parent
0a6d190095
commit
4ec9afac57
6 changed files with 195 additions and 219 deletions
@ -0,0 +1,33 @@ |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
#include <math.h> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
int main(int argc, char** argv) |
||||
{ |
||||
Mat img, gray; |
||||
if( argc != 2 || !(img=imread(argv[1], 1)).data) |
||||
return -1; |
||||
cvtColor(img, gray, COLOR_BGR2GRAY); |
||||
// smooth it, otherwise a lot of false circles may be detected
|
||||
GaussianBlur( gray, gray, Size(9, 9), 2, 2 ); |
||||
vector<Vec3f> circles; |
||||
HoughCircles(gray, circles, HOUGH_GRADIENT, |
||||
2, gray.rows/4, 200, 100 ); |
||||
for( size_t i = 0; i < circles.size(); i++ ) |
||||
{ |
||||
Point center(cvRound(circles[i][0]), cvRound(circles[i][1])); |
||||
int radius = cvRound(circles[i][2]); |
||||
// draw the circle center
|
||||
circle( img, center, 3, Scalar(0,255,0), -1, 8, 0 ); |
||||
// draw the circle outline
|
||||
circle( img, center, radius, Scalar(0,0,255), 3, 8, 0 ); |
||||
} |
||||
namedWindow( "circles", 1 ); |
||||
imshow( "circles", img ); |
||||
|
||||
waitKey(0); |
||||
return 0; |
||||
} |
@ -0,0 +1,31 @@ |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
int main(int argc, char** argv) |
||||
{ |
||||
Mat src, dst, color_dst; |
||||
if( argc != 2 || !(src=imread(argv[1], 0)).data) |
||||
return -1; |
||||
|
||||
Canny( src, dst, 50, 200, 3 ); |
||||
cvtColor( dst, color_dst, COLOR_GRAY2BGR ); |
||||
|
||||
vector<Vec4i> lines; |
||||
HoughLinesP( dst, lines, 1, CV_PI/180, 80, 30, 10 ); |
||||
for( size_t i = 0; i < lines.size(); i++ ) |
||||
{ |
||||
line( color_dst, Point(lines[i][0], lines[i][1]), |
||||
Point( lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8 ); |
||||
} |
||||
namedWindow( "Source", 1 ); |
||||
imshow( "Source", src ); |
||||
|
||||
namedWindow( "Detected Lines", 1 ); |
||||
imshow( "Detected Lines", color_dst ); |
||||
|
||||
waitKey(0); |
||||
return 0; |
||||
} |
@ -0,0 +1,32 @@ |
||||
#include <opencv2/core.hpp> |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/imgcodecs.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
using namespace cv; |
||||
|
||||
#include <iostream> |
||||
using namespace std; |
||||
|
||||
int main(int argc, const char *argv[]) |
||||
{ |
||||
// We need an input image. (can be grayscale or color)
|
||||
if (argc < 2) |
||||
{ |
||||
cerr << "We need an image to process here. Please run: colorMap [path_to_image]" << endl; |
||||
return -1; |
||||
} |
||||
Mat img_in = imread(argv[1]); |
||||
if(img_in.empty()) |
||||
{ |
||||
cerr << "Sample image (" << argv[1] << ") is empty. Please adjust your path, so it points to a valid input image!" << endl; |
||||
return -1; |
||||
} |
||||
// Holds the colormap version of the image:
|
||||
Mat img_color; |
||||
// Apply the colormap:
|
||||
applyColorMap(img_in, img_color, COLORMAP_JET); |
||||
// Show the result:
|
||||
imshow("colorMap", img_color); |
||||
waitKey(0); |
||||
return 0; |
||||
} |
@ -0,0 +1,55 @@ |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
|
||||
using namespace cv; |
||||
|
||||
int main( int argc, char** argv ) |
||||
{ |
||||
Mat src, hsv; |
||||
if( argc != 2 || !(src=imread(argv[1], 1)).data ) |
||||
return -1; |
||||
|
||||
cvtColor(src, hsv, COLOR_BGR2HSV); |
||||
|
||||
// Quantize the hue to 30 levels
|
||||
// and the saturation to 32 levels
|
||||
int hbins = 30, sbins = 32; |
||||
int histSize[] = {hbins, sbins}; |
||||
// hue varies from 0 to 179, see cvtColor
|
||||
float hranges[] = { 0, 180 }; |
||||
// saturation varies from 0 (black-gray-white) to
|
||||
// 255 (pure spectrum color)
|
||||
float sranges[] = { 0, 256 }; |
||||
const float* ranges[] = { hranges, sranges }; |
||||
MatND hist; |
||||
// we compute the histogram from the 0-th and 1-st channels
|
||||
int channels[] = {0, 1}; |
||||
|
||||
calcHist( &hsv, 1, channels, Mat(), // do not use mask
|
||||
hist, 2, histSize, ranges, |
||||
true, // the histogram is uniform
|
||||
false ); |
||||
double maxVal=0; |
||||
minMaxLoc(hist, 0, &maxVal, 0, 0); |
||||
|
||||
int scale = 10; |
||||
Mat histImg = Mat::zeros(sbins*scale, hbins*10, CV_8UC3); |
||||
|
||||
for( int h = 0; h < hbins; h++ ) |
||||
for( int s = 0; s < sbins; s++ ) |
||||
{ |
||||
float binVal = hist.at<float>(h, s); |
||||
int intensity = cvRound(binVal*255/maxVal); |
||||
rectangle( histImg, Point(h*scale, s*scale), |
||||
Point( (h+1)*scale - 1, (s+1)*scale - 1), |
||||
Scalar::all(intensity), |
||||
-1 ); |
||||
} |
||||
|
||||
namedWindow( "Source", 1 ); |
||||
imshow( "Source", src ); |
||||
|
||||
namedWindow( "H-S Histogram", 1 ); |
||||
imshow( "H-S Histogram", histImg ); |
||||
waitKey(); |
||||
} |
@ -0,0 +1,39 @@ |
||||
#include "opencv2/imgproc.hpp" |
||||
#include "opencv2/highgui.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
int main( int argc, char** argv ) |
||||
{ |
||||
Mat src; |
||||
// the first command-line parameter must be a filename of the binary
|
||||
// (black-n-white) image
|
||||
if( argc != 2 || !(src=imread(argv[1], 0)).data) |
||||
return -1; |
||||
|
||||
Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3); |
||||
|
||||
src = src > 1; |
||||
namedWindow( "Source", 1 ); |
||||
imshow( "Source", src ); |
||||
|
||||
vector<vector<Point> > contours; |
||||
vector<Vec4i> hierarchy; |
||||
|
||||
findContours( src, contours, hierarchy, |
||||
RETR_CCOMP, CHAIN_APPROX_SIMPLE ); |
||||
|
||||
// iterate through all the top-level contours,
|
||||
// draw each connected component with its own random color
|
||||
int idx = 0; |
||||
for( ; idx >= 0; idx = hierarchy[idx][0] ) |
||||
{ |
||||
Scalar color( rand()&255, rand()&255, rand()&255 ); |
||||
drawContours( dst, contours, idx, color, FILLED, 8, hierarchy ); |
||||
} |
||||
|
||||
namedWindow( "Components", 1 ); |
||||
imshow( "Components", dst ); |
||||
waitKey(0); |
||||
} |
Loading…
Reference in new issue