add estimateAffine3D overload that implements Umeyama's algorithm

pull/19689/head
Andreas Franek 4 years ago committed by Andreas Franek
parent 15e2f991dd
commit 4ed91ce7ed
  1. 10
      doc/opencv.bib
  2. 27
      modules/calib3d/include/opencv2/calib3d.hpp
  3. 80
      modules/calib3d/src/ptsetreg.cpp
  4. 21
      modules/calib3d/test/test_affine3d_estimator.cpp

@ -1324,3 +1324,13 @@
pages={5551--5560},
year={2017}
}
@article{umeyama1991least,
title={Least-squares estimation of transformation parameters between two point patterns},
author={Umeyama, Shinji},
journal={IEEE Computer Architecture Letters},
volume={13},
number={04},
pages={376--380},
year={1991},
publisher={IEEE Computer Society}
}

@ -3173,6 +3173,33 @@ CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst,
OutputArray out, OutputArray inliers,
double ransacThreshold = 3, double confidence = 0.99);
/** @brief Computes an optimal affine transformation between two 3D point sets.
It computes \f$R,s,t\f$ minimizing \f$\sum{i} dst_i - c \cdot R \cdot src_i \f$
where \f$R\f$ is a 3x3 rotation matrix, \f$t\f$ is a 3x1 translation vector and \f$s\f$ is a
scalar size value. This is an implementation of the algorithm by Umeyama \cite umeyama1991least .
The estimated affine transform has a homogeneous scale which is a subclass of affine
transformations with 7 degrees of freedom. The paired point sets need to comprise at least 3
points each.
@param src First input 3D point set.
@param dst Second input 3D point set.
@param scale If null is passed, the scale parameter c will be assumed to be 1.0.
Else the pointed-to variable will be set to the optimal scale.
@param force_rotation If true, the returned rotation will never be a reflection.
This might be unwanted, e.g. when optimizing a transform between a right- and a
left-handed coordinate system.
@return 3D affine transformation matrix \f$3 \times 4\f$ of the form
\f[T =
\begin{bmatrix}
R & t\\
\end{bmatrix}
\f]
*/
CV_EXPORTS_W cv::Mat estimateAffine3D(InputArray src, InputArray dst,
CV_OUT double* scale = nullptr, bool force_rotation = true);
/** @brief Computes an optimal translation between two 3D point sets.
*
* It computes

@ -900,6 +900,86 @@ int estimateAffine3D(InputArray _from, InputArray _to,
return createRANSACPointSetRegistrator(makePtr<Affine3DEstimatorCallback>(), 4, ransacThreshold, confidence)->run(dFrom, dTo, _out, _inliers);
}
Mat estimateAffine3D(InputArray _from, InputArray _to,
CV_OUT double* _scale, bool force_rotation)
{
CV_INSTRUMENT_REGION();
Mat from = _from.getMat(), to = _to.getMat();
int count = from.checkVector(3);
CV_CheckGE(count, 3, "Umeyama algorithm needs at least 3 points for affine transformation estimation.");
CV_CheckEQ(to.checkVector(3), count, "Point sets need to have the same size");
from = from.reshape(1, count);
to = to.reshape(1, count);
if(from.type() != CV_64F)
from.convertTo(from, CV_64F);
if(to.type() != CV_64F)
to.convertTo(to, CV_64F);
const double one_over_n = 1./count;
const auto colwise_mean = [one_over_n](const Mat& m)
{
Mat my;
reduce(m, my, 0, REDUCE_SUM, CV_64F);
return my * one_over_n;
};
const auto demean = [count](const Mat& A, const Mat& mean)
{
Mat A_centered = Mat::zeros(count, 3, CV_64F);
for(int i = 0; i < count; i++)
{
A_centered.row(i) = A.row(i) - mean;
}
return A_centered;
};
Mat from_mean = colwise_mean(from);
Mat to_mean = colwise_mean(to);
Mat from_centered = demean(from, from_mean);
Mat to_centered = demean(to, to_mean);
Mat cov = to_centered.t() * from_centered * one_over_n;
Mat u,d,vt;
SVD::compute(cov, d, u, vt, SVD::MODIFY_A | SVD::FULL_UV);
CV_CheckGE(countNonZero(d), 2, "Points cannot be colinear");
Mat S = Mat::eye(3, 3, CV_64F);
// det(d) can only ever be >=0, so we can always use this here (compared to the original formula by Umeyama)
if (force_rotation && (determinant(u) * determinant(vt) < 0))
{
S.at<double>(2, 2) = -1;
}
Mat rmat = u*S*vt;
double scale = 1.0;
if (_scale)
{
double var_from = 0.;
scale = 0.;
for(int i = 0; i < 3; i++)
{
var_from += norm(from_centered.col(i), NORM_L2SQR);
scale += d.at<double>(i, 0) * S.at<double>(i, i);
}
double inverse_var = count / var_from;
scale *= inverse_var;
*_scale = scale;
}
Mat new_to = scale * rmat * from_mean.t();
Mat transform;
transform.create(3, 4, CV_64F);
Mat r_part(transform(Rect(0, 0, 3, 3)));
rmat.copyTo(r_part);
transform.col(3) = to_mean.t() - new_to;
return transform;
}
int estimateTranslation3D(InputArray _from, InputArray _to,
OutputArray _out, OutputArray _inliers,
double ransacThreshold, double confidence)

@ -201,4 +201,25 @@ TEST(Calib3d_EstimateAffine3D, regression_16007)
EXPECT_EQ(1, res);
}
TEST(Calib3d_EstimateAffine3D, umeyama_3_pt)
{
std::vector<cv::Vec3d> points = {{{0.80549149, 0.8225781, 0.79949521},
{0.28906756, 0.57158557, 0.9864789},
{0.58266182, 0.65474983, 0.25078834}}};
cv::Mat R = (cv::Mat_<double>(3,3) << 0.9689135, -0.0232753, 0.2463025,
0.0236362, 0.9997195, 0.0014915,
-0.2462682, 0.0043765, 0.9691918);
cv::Vec3d t(1., 2., 3.);
cv::Affine3d transform(R, t);
std::vector<cv::Vec3d> transformed_points(points.size());
std::transform(points.begin(), points.end(), transformed_points.begin(), [transform](const cv::Vec3d v){return transform * v;});
double scale;
cv::Mat trafo_est = estimateAffine3D(points, transformed_points, &scale);
Mat R_est(trafo_est(Rect(0, 0, 3, 3)));
EXPECT_LE(cvtest::norm(R_est, R, NORM_INF), 1e-6);
Vec3d t_est = trafo_est.col(3);
EXPECT_LE(cvtest::norm(t_est, t, NORM_INF), 1e-6);
EXPECT_NEAR(scale, 1.0, 1e-6);
}
}} // namespace

Loading…
Cancel
Save