Merge pull request #3241 from WilhelmHannemann:bugfix_brute_force_match_cl

pull/3242/head
Vadim Pisarevsky 10 years ago
commit 4dda2002f6
  1. 24
      modules/ocl/src/opencl/brute_force_match.cl

@ -179,7 +179,7 @@ __kernel void BruteForceMatch_UnrollMatch(
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++)
{
int loadx = lidx + i * BLOCK_SIZE;
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx] : 0;
}
float myBestDistance = MAX_FLOAT;
@ -194,7 +194,7 @@ __kernel void BruteForceMatch_UnrollMatch(
{
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
const int loadx = lidx + i * BLOCK_SIZE;
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx] : 0;
//synchronize to make sure each elem for reduceIteration in share memory is written already.
barrier(CLK_LOCAL_MEM_FENCE);
@ -284,8 +284,8 @@ __kernel void BruteForceMatch_Match(
if (loadx < query_cols)
{
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx];
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx];
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx];
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx];
}
barrier(CLK_LOCAL_MEM_FENCE);
@ -372,8 +372,8 @@ __kernel void BruteForceMatch_RadiusUnrollMatch(
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
const int loadx = lidx + i * BLOCK_SIZE;
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx] : 0;
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx] : 0;
//synchronize to make sure each elem for reduceIteration in share memory is written already.
barrier(CLK_LOCAL_MEM_FENCE);
@ -432,8 +432,8 @@ __kernel void BruteForceMatch_RadiusMatch(
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
const int loadx = lidx + i * BLOCK_SIZE;
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx] : 0;
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx] : 0;
//synchronize to make sure each elem for reduceIteration in share memory is written already.
barrier(CLK_LOCAL_MEM_FENCE);
@ -483,7 +483,7 @@ __kernel void BruteForceMatch_knnUnrollMatch(
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++)
{
int loadx = lidx + i * BLOCK_SIZE;
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx] : 0;
}
float myBestDistance1 = MAX_FLOAT;
@ -499,7 +499,7 @@ __kernel void BruteForceMatch_knnUnrollMatch(
{
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
const int loadx = lidx + i * BLOCK_SIZE;
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx] : 0;
//synchronize to make sure each elem for reduceIteration in share memory is written already.
barrier(CLK_LOCAL_MEM_FENCE);
@ -643,8 +643,8 @@ __kernel void BruteForceMatch_knnMatch(
if (loadx < query_cols)
{
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx];
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx];
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx];
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx];
}
barrier(CLK_LOCAL_MEM_FENCE);

Loading…
Cancel
Save