
|
|
} |
|
|
|
@ -1027,36 +1029,45 @@ void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<floa |
|
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
|
// estimateU
|
|
|
|
|
|
|
|
|
|
float estimateU(const Mat_<float>& v1, const Mat_<float>& v2, const Mat_<float>& div_p1, const Mat_<float>& div_p2, Mat_<float>& u1, Mat_<float>& u2, float theta) |
|
|
|
|
float estimateU(const Mat_<float>& v1, const Mat_<float>& v2, const Mat_<float>& v3,
|
|
|
|
|
const Mat_<float>& div_p1, const Mat_<float>& div_p2, const Mat_<float>& div_p3,
|
|
|
|
|
Mat_<float>& u1, Mat_<float>& u2, Mat_<float>& u3, |
|
|
|
|
float theta, float gamma) |
|
|
|
|
{ |
|
|
|
|
CV_DbgAssert( v2.size() == v1.size() ); |
|
|
|
|
CV_DbgAssert( v3.size() == v1.size() ); |
|
|
|
|
CV_DbgAssert( div_p1.size() == v1.size() ); |
|
|
|
|
CV_DbgAssert( div_p2.size() == v1.size() ); |
|
|
|
|
CV_DbgAssert( div_p3.size() == v1.size() ); |
|
|
|
|
CV_DbgAssert( u1.size() == v1.size() ); |
|
|
|
|
CV_DbgAssert( u2.size() == v1.size() ); |
|
|
|
|
CV_DbgAssert( u3.size() == v1.size() ); |
|
|
|
|
|
|
|
|
|
float error = 0.0f; |
|
|
|
|
for (int y = 0; y < v1.rows; ++y) |
|
|
|
|
{ |
|
|
|
|
const float* v1Row = v1[y]; |
|
|
|
|
const float* v2Row = v2[y]; |
|
|
|
|
const float* v2Row = v2[y]; |
|
|
|
|
const float* v3Row = v3[y]; |
|
|
|
|
const float* divP1Row = div_p1[y]; |
|
|
|
|
const float* divP2Row = div_p2[y]; |
|
|
|
|
const float* divP2Row = div_p2[y]; |
|
|
|
|
const float* divP3Row = div_p3[y]; |
|
|
|
|
|
|
|
|
|
float* u1Row = u1[y]; |
|
|
|
|
float* u2Row = u2[y]; |
|
|
|
|
float* u2Row = u2[y]; |
|
|
|
|
float* u3Row = u3[y]; |
|
|
|
|
|
|
|
|
|
for (int x = 0; x < v1.cols; ++x) |
|
|
|
|
{ |
|
|
|
|
const float u1k = u1Row[x]; |
|
|
|
|
const float u2k = u2Row[x]; |
|
|
|
|
const float u2k = u2Row[x]; |
|
|
|
|
const float u3k = u3Row[x]; |
|
|
|
|
|
|
|
|
|
u1Row[x] = v1Row[x] + theta * divP1Row[x]; |
|
|
|
|
u2Row[x] = v2Row[x] + theta * divP2Row[x]; |
|
|
|
|
|
|
|
|
|
//u3
|
|
|
|
|
|
|
|
|
|
error += (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k); |
|
|
|
|
u2Row[x] = v2Row[x] + theta * divP2Row[x]; |
|
|
|
|
u3Row[x] = v3Row[x] + theta * divP3Row[x]; |
|
|
|
|
|
|
|
|
|
error += (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k) + (u3Row[x] - u3k) * (u3Row[x] - u3k); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -1073,11 +1084,15 @@ struct EstimateDualVariablesBody : ParallelLoopBody |
|
|
|
|
Mat_<float> u1x; |
|
|
|
|
Mat_<float> u1y; |
|
|
|
|
Mat_<float> u2x; |
|
|
|
|
Mat_<float> u2y; |
|
|
|
|
Mat_<float> u2y; |
|
|
|
|
Mat_<float> u3x; |
|
|
|
|
Mat_<float> u3y; |
|
|
|
|
mutable Mat_<float> p11; |
|
|
|
|
mutable Mat_<float> p12; |
|
|
|
|
mutable Mat_<float> p21; |
|
|
|
|
mutable Mat_<float> p22; |
|
|
|
|
mutable Mat_<float> p22; |
|
|
|
|
mutable Mat_<float> p31; |
|
|
|
|
mutable Mat_<float> p32; |
|
|
|
|
float taut; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
@ -1088,50 +1103,71 @@ void EstimateDualVariablesBody::operator() (const Range& range) const |
|
|
|
|
const float* u1xRow = u1x[y]; |
|
|
|
|
const float* u1yRow = u1y[y]; |
|
|
|
|
const float* u2xRow = u2x[y]; |
|
|
|
|
const float* u2yRow = u2y[y]; |
|
|
|
|
const float* u2yRow = u2y[y]; |
|
|
|
|
const float* u3xRow = u3x[y]; |
|
|
|
|
const float* u3yRow = u3y[y]; |
|
|
|
|
|
|
|
|
|
float* p11Row = p11[y]; |
|
|
|
|
float* p12Row = p12[y]; |
|
|
|
|
float* p21Row = p21[y]; |
|
|
|
|
float* p22Row = p22[y]; |
|
|
|
|
float* p22Row = p22[y]; |
|
|
|
|
float* p31Row = p31[y]; |
|
|
|
|
float* p32Row = p32[y]; |
|
|
|
|
|
|
|
|
|
for (int x = 0; x < u1x.cols; ++x) |
|
|
|
|
{ |
|
|
|
|
const float g1 = static_cast<float>(hypot(u1xRow[x], u1yRow[x])); |
|
|
|
|
const float g2 = static_cast<float>(hypot(u2xRow[x], u2yRow[x])); |
|
|
|
|
const float g2 = static_cast<float>(hypot(u2xRow[x], u2yRow[x])); |
|
|
|
|
const float g3 = static_cast<float>(hypot(u3xRow[x], u3yRow[x])); |
|
|
|
|
|
|
|
|
|
const float ng1 = 1.0f + taut * g1; |
|
|
|
|
const float ng2 = 1.0f + taut * g2; |
|
|
|
|
const float ng2 = 1.0f + taut * g2; |
|
|
|
|
const float ng3 = 1.0f + taut * g3; |
|
|
|
|
|
|
|
|
|
p11Row[x] = (p11Row[x] + taut * u1xRow[x]) / ng1; |
|
|
|
|
p12Row[x] = (p12Row[x] + taut * u1yRow[x]) / ng1; |
|
|
|
|
p21Row[x] = (p21Row[x] + taut * u2xRow[x]) / ng2; |
|
|
|
|
p22Row[x] = (p22Row[x] + taut * u2yRow[x]) / ng2; |
|
|
|
|
p22Row[x] = (p22Row[x] + taut * u2yRow[x]) / ng2; |
|
|
|
|
p31Row[x] = (p31Row[x] + taut * u3xRow[x]) / ng3; |
|
|
|
|
p32Row[x] = (p32Row[x] + taut * u3yRow[x]) / ng3; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void estimateDualVariables(const Mat_<float>& u1x, const Mat_<float>& u1y, const Mat_<float>& u2x, const Mat_<float>& u2y, |
|
|
|
|
Mat_<float>& p11, Mat_<float>& p12, Mat_<float>& p21, Mat_<float>& p22, float taut) |
|
|
|
|
void estimateDualVariables(const Mat_<float>& u1x, const Mat_<float>& u1y,
|
|
|
|
|
const Mat_<float>& u2x, const Mat_<float>& u2y, |
|
|
|
|
const Mat_<float>& u3x, const Mat_<float>& u3y, |
|
|
|
|
Mat_<float>& p11, Mat_<float>& p12,
|
|
|
|
|
Mat_<float>& p21, Mat_<float>& p22,
|
|
|
|
|
Mat_<float>& p31, Mat_<float>& p32, |
|
|
|
|
float taut) |
|
|
|
|
{ |
|
|
|
|
CV_DbgAssert( u1y.size() == u1x.size() ); |
|
|
|
|
CV_DbgAssert( u2x.size() == u1x.size() ); |
|
|
|
|
CV_DbgAssert( u3x.size() == u1x.size() ); |
|
|
|
|
CV_DbgAssert( u2y.size() == u1x.size() ); |
|
|
|
|
CV_DbgAssert( u3y.size() == u1x.size() ); |
|
|
|
|
CV_DbgAssert( p11.size() == u1x.size() ); |
|
|
|
|
CV_DbgAssert( p12.size() == u1x.size() ); |
|
|
|
|
CV_DbgAssert( p21.size() == u1x.size() ); |
|
|
|
|
CV_DbgAssert( p22.size() == u1x.size() ); |
|
|
|
|
CV_DbgAssert( p31.size() == u1x.size() ); |
|
|
|
|
CV_DbgAssert( p32.size() == u1x.size() ); |
|
|
|
|
|
|
|
|
|
EstimateDualVariablesBody body; |
|
|
|
|
|
|
|
|
|
body.u1x = u1x; |
|
|
|
|
body.u1y = u1y; |
|
|
|
|
body.u2x = u2x; |
|
|
|
|
body.u2y = u2y; |
|
|
|
|
body.u2y = u2y; |
|
|
|
|
body.u3x = u3x; |
|
|
|
|
body.u3y = u3y; |
|
|
|
|
body.p11 = p11; |
|
|
|
|
body.p12 = p12; |
|
|
|
|
body.p21 = p21; |
|
|
|
|
body.p22 = p22; |
|
|
|
|
body.p22 = p22; |
|
|
|
|
body.p31 = p31; |
|
|
|
|
body.p32 = p32; |
|
|
|
|
body.taut = taut; |
|
|
|
|
|
|
|
|
|
parallel_for_(Range(0, u1x.rows), body); |
|
|
|
@ -1225,7 +1261,7 @@ bool OpticalFlowDual_TVL1::procOneScale_ocl(const UMat& I0, const UMat& I1, UMat |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2) |
|
|
|
|
void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2, Mat_<float>& u3) |
|
|
|
|
{ |
|
|
|
|
const float scaledEpsilon = static_cast<float>(epsilon * epsilon * I0.size().area()); |
|
|
|
|
|
|
|
|
@ -1249,31 +1285,32 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float> |
|
|
|
|
Mat_<float> rho_c = dm.rho_c_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
|
|
|
|
|
Mat_<float> v1 = dm.v1_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> v2 = dm.v2_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> v2 = dm.v2_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> v3 = dm.v3_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
|
|
|
|
|
Mat_<float> p11 = dm.p11_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> p12 = dm.p12_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> p21 = dm.p21_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> p22 = dm.p22_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> p31 = dm.p31_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> p32 = dm.p32_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> p22 = dm.p22_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> p31 = dm.p31_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> p32 = dm.p32_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
p11.setTo(Scalar::all(0)); |
|
|
|
|
p12.setTo(Scalar::all(0)); |
|
|
|
|
p21.setTo(Scalar::all(0)); |
|
|
|
|
p22.setTo(Scalar::all(0)); |
|
|
|
|
p31.setTo(Scalar::all(0)); |
|
|
|
|
p32.setTo(Scalar::all(0)); |
|
|
|
|
p22.setTo(Scalar::all(0)); |
|
|
|
|
p31.setTo(Scalar::all(0)); |
|
|
|
|
p32.setTo(Scalar::all(0)); |
|
|
|
|
|
|
|
|
|
Mat_<float> div_p1 = dm.div_p1_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> div_p3 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> div_p3 = dm.div_p3_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
|
|
|
|
|
Mat_<float> u1x = dm.u1x_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> u1y = dm.u1y_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> u2x = dm.u2x_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> u2y = dm.u2y_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> u3x = dm.u3x_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> u3y = dm.u3y_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> u2y = dm.u2y_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> u3x = dm.u3x_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
Mat_<float> u3y = dm.u3y_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
|
|
|
|
|
|
const float l_t = static_cast<float>(lambda * theta); |
|
|
|
|
const float taut = static_cast<float>(tau / theta); |
|
|
|
@ -1285,7 +1322,7 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float> |
|
|
|
|
remap(I1, I1w, flowMap1, flowMap2, INTER_CUBIC); |
|
|
|
|
remap(I1x, I1wx, flowMap1, flowMap2, INTER_CUBIC); |
|
|
|
|
remap(I1y, I1wy, flowMap1, flowMap2, INTER_CUBIC); |
|
|
|
|
//calculate I1(x+u0) and its gradient
|
|
|
|
|
//calculate I1(x+u0) and its gradient
|
|
|
|
|
calcGradRho(I0, I1w, I1wx, I1wy, u1, u2, grad, rho_c); |
|
|
|
|
|
|
|
|
|
float error = std::numeric_limits<float>::max(); |
|
|
|
@ -1298,21 +1335,23 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float> |
|
|
|
|
for (int n_inner = 0; error > scaledEpsilon && n_inner < innerIterations; ++n_inner) |
|
|
|
|
{ |
|
|
|
|
// estimate the values of the variable (v1, v2) (thresholding operator TH)
|
|
|
|
|
estimateV(I1wx, I1wy, u1, u2, grad, rho_c, v1, v2, l_t); |
|
|
|
|
estimateV(I1wx, I1wy, u1, u2, u3, grad, rho_c, v1, v2, v3, l_t, gamma); |
|
|
|
|
|
|
|
|
|
// compute the divergence of the dual variable (p1, p2)
|
|
|
|
|
// compute the divergence of the dual variable (p1, p2, p3)
|
|
|
|
|
divergence(p11, p12, div_p1); |
|
|
|
|
divergence(p21, p22, div_p2); |
|
|
|
|
divergence(p21, p22, div_p2); |
|
|
|
|
divergence(p31, p32, div_p3); |
|
|
|
|
|
|
|
|
|
// estimate the values of the optical flow (u1, u2)
|
|
|
|
|
error = estimateU(v1, v2, div_p1, div_p2, u1, u2, static_cast<float>(theta)); |
|
|
|
|
error = estimateU(v1, v2, v3, div_p1, div_p2, div_p3, u1, u2, u3, static_cast<float>(theta), gamma); |
|
|
|
|
|
|
|
|
|
// compute the gradient of the optical flow (Du1, Du2)
|
|
|
|
|
forwardGradient(u1, u1x, u1y); |
|
|
|
|
forwardGradient(u2, u2x, u2y); |
|
|
|
|
forwardGradient(u2, u2x, u2y); |
|
|
|
|
forwardGradient(u3, u3x, u3y); |
|
|
|
|
|
|
|
|
|
// estimate the values of the dual variable (p1, p2)
|
|
|
|
|
estimateDualVariables(u1x, u1y, u2x, u2y, p11, p12, p21, p22, taut); |
|
|
|
|
// estimate the values of the dual variable (p1, p2, p3)
|
|
|
|
|
estimateDualVariables(u1x, u1y, u2x, u2y, u3x, u3y, p11, p12, p21, p22, p31, p32, taut); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -1402,6 +1441,8 @@ CV_INIT_ALGORITHM(OpticalFlowDual_TVL1, "DenseOpticalFlow.DualTVL1", |
|
|
|
|
"inner iterations (between outlier filtering) used in the numerical scheme"); |
|
|
|
|
obj.info()->addParam(obj, "outerIterations", obj.outerIterations, false, 0, 0, |
|
|
|
|
"outer iterations (number of inner loops) used in the numerical scheme"); |
|
|
|
|
obj.info()->addParam(obj, "gamma", obj.gamma, false, 0, 0, |
|
|
|
|
"coefficient for additional Ali term"); |
|
|
|
|
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow)) |
|
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|