%\texttt{\href{http://www.ros.org/wiki/Stack Manifest}{stack manifest}}& Description of a ROS stack.
%\end{tabular}
\emph{The OpenCV C++ reference manual is here: \url{http://opencv.willowgarage.com/documentation/cpp/}. Use \textbf{Quick Search} to find descriptions of the particular functions and classes}
\section{Key OpenCV Classes}
\begin{tabular}{@{}p{\the\MyLen}%
@{}p{\linewidth-\the\MyLen}@{}}
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Point}{Point\_}}& Template 2D point class \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Point3}{Point3\_}}& Template 3D point class \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Size}{Size\_}}& Template size (width, height) class \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Vec}{Vec}}& Template short vector class \\
\textbf{Convert matrix to/from other structures}\\
\>(without copying the data)\\
\>\textbf{(without copying the data)}\\
\>\texttt{Mat image\_alias = image;}\\
\>\texttt{float* Idata=new float[480*640*3];}\\
\>\texttt{Mat I(480, 640, CV\_32FC3, Idata);}\\
@ -210,30 +231,32 @@
\section{Matrix Manipulations: Copying, Shuffling, Part Access}
\begin{tabular}{@{}p{\the\MyLen}%
@{}p{\linewidth-\the\MyLen}@{}}
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::copyTo}{Mat::copyTo()}}& Copy matrix to another one \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::convertTo}{Mat::convertTo()}}& Scale and convert matrix to the specified data type \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::clone}{Mat::clone()}}& Make deep copy of a matrix \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::reshape}{Mat::reshape()}}& Change matrix dimensions and/or number of channels without copying data \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::copyTo}{src.copyTo(dst)}}& Copy matrix to another one \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::convertTo}{src.convertTo(dst,type,scale,shift)}}&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Scale and convert to another datatype \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::clone}{m.clone()}}& Make deep copy of a matrix \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::reshape}{m.reshape(nch,nrows)}}& Change matrix dimensions and/or number of channels without copying data \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::row}{Mat::row()}}, \texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::rowRange}{Mat::rowRange()}}& Take a matrix row (row span) \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::col}{m.col(i)}}& Take a matrix row/column \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::col}{Mat::col()}}, \texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::colRange}{Mat::colRange()}}& Take a matrix column (column span) \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::colRange}{m.colRange(Range(j1,j2))}}&\ \ \ \ \ \ \ Take a matrix row/column span \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::diag}{Mat::diag()}}& Take a matrix diagonal/create a diagonal matrix\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::diag}{m.diag(i)}}& Take a matrix diagonal \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#index-1245}{Mat::operator ()()}}& Take a submatrix \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#index-1245}{m(Range(i1,i2),Range(j1,j2)), m(roi)}}&\ \ \ \ \ \ \ \ \ \ \ \ \ Take a submatrix \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::repeat}{Mat::repeat()}}& Make a bigger matrix by repeating a smaller one \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html\#Mat::repeat}{m.repeat(ny,nx)}}& Make a bigger matrix from a smaller one \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/operations_on_arrays.html\#cv-flip}{flip()}}& Reverse the order of matrix rows and/or columns \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/operations_on_arrays.html\#cv-flip}{flip(src,dst,dir)}}& Reverse the order of matrix rows and/or columns \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/operations_on_arrays.html\#cv-split}{split()}}& Split multi-channel matrix into separate channels \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/operations_on_arrays.html\#cv-split}{split(...)}}& Split multi-channel matrix into separate channels \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/operations_on_arrays.html\#cv-merge}{merge()}}& Make a multi-channel matrix out of the separate channels \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/operations_on_arrays.html\#cv-merge}{merge(...)}}& Make a multi-channel matrix out of the separate channels \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/operations_on_arrays.html\#cv-mixchannels}{mixChannels()}}& Generalized form of split() and merge() \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/operations_on_arrays.html\#cv-mixchannels}{mixChannels(...)}}& Generalized form of split() and merge() \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/operations_on_arrays.html\#cv-randshuffle}{randShuffle()}}& Randomly shuffle matrix elements \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/operations_on_arrays.html\#cv-randshuffle}{randShuffle(...)}}& Randomly shuffle matrix elements \\
For many of the basic operations the alternative algebraic notation can be used, for example:
For some operations a more convenient \href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html#matrix-expressions}{algebraic notation} can be used, for example:
implements the core of Levenberg-Marquardt optimization algorithm.
Please, see the \href{http://opencv.willowgarage.com/documentation/cpp/basic_structures.html#matrix-expressions}{Matrix Expressions Reference} for details.
\section{Image Processsing}
@ -341,17 +362,18 @@ Please, see the \href{http://opencv.willowgarage.com/documentation/cpp/basic_str
\begin{tabular}{@{}p{\the\MyLen}%
@{}p{\linewidth-\the\MyLen}@{}}
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/image_filtering.html\#cv-filter2d}{filter2D()}}&Apply a non-separable linear filter to the image\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/image_filtering.html\#cv-filter2d}{filter2D()}}&Non-separable linear filter\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/image_filtering.html\#cv-sepfilter2d}{sepFilter2D()}}&Apply a separable linear filter to the image\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/image_filtering.html\#cv-sepfilter2d}{sepFilter2D()}}&Separable linear filter\\
& Compute the first, second, third or mixed spatial image derivatives. \texttt{Laplacian()} computes$\Delta I =\frac{\partial^2 I}{\partial x^2}+\frac{\partial^2 I}{\partial y^2}$\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/image_filtering.html\#cv-laplacian}{Laplacian()}}& compute Laplacian:$\Delta I =\frac{\partial^2 I}{\partial x^2}+\frac{\partial^2 I}{\partial y^2}$\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/image_filtering.html\#cv-erode}{erode()}}, \texttt{\href{http://opencv.willowgarage.com/documentation/cpp/image_filtering.html\#cv-dilate}{dilate()}}& Erode or dilate the image \\
@ -370,13 +392,13 @@ Exa\=mple. Filter image in-place with a 3x3 high-pass filter\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/geometric_image_transformations.html\#cv-getrectsubpix}{getRectSubPix()}}& Extract an image patch with bilinear interpolation \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/geometric_image_transformations.html\#cv-getrectsubpix}{getRectSubPix()}}& Extract an image patch \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/geometric_image_transformations.html\#cv-warpaffine}{warpAffine()}}& Warp image using an affine transformation (rotation, scaling, shearing, reflection)\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/geometric_image_transformations.html\#cv-warpperspective}{warpPerspective()}}& Warp image using a perspective transformation\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/geometric_image_transformations.html\#cv-remap}{remap()}}& Generic image warping using the pre-computed maps\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/geometric_image_transformations.html\#cv-convertmaps}{convertMaps()}}& Optimize maps for a faster remap() execution\\
@ -394,20 +416,19 @@ Example. Decimate image by factor of $\sqrt{2}$:\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/miscellaneous_image_transformations.html\#cvtColor}{cvtColor()}}& Convert image from one color space to another \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/miscellaneous_image_transformations.html\#threshold}{threshold()}}, \texttt{\href{http://opencv.willowgarage.com/documentation/cpp/miscellaneous_image_transformations.html\#adaptivethreshold}{adaptivethreshold()}}& Convert grayscale image to binary image using a fixed or a variable (location-dependent) threshold \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/miscellaneous_image_transformations.html\#threshold}{threshold()}}, \texttt{\href{http://opencv.willowgarage.com/documentation/cpp/miscellaneous_image_transformations.html\#adaptivethreshold}{adaptivethreshold()}}& Convert grayscale image to binary image using a fixed or a variable threshold \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/miscellaneous_image_transformations.html\#floodfill}{floodFill()}}& Find a connected component starting from the specified seed point by region growing technique \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/miscellaneous_image_transformations.html\#floodfill}{floodFill()}}& Find a connected component using region growing algorithm\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/miscellaneous_image_transformations.html\#floodfill}{integral()}}& Compute integral image, used further for to compute cumulative characteristics over rectangular regions in O(1) time\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/miscellaneous_image_transformations.html\#floodfill}{integral()}}& Compute integral image \\
See \texttt{\href{https://code.ros.org/svn/opencv/trunk/opencv/samples/c/watershed.cpp}{watershed.cpp}} and \texttt{\href{https://code.ros.org/svn/opencv/trunk/opencv/samples/c/grabcut.c}{grabcut.cpp}}
samples.
& marker-based image segmentation algorithms.
See the samples \texttt{\href{https://code.ros.org/svn/opencv/trunk/opencv/samples/c/watershed.cpp}{watershed.cpp}} and \texttt{\href{https://code.ros.org/svn/opencv/trunk/opencv/samples/c/grabcut.c}{grabcut.cpp}}.
\end{tabular}
@ -416,11 +437,11 @@ Example. Decimate image by factor of $\sqrt{2}$:\\
\begin{tabular}{@{}p{\the\MyLen}%
@{}p{\linewidth-\the\MyLen}@{}}
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/histograms.html\#calchist}{calcHist()}}& Compute a histogram from one or more images\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/histograms.html\#calcbackproject}{calcBackProject()}}&Compute histogram back-projection (the posterior probability map) for the images\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/histograms.html\#calcbackproject}{calcBackProject()}}&Back-project the histogram\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/histograms.html\#equalizehist}{equalizeHist()}}& Normalize image brightness and contrast by equalizing the image histogram\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/histograms.html\#equalizehist}{equalizeHist()}}& Normalize image brightness and contrast\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/histograms.html\#comparehist}{compareHist()}}& Compare two histograms\\
@ -441,7 +462,7 @@ samples on what are the contours and how to use them.
\section{Data I/O}
XML/YAML storages are collections (possibly nested) of scalar values, structures and heterogeneous lists.
\href{http://opencv.willowgarage.com/documentation/cpp/xml_yaml_persistence.html\#filestorage}{XML/YAML storages} are collections (possibly nested) of scalar values, structures and heterogeneous lists.
\begin{tabbing}
\textbf{Wr}\=\textbf{iting data to YAML (or XML)}\\
@ -498,7 +519,7 @@ XML/YAML storages are collections (possibly nested) of scalar values, structures
\emph{The following formats are supported: \textbf{BMP (.bmp), JPEG (.jpg, .jpeg), TIFF (.tif, .tiff), PNG (.png), PBM/PGM/PPM (.p?m), Sun Raster (.sr), JPEG 2000 (.jp2)}. Every format supports 8-bit, 1- or 3-channel images. Some formats (PNG, JPEG 2000) support 16 bits per channel.}
\emph{The functions can read/write images in the following formats: \textbf{BMP (.bmp), JPEG (.jpg, .jpeg), TIFF (.tif, .tiff), PNG (.png), PBM/PGM/PPM (.p?m), Sun Raster (.sr), JPEG 2000 (.jp2)}. Every format supports 8-bit, 1- or 3-channel images. Some formats (PNG, JPEG 2000) support 16 bits per channel.}
\begin{tabbing}
\textbf{Re}\=\textbf{ading video from a file or from a camera}\\
@ -516,17 +537,17 @@ XML/YAML storages are collections (possibly nested) of scalar values, structures
\begin{tabular}{@{}p{\the\MyLen}%
@{}p{\linewidth-\the\MyLen}@{}}
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/user_interface.html\#cv-namedwindow}{namedWindow()}}&Create window with the specified name\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/user_interface.html\#cv-destroywindow}{destroyWindow()}}& Destroy the specified window \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/user_interface.html\#cv-destroywindow}{destroyWindow(winname)}}&\ \ \ Destroy the specified window \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/user_interface.html\#cv-imshow}{imshow()}}& Show image in the window \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/user_interface.html\#cv-imshow}{imshow(winname, mtx)}}& Show image in the window \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/user_interface.html\#cv-waitKey}{waitKey()}}& Wait for a key press during the specified time interval (or forever). Process events while waiting. \emph{Do not forget to call this function several times a second in your code.}\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/user_interface.html\#cv-waitKey}{waitKey(delay)}}& Wait for a key press during the specified time interval (or forever). Process events while waiting. \emph{Do not forget to call this function several times a second in your code.}\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/user_interface.html\#cv-createTrackbar}{createTrackbar()}}& Add trackbar (slider) to the specified window \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/user_interface.html\#cv-createTrackbar}{createTrackbar(...)}}& Add trackbar (slider) to the specified window \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/user_interface.html\#cv-setmousecallback}{setMouseCallback()}}& Set the callback on mouse clicks and movements in the specified window \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/user_interface.html\#cv-setmousecallback}{setMouseCallback(...)}}&\ \ Set the callback on mouse clicks and movements in the specified window \\
\end{tabular}
@ -537,38 +558,40 @@ See \texttt{\href{https://code.ros.org/svn/opencv/trunk/opencv/samples/c/camshif
\begin{tabular}{@{}p{\the\MyLen}%
@{}p{\linewidth-\the\MyLen}@{}}
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-calibratecamera}{calibrateCamera()}}& Calibrate monocular camera from multiple known projections of a calibration pattern feature points collected from several views. \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-calibratecamera}{calibrateCamera()}}& Calibrate camera from several views of a calibration pattern. \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-findchessboardcorners}{findChessboardCorners()}}&\ \ \ \ \ \ Find feature points on the checkerboard calibration pattern with known geometry. \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-findchessboardcorners}{findChessboardCorners()}}&\ \ \ \ \ \ Find feature points on the checkerboard calibration pattern. \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-solvepnp}{solvePnP()}}& Find the object pose from the known projections of its feature points. \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-stereocalibrate}{stereoCalibrate()}}& Calibrate stereo camera using several stereo views of a calibration pattern. \\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-stereorectify}{stereoRectify()}}& Compute the rectification transforms for a calibrated stereo camera.\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-stereorectify}{stereoRectify()}}& Compute the rectification transforms for a stereo camera and the visible area on the rectified images. Camera must be calibrated first using stereoCalibrate().\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-initundistortrectifymap}{initUndistortRectifyMap()}}&\ \ \ \ \ \ Compute rectification map (for \texttt{remap()}) for each stereo camera head.\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-initundistortrectifymap}{initUndistortRectifyMap()}}&\ \ \ \ \ \ Compute rectification map (for \texttt{remap()}) for each head of a stereo camera. Must be called twice, for each head, after \texttt{stereoRectify()}.\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-StereoBM}{StereoBM}}, \texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-StereoSGBM}{StereoSGBM}}& The stereo correspondence engines to be run on rectified stereo pairs.\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-StereoBM}{StereoBM}}, \texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-StereoSGBM}{StereoSGBM}}& The two primary stereo correspondence algorithms in OpenCV. They work on the rectified images.\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-reprojectimageto3d}{reprojectImageTo3D()}}& Convert disparity map to 3D point cloud.\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-reprojectimageto3d}{reprojectImageTo3D()}}& Convert the disparity map, computed by \texttt{StereoBM::operator ()} or \texttt{StereoSGBM::operator ()} to the 3D point cloud.\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html\#cv-findhomography}{findHomography()}}& Find best-fit perspective transformation between two 2D point sets. \\
\end{tabular}
To calibrate a camera, you can use \texttt{\href{https://code.ros.org/svn/opencv/trunk/opencv/samples/c/calibration.cpp}{calibration.cpp}} or
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/object_detection.html\#matchTemplate}{matchTemplate}}&Primitive Viola's Cascade of Boosted classifiers using Haar or LBP features. Detects objects by sliding a window and running the cascade on them. Suits for detecting faces, facial features and some other objects without diverse textures.\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/object_detection.html\#matchTemplate}{matchTemplate}}&Compute proximity map for given template.\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/object_detection.html\#CascadeClassifier}{CascadeClassifier}}& Viola's Cascade of Boosted classifiers using Haar or LBP features. Detects objects by sliding a window and running the cascade on them. Suits for detecting faces, facial features and some other objects without diverse textures. See \texttt{\href{https://code.ros.org/svn/opencv/trunk/opencv/samples/c/facedetect.cpp}{facedetect.cpp}}\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/object_detection.html\#CascadeClassifier}{CascadeClassifier}}& Viola's Cascade of Boosted classifiers using Haar or LBP features. Suits for detecting faces, facial features and some other objects without diverse textures. See \texttt{\href{https://code.ros.org/svn/opencv/trunk/opencv/samples/c/facedetect.cpp}{facedetect.cpp}}\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/object_detection.html\#HOGDescriptor}{HOGDescriptor}}& N. Dalal's object detector using Histogram-of-Oriented-Gradients (HOG) features. Detects objects by sliding a window and running SVM classifier on them. Suits for detecting people, cars and other objects with well-defined silhouettes. See \texttt{\href{https://code.ros.org/svn/opencv/trunk/opencv/samples/c/peopledetect.cpp}{peopledetect.cpp}}\\
\texttt{\href{http://opencv.willowgarage.com/documentation/cpp/object_detection.html\#HOGDescriptor}{HOGDescriptor}}& N. Dalal's object detector using Histogram-of-Oriented-Gradients (HOG) features. Suits for detecting people, cars and other objects with well-defined silhouettes. See \texttt{\href{https://code.ros.org/svn/opencv/trunk/opencv/samples/c/peopledetect.cpp}{peopledetect.cpp}}\\