|
|
|
@ -179,7 +179,7 @@ __kernel void BruteForceMatch_UnrollMatch( |
|
|
|
|
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++) |
|
|
|
|
{ |
|
|
|
|
int loadx = lidx + i * BLOCK_SIZE; |
|
|
|
|
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx] : 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float myBestDistance = MAX_FLOAT; |
|
|
|
@ -194,7 +194,7 @@ __kernel void BruteForceMatch_UnrollMatch( |
|
|
|
|
{ |
|
|
|
|
//load a BLOCK_SIZE * BLOCK_SIZE block into local train. |
|
|
|
|
const int loadx = lidx + i * BLOCK_SIZE; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx] : 0; |
|
|
|
|
|
|
|
|
|
//synchronize to make sure each elem for reduceIteration in share memory is written already. |
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
@ -284,8 +284,8 @@ __kernel void BruteForceMatch_Match( |
|
|
|
|
|
|
|
|
|
if (loadx < query_cols) |
|
|
|
|
{ |
|
|
|
|
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx]; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx]; |
|
|
|
|
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx]; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
@ -372,8 +372,8 @@ __kernel void BruteForceMatch_RadiusUnrollMatch( |
|
|
|
|
//load a BLOCK_SIZE * BLOCK_SIZE block into local train. |
|
|
|
|
const int loadx = lidx + i * BLOCK_SIZE; |
|
|
|
|
|
|
|
|
|
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx] : 0; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx] : 0; |
|
|
|
|
|
|
|
|
|
//synchronize to make sure each elem for reduceIteration in share memory is written already. |
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
@ -432,8 +432,8 @@ __kernel void BruteForceMatch_RadiusMatch( |
|
|
|
|
//load a BLOCK_SIZE * BLOCK_SIZE block into local train. |
|
|
|
|
const int loadx = lidx + i * BLOCK_SIZE; |
|
|
|
|
|
|
|
|
|
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx] : 0; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx] : 0; |
|
|
|
|
|
|
|
|
|
//synchronize to make sure each elem for reduceIteration in share memory is written already. |
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
@ -483,7 +483,7 @@ __kernel void BruteForceMatch_knnUnrollMatch( |
|
|
|
|
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++) |
|
|
|
|
{ |
|
|
|
|
int loadx = lidx + i * BLOCK_SIZE; |
|
|
|
|
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx] : 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float myBestDistance1 = MAX_FLOAT; |
|
|
|
@ -499,7 +499,7 @@ __kernel void BruteForceMatch_knnUnrollMatch( |
|
|
|
|
{ |
|
|
|
|
//load a BLOCK_SIZE * BLOCK_SIZE block into local train. |
|
|
|
|
const int loadx = lidx + i * BLOCK_SIZE; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx] : 0; |
|
|
|
|
|
|
|
|
|
//synchronize to make sure each elem for reduceIteration in share memory is written already. |
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
@ -643,8 +643,8 @@ __kernel void BruteForceMatch_knnMatch( |
|
|
|
|
|
|
|
|
|
if (loadx < query_cols) |
|
|
|
|
{ |
|
|
|
|
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx]; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx]; |
|
|
|
|
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(T)) + loadx]; |
|
|
|
|
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(T)) + loadx]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
|