ocl: split: update tests and implementation

pull/1712/head
Alexander Alekhin 11 years ago
parent 8a4f1bbbdf
commit 50d2c1066b
  1. 2
      modules/ocl/src/cl_programcache.cpp
  2. 1306
      modules/ocl/src/opencl/split_mat.cl
  3. 142
      modules/ocl/src/split_merge.cpp
  4. 82
      modules/ocl/test/test_split_merge.cpp
  5. 6
      modules/ocl/test/utility.hpp

@ -428,7 +428,7 @@ struct ProgramFileCache
if(status != CL_SUCCESS) if(status != CL_SUCCESS)
{ {
if(status == CL_BUILD_PROGRAM_FAILURE) if (status == CL_BUILD_PROGRAM_FAILURE || status == CL_INVALID_BUILD_OPTIONS)
{ {
size_t buildLogSize = 0; size_t buildLogSize = 0;
openCLSafeCall(clGetProgramBuildInfo(program, getClDeviceID(ctx), openCLSafeCall(clGetProgramBuildInfo(program, getClDeviceID(ctx),

File diff suppressed because it is too large Load Diff

@ -149,80 +149,119 @@ namespace cv
mat_dst.create(size, CV_MAKETYPE(depth, total_channels)); mat_dst.create(size, CV_MAKETYPE(depth, total_channels));
merge_vector_run(mat_src, n, mat_dst); merge_vector_run(mat_src, n, mat_dst);
} }
static void split_vector_run(const oclMat &mat_src, oclMat *mat_dst) static void split_vector_run(const oclMat &src, oclMat *dst)
{ {
if(!mat_src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && mat_src.type() == CV_64F) if(!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.type() == CV_64F)
{ {
CV_Error(CV_OpenCLDoubleNotSupported, "Selected device doesn't support double"); CV_Error(CV_OpenCLDoubleNotSupported, "Selected device doesn't support double");
return; return;
} }
Context *clCxt = mat_src.clCxt; Context *clCtx = src.clCxt;
int channels = mat_src.oclchannels(); int channels = src.channels();
int depth = mat_src.depth(); int depth = src.depth();
depth = (depth == CV_8S) ? CV_8U : depth;
depth = (depth == CV_16S) ? CV_16U : depth;
string kernelName = "split_vector"; string kernelName = "split_vector";
int vector_lengths[4][7] = {{0, 0, 0, 0, 0, 0, 0}, size_t VEC_SIZE = 4;
{4, 4, 2, 2, 1, 1, 1},
{4, 4, 2, 2 , 1, 1, 1},
{4, 4, 2, 2, 1, 1, 1}
};
size_t vector_length = vector_lengths[channels - 1][mat_dst[0].depth()];
int max_offset_cols = 0;
for(int i = 0; i < channels; i++)
{
int offset_cols = (mat_dst[i].offset / mat_dst[i].elemSize()) & (vector_length - 1);
if(max_offset_cols < offset_cols)
max_offset_cols = offset_cols;
}
int cols = vector_length == 1 ? divUp(mat_src.cols, vector_length)
: divUp(mat_src.cols + max_offset_cols, vector_length);
size_t localThreads[3] = { 64, 4, 1 };
size_t globalThreads[3] = { cols, mat_src.rows, 1 };
int dst_step1 = mat_dst[0].cols * mat_dst[0].elemSize();
vector<pair<size_t , const void *> > args; vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&src.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.offset)); int srcOffsetXBytes = src.offset % src.step;
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[0].data)); int srcOffsetY = src.offset / src.step;
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[0].step)); cl_int2 srcOffset = {{srcOffsetXBytes, srcOffsetY}};
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[0].offset)); args.push_back( make_pair( sizeof(cl_int2), (void *)&srcOffset));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[1].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[1].step)); bool dst0Aligned = false, dst1Aligned = false, dst2Aligned = false, dst3Aligned = false;
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[1].offset)); int alignSize = dst[0].elemSize1() * VEC_SIZE;
int alignMask = alignSize - 1;
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst[0].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst[0].step));
int dst0OffsetXBytes = dst[0].offset % dst[0].step;
int dst0OffsetY = dst[0].offset / dst[0].step;
cl_int2 dst0Offset = {{dst0OffsetXBytes, dst0OffsetY}};
args.push_back( make_pair( sizeof(cl_int2), (void *)&dst0Offset));
if ((dst0OffsetXBytes & alignMask) == 0)
dst0Aligned = true;
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst[1].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst[1].step));
int dst1OffsetXBytes = dst[1].offset % dst[1].step;
int dst1OffsetY = dst[1].offset / dst[1].step;
cl_int2 dst1Offset = {{dst1OffsetXBytes, dst1OffsetY}};
args.push_back( make_pair( sizeof(cl_int2), (void *)&dst1Offset));
if ((dst1OffsetXBytes & alignMask) == 0)
dst1Aligned = true;
// DON'T MOVE VARIABLES INTO 'IF' BODY
int dst2OffsetXBytes, dst2OffsetY;
cl_int2 dst2Offset;
int dst3OffsetXBytes, dst3OffsetY;
cl_int2 dst3Offset;
if (channels >= 3) if (channels >= 3)
{ {
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst[2].data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[2].data)); args.push_back( make_pair( sizeof(cl_int), (void *)&dst[2].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[2].step)); dst2OffsetXBytes = dst[2].offset % dst[2].step;
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[2].offset)); dst2OffsetY = dst[2].offset / dst[2].step;
dst2Offset.s[0] = dst2OffsetXBytes; dst2Offset.s[1] = dst2OffsetY;
args.push_back( make_pair( sizeof(cl_int2), (void *)&dst2Offset));
if ((dst2OffsetXBytes & alignMask) == 0)
dst2Aligned = true;
} }
if (channels >= 4) if (channels >= 4)
{ {
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[3].data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&dst[3].data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[3].step)); args.push_back( make_pair( sizeof(cl_int), (void *)&dst[3].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[3].offset)); dst3OffsetXBytes = dst[3].offset % dst[3].step;
dst3OffsetY = dst[3].offset / dst[3].step;
dst3Offset.s[0] = dst3OffsetXBytes; dst3Offset.s[1] = dst3OffsetY;
args.push_back( make_pair( sizeof(cl_int2), (void *)&dst3Offset));
if ((dst3OffsetXBytes & alignMask) == 0)
dst3Aligned = true;
} }
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.rows)); cl_int2 size = {{ src.cols, src.rows }};
args.push_back( make_pair( sizeof(cl_int), (void *)&cols)); args.push_back( make_pair( sizeof(cl_int2), (void *)&size));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1));
string build_options =
openCLExecuteKernel(clCxt, &split_mat, kernelName, globalThreads, localThreads, args, channels, depth); cv::format("-D VEC_SIZE=%d -D DATA_DEPTH=%d -D DATA_CHAN=%d",
(int)VEC_SIZE, depth, channels);
if (dst0Aligned)
build_options += " -D DST0_ALIGNED";
if (dst1Aligned)
build_options += " -D DST1_ALIGNED";
if (dst2Aligned)
build_options += " -D DST2_ALIGNED";
if (dst3Aligned)
build_options += " -D DST3_ALIGNED";
const DeviceInfo& devInfo = clCtx->getDeviceInfo();
// TODO Workaround for issues. Need to investigate a problem.
if (channels == 2
&& devInfo.deviceType == CVCL_DEVICE_TYPE_CPU
&& devInfo.platform->platformVendor.find("Intel") != std::string::npos
&& (devInfo.deviceVersion.find("Build 56860") != std::string::npos
|| devInfo.deviceVersion.find("Build 76921") != std::string::npos))
build_options += " -D BYPASS_VSTORE=true";
size_t globalThreads[3] = { divUp(src.cols, VEC_SIZE), src.rows, 1 };
openCLExecuteKernel(clCtx, &split_mat, kernelName, globalThreads, NULL, args, -1, -1, build_options.c_str());
} }
static void split(const oclMat &mat_src, oclMat *mat_dst) static void split(const oclMat &mat_src, oclMat *mat_dst)
{ {
CV_Assert(mat_dst); CV_Assert(mat_dst);
int depth = mat_src.depth(); int depth = mat_src.depth();
int num_channels = mat_src.oclchannels(); int num_channels = mat_src.channels();
Size size = mat_src.size(); Size size = mat_src.size();
if (num_channels == 1) if (num_channels == 1)
@ -231,8 +270,7 @@ namespace cv
return; return;
} }
int i; for (int i = 0; i < mat_src.oclchannels(); i++)
for(i = 0; i < num_channels; i++)
mat_dst[i].create(size, CV_MAKETYPE(depth, 1)); mat_dst[i].create(size, CV_MAKETYPE(depth, 1));
split_vector_run(mat_src, mat_dst); split_vector_run(mat_src, mat_dst);
@ -256,7 +294,7 @@ void cv::ocl::split(const oclMat &src, oclMat *dst)
} }
void cv::ocl::split(const oclMat &src, vector<oclMat> &dst) void cv::ocl::split(const oclMat &src, vector<oclMat> &dst)
{ {
dst.resize(src.oclchannels()); dst.resize(src.oclchannels()); // TODO Why oclchannels?
if(src.oclchannels() > 0) if(src.oclchannels() > 0)
split_merge::split(src, &dst[0]); split_merge::split(src, &dst[0]);
} }

@ -158,81 +158,32 @@ PARAM_TEST_CASE(SplitTestBase, MatType, int, bool)
int channels; int channels;
bool use_roi; bool use_roi;
//src mat cv::Mat src, src_roi;
cv::Mat mat; cv::Mat dst[MAX_CHANNELS], dst_roi[MAX_CHANNELS];
//dstmat
cv::Mat dst[MAX_CHANNELS];
// set up roi
int roicols, roirows;
int srcx, srcy;
int dstx[MAX_CHANNELS];
int dsty[MAX_CHANNELS];
//src mat with roi cv::ocl::oclMat gsrc_whole, gsrc_roi;
cv::Mat mat_roi; cv::ocl::oclMat gdst_whole[MAX_CHANNELS], gdst_roi[MAX_CHANNELS];
//dst mat with roi
cv::Mat dst_roi[MAX_CHANNELS];
//ocl dst mat for testing
cv::ocl::oclMat gdst_whole[MAX_CHANNELS];
//ocl mat with roi
cv::ocl::oclMat gmat;
cv::ocl::oclMat gdst[MAX_CHANNELS];
virtual void SetUp() virtual void SetUp()
{ {
type = GET_PARAM(0); type = GET_PARAM(0);
channels = GET_PARAM(1); channels = GET_PARAM(1);
use_roi = GET_PARAM(2); use_roi = GET_PARAM(2);
}
cv::Size size(MWIDTH, MHEIGHT);
mat = randomMat(size, CV_MAKETYPE(type, channels), 5, 16, false);
for (int i = 0; i < channels; ++i)
dst[i] = randomMat(size, CV_MAKETYPE(type, 1), 5, 16, false); }
void random_roi() void random_roi()
{ {
if (use_roi) Size roiSize = randomSize(1, MAX_VALUE);
{ Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
//randomize ROI randomSubMat(src, src_roi, roiSize, srcBorder, CV_MAKETYPE(type, channels), 0, 256);
roicols = rng.uniform(1, mat.cols); generateOclMat(gsrc_whole, gsrc_roi, src, roiSize, srcBorder);
roirows = rng.uniform(1, mat.rows);
srcx = rng.uniform(0, mat.cols - roicols);
srcy = rng.uniform(0, mat.rows - roirows);
for (int i = 0; i < channels; ++i)
{
dstx[i] = rng.uniform(0, dst[i].cols - roicols);
dsty[i] = rng.uniform(0, dst[i].rows - roirows);
}
}
else
{
roicols = mat.cols;
roirows = mat.rows;
srcx = srcy = 0;
for (int i = 0; i < channels; ++i)
dstx[i] = dsty[i] = 0;
}
mat_roi = mat(Rect(srcx, srcy, roicols, roirows));
for (int i = 0; i < channels; ++i)
dst_roi[i] = dst[i](Rect(dstx[i], dsty[i], roicols, roirows));
for (int i = 0; i < channels; ++i) for (int i = 0; i < channels; ++i)
{ {
gdst_whole[i] = dst[i]; Border dstBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
gdst[i] = gdst_whole[i](Rect(dstx[i], dsty[i], roicols, roirows)); randomSubMat(dst[i], dst_roi[i], roiSize, dstBorder, CV_MAKETYPE(type, 1), 5, 16);
generateOclMat(gdst_whole[i], gdst_roi[i], dst[i], roiSize, dstBorder);
} }
gmat = mat_roi;
} }
}; };
@ -244,11 +195,14 @@ OCL_TEST_P(Split, Accuracy)
{ {
random_roi(); random_roi();
cv::split(mat_roi, dst_roi); cv::split(src_roi, dst_roi);
cv::ocl::split(gmat, gdst); cv::ocl::split(gsrc_roi, gdst_roi);
for (int i = 0; i < channels; ++i) for (int i = 0; i < channels; ++i)
EXPECT_MAT_NEAR(dst[i], Mat(gdst_whole[i]), 0.0); {
EXPECT_MAT_NEAR(dst[i], gdst_whole[i], 0.0);
EXPECT_MAT_NEAR(dst_roi[i], gdst_roi[i], 0.0);
}
} }
} }

@ -88,14 +88,16 @@ inline double checkNormRelative(const Mat &m1, const Mat &m2)
{ \ { \
ASSERT_EQ(mat1.type(), mat2.type()); \ ASSERT_EQ(mat1.type(), mat2.type()); \
ASSERT_EQ(mat1.size(), mat2.size()); \ ASSERT_EQ(mat1.size(), mat2.size()); \
EXPECT_LE(checkNorm(cv::Mat(mat1), cv::Mat(mat2)), eps); \ EXPECT_LE(checkNorm(cv::Mat(mat1), cv::Mat(mat2)), eps) \
<< cv::format("Size: %d x %d", mat1.cols, mat1.rows) << std::endl; \
} }
#define EXPECT_MAT_NEAR_RELATIVE(mat1, mat2, eps) \ #define EXPECT_MAT_NEAR_RELATIVE(mat1, mat2, eps) \
{ \ { \
ASSERT_EQ(mat1.type(), mat2.type()); \ ASSERT_EQ(mat1.type(), mat2.type()); \
ASSERT_EQ(mat1.size(), mat2.size()); \ ASSERT_EQ(mat1.size(), mat2.size()); \
EXPECT_LE(checkNormRelative(cv::Mat(mat1), cv::Mat(mat2)), eps); \ EXPECT_LE(checkNormRelative(cv::Mat(mat1), cv::Mat(mat2)), eps) \
<< cv::format("Size: %d x %d", mat1.cols, mat1.rows) << std::endl; \
} }
#define EXPECT_MAT_SIMILAR(mat1, mat2, eps) \ #define EXPECT_MAT_SIMILAR(mat1, mat2, eps) \

Loading…
Cancel
Save