ocl: split: update tests and implementation

pull/1712/head
Alexander Alekhin 11 years ago
parent 8a4f1bbbdf
commit 50d2c1066b
  1. 2
      modules/ocl/src/cl_programcache.cpp
  2. 1306
      modules/ocl/src/opencl/split_mat.cl
  3. 142
      modules/ocl/src/split_merge.cpp
  4. 82
      modules/ocl/test/test_split_merge.cpp
  5. 6
      modules/ocl/test/utility.hpp

@ -428,7 +428,7 @@ struct ProgramFileCache
if(status != CL_SUCCESS)
{
if(status == CL_BUILD_PROGRAM_FAILURE)
if (status == CL_BUILD_PROGRAM_FAILURE || status == CL_INVALID_BUILD_OPTIONS)
{
size_t buildLogSize = 0;
openCLSafeCall(clGetProgramBuildInfo(program, getClDeviceID(ctx),

File diff suppressed because it is too large Load Diff

@ -149,80 +149,119 @@ namespace cv
mat_dst.create(size, CV_MAKETYPE(depth, total_channels));
merge_vector_run(mat_src, n, mat_dst);
}
static void split_vector_run(const oclMat &mat_src, oclMat *mat_dst)
static void split_vector_run(const oclMat &src, oclMat *dst)
{
if(!mat_src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && mat_src.type() == CV_64F)
if(!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.type() == CV_64F)
{
CV_Error(CV_OpenCLDoubleNotSupported, "Selected device doesn't support double");
return;
}
Context *clCxt = mat_src.clCxt;
int channels = mat_src.oclchannels();
int depth = mat_src.depth();
Context *clCtx = src.clCxt;
int channels = src.channels();
int depth = src.depth();
depth = (depth == CV_8S) ? CV_8U : depth;
depth = (depth == CV_16S) ? CV_16U : depth;
string kernelName = "split_vector";
int vector_lengths[4][7] = {{0, 0, 0, 0, 0, 0, 0},
{4, 4, 2, 2, 1, 1, 1},
{4, 4, 2, 2 , 1, 1, 1},
{4, 4, 2, 2, 1, 1, 1}
};
size_t vector_length = vector_lengths[channels - 1][mat_dst[0].depth()];
int max_offset_cols = 0;
for(int i = 0; i < channels; i++)
{
int offset_cols = (mat_dst[i].offset / mat_dst[i].elemSize()) & (vector_length - 1);
if(max_offset_cols < offset_cols)
max_offset_cols = offset_cols;
}
size_t VEC_SIZE = 4;
int cols = vector_length == 1 ? divUp(mat_src.cols, vector_length)
: divUp(mat_src.cols + max_offset_cols, vector_length);
size_t localThreads[3] = { 64, 4, 1 };
size_t globalThreads[3] = { cols, mat_src.rows, 1 };
int dst_step1 = mat_dst[0].cols * mat_dst[0].elemSize();
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.offset));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[0].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[0].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[0].offset));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[1].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[1].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[1].offset));
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.step));
int srcOffsetXBytes = src.offset % src.step;
int srcOffsetY = src.offset / src.step;
cl_int2 srcOffset = {{srcOffsetXBytes, srcOffsetY}};
args.push_back( make_pair( sizeof(cl_int2), (void *)&srcOffset));
bool dst0Aligned = false, dst1Aligned = false, dst2Aligned = false, dst3Aligned = false;
int alignSize = dst[0].elemSize1() * VEC_SIZE;
int alignMask = alignSize - 1;
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst[0].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst[0].step));
int dst0OffsetXBytes = dst[0].offset % dst[0].step;
int dst0OffsetY = dst[0].offset / dst[0].step;
cl_int2 dst0Offset = {{dst0OffsetXBytes, dst0OffsetY}};
args.push_back( make_pair( sizeof(cl_int2), (void *)&dst0Offset));
if ((dst0OffsetXBytes & alignMask) == 0)
dst0Aligned = true;
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst[1].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst[1].step));
int dst1OffsetXBytes = dst[1].offset % dst[1].step;
int dst1OffsetY = dst[1].offset / dst[1].step;
cl_int2 dst1Offset = {{dst1OffsetXBytes, dst1OffsetY}};
args.push_back( make_pair( sizeof(cl_int2), (void *)&dst1Offset));
if ((dst1OffsetXBytes & alignMask) == 0)
dst1Aligned = true;
// DON'T MOVE VARIABLES INTO 'IF' BODY
int dst2OffsetXBytes, dst2OffsetY;
cl_int2 dst2Offset;
int dst3OffsetXBytes, dst3OffsetY;
cl_int2 dst3Offset;
if (channels >= 3)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[2].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[2].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[2].offset));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst[2].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst[2].step));
dst2OffsetXBytes = dst[2].offset % dst[2].step;
dst2OffsetY = dst[2].offset / dst[2].step;
dst2Offset.s[0] = dst2OffsetXBytes; dst2Offset.s[1] = dst2OffsetY;
args.push_back( make_pair( sizeof(cl_int2), (void *)&dst2Offset));
if ((dst2OffsetXBytes & alignMask) == 0)
dst2Aligned = true;
}
if (channels >= 4)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[3].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[3].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[3].offset));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst[3].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst[3].step));
dst3OffsetXBytes = dst[3].offset % dst[3].step;
dst3OffsetY = dst[3].offset / dst[3].step;
dst3Offset.s[0] = dst3OffsetXBytes; dst3Offset.s[1] = dst3OffsetY;
args.push_back( make_pair( sizeof(cl_int2), (void *)&dst3Offset));
if ((dst3OffsetXBytes & alignMask) == 0)
dst3Aligned = true;
}
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1));
openCLExecuteKernel(clCxt, &split_mat, kernelName, globalThreads, localThreads, args, channels, depth);
cl_int2 size = {{ src.cols, src.rows }};
args.push_back( make_pair( sizeof(cl_int2), (void *)&size));
string build_options =
cv::format("-D VEC_SIZE=%d -D DATA_DEPTH=%d -D DATA_CHAN=%d",
(int)VEC_SIZE, depth, channels);
if (dst0Aligned)
build_options += " -D DST0_ALIGNED";
if (dst1Aligned)
build_options += " -D DST1_ALIGNED";
if (dst2Aligned)
build_options += " -D DST2_ALIGNED";
if (dst3Aligned)
build_options += " -D DST3_ALIGNED";
const DeviceInfo& devInfo = clCtx->getDeviceInfo();
// TODO Workaround for issues. Need to investigate a problem.
if (channels == 2
&& devInfo.deviceType == CVCL_DEVICE_TYPE_CPU
&& devInfo.platform->platformVendor.find("Intel") != std::string::npos
&& (devInfo.deviceVersion.find("Build 56860") != std::string::npos
|| devInfo.deviceVersion.find("Build 76921") != std::string::npos))
build_options += " -D BYPASS_VSTORE=true";
size_t globalThreads[3] = { divUp(src.cols, VEC_SIZE), src.rows, 1 };
openCLExecuteKernel(clCtx, &split_mat, kernelName, globalThreads, NULL, args, -1, -1, build_options.c_str());
}
static void split(const oclMat &mat_src, oclMat *mat_dst)
{
CV_Assert(mat_dst);
int depth = mat_src.depth();
int num_channels = mat_src.oclchannels();
int num_channels = mat_src.channels();
Size size = mat_src.size();
if (num_channels == 1)
@ -231,8 +270,7 @@ namespace cv
return;
}
int i;
for(i = 0; i < num_channels; i++)
for (int i = 0; i < mat_src.oclchannels(); i++)
mat_dst[i].create(size, CV_MAKETYPE(depth, 1));
split_vector_run(mat_src, mat_dst);
@ -256,7 +294,7 @@ void cv::ocl::split(const oclMat &src, oclMat *dst)
}
void cv::ocl::split(const oclMat &src, vector<oclMat> &dst)
{
dst.resize(src.oclchannels());
dst.resize(src.oclchannels()); // TODO Why oclchannels?
if(src.oclchannels() > 0)
split_merge::split(src, &dst[0]);
}

@ -158,81 +158,32 @@ PARAM_TEST_CASE(SplitTestBase, MatType, int, bool)
int channels;
bool use_roi;
//src mat
cv::Mat mat;
//dstmat
cv::Mat dst[MAX_CHANNELS];
// set up roi
int roicols, roirows;
int srcx, srcy;
int dstx[MAX_CHANNELS];
int dsty[MAX_CHANNELS];
cv::Mat src, src_roi;
cv::Mat dst[MAX_CHANNELS], dst_roi[MAX_CHANNELS];
//src mat with roi
cv::Mat mat_roi;
//dst mat with roi
cv::Mat dst_roi[MAX_CHANNELS];
//ocl dst mat for testing
cv::ocl::oclMat gdst_whole[MAX_CHANNELS];
//ocl mat with roi
cv::ocl::oclMat gmat;
cv::ocl::oclMat gdst[MAX_CHANNELS];
cv::ocl::oclMat gsrc_whole, gsrc_roi;
cv::ocl::oclMat gdst_whole[MAX_CHANNELS], gdst_roi[MAX_CHANNELS];
virtual void SetUp()
{
type = GET_PARAM(0);
channels = GET_PARAM(1);
use_roi = GET_PARAM(2);
cv::Size size(MWIDTH, MHEIGHT);
mat = randomMat(size, CV_MAKETYPE(type, channels), 5, 16, false);
for (int i = 0; i < channels; ++i)
dst[i] = randomMat(size, CV_MAKETYPE(type, 1), 5, 16, false); }
}
void random_roi()
{
if (use_roi)
{
//randomize ROI
roicols = rng.uniform(1, mat.cols);
roirows = rng.uniform(1, mat.rows);
srcx = rng.uniform(0, mat.cols - roicols);
srcy = rng.uniform(0, mat.rows - roirows);
for (int i = 0; i < channels; ++i)
{
dstx[i] = rng.uniform(0, dst[i].cols - roicols);
dsty[i] = rng.uniform(0, dst[i].rows - roirows);
}
}
else
{
roicols = mat.cols;
roirows = mat.rows;
srcx = srcy = 0;
for (int i = 0; i < channels; ++i)
dstx[i] = dsty[i] = 0;
}
mat_roi = mat(Rect(srcx, srcy, roicols, roirows));
for (int i = 0; i < channels; ++i)
dst_roi[i] = dst[i](Rect(dstx[i], dsty[i], roicols, roirows));
Size roiSize = randomSize(1, MAX_VALUE);
Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
randomSubMat(src, src_roi, roiSize, srcBorder, CV_MAKETYPE(type, channels), 0, 256);
generateOclMat(gsrc_whole, gsrc_roi, src, roiSize, srcBorder);
for (int i = 0; i < channels; ++i)
{
gdst_whole[i] = dst[i];
gdst[i] = gdst_whole[i](Rect(dstx[i], dsty[i], roicols, roirows));
Border dstBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
randomSubMat(dst[i], dst_roi[i], roiSize, dstBorder, CV_MAKETYPE(type, 1), 5, 16);
generateOclMat(gdst_whole[i], gdst_roi[i], dst[i], roiSize, dstBorder);
}
gmat = mat_roi;
}
};
@ -244,11 +195,14 @@ OCL_TEST_P(Split, Accuracy)
{
random_roi();
cv::split(mat_roi, dst_roi);
cv::ocl::split(gmat, gdst);
cv::split(src_roi, dst_roi);
cv::ocl::split(gsrc_roi, gdst_roi);
for (int i = 0; i < channels; ++i)
EXPECT_MAT_NEAR(dst[i], Mat(gdst_whole[i]), 0.0);
{
EXPECT_MAT_NEAR(dst[i], gdst_whole[i], 0.0);
EXPECT_MAT_NEAR(dst_roi[i], gdst_roi[i], 0.0);
}
}
}

@ -88,14 +88,16 @@ inline double checkNormRelative(const Mat &m1, const Mat &m2)
{ \
ASSERT_EQ(mat1.type(), mat2.type()); \
ASSERT_EQ(mat1.size(), mat2.size()); \
EXPECT_LE(checkNorm(cv::Mat(mat1), cv::Mat(mat2)), eps); \
EXPECT_LE(checkNorm(cv::Mat(mat1), cv::Mat(mat2)), eps) \
<< cv::format("Size: %d x %d", mat1.cols, mat1.rows) << std::endl; \
}
#define EXPECT_MAT_NEAR_RELATIVE(mat1, mat2, eps) \
{ \
ASSERT_EQ(mat1.type(), mat2.type()); \
ASSERT_EQ(mat1.size(), mat2.size()); \
EXPECT_LE(checkNormRelative(cv::Mat(mat1), cv::Mat(mat2)), eps); \
EXPECT_LE(checkNormRelative(cv::Mat(mat1), cv::Mat(mat2)), eps) \
<< cv::format("Size: %d x %d", mat1.cols, mat1.rows) << std::endl; \
}
#define EXPECT_MAT_SIMILAR(mat1, mat2, eps) \

Loading…
Cancel
Save