Merge pull request #3160 from akarsakov:ocl_dft_double_support

pull/3163/head
Vadim Pisarevsky 10 years ago
commit 4d9d7e6ded
  1. 94
      modules/core/src/dxt.cpp
  2. 264
      modules/core/src/opencl/fft.cl
  3. 13
      modules/core/test/ocl/test_dft.cpp

@ -1802,11 +1802,14 @@ private:
String buildOptions;
int thread_count;
int dft_size;
int dft_depth;
bool status;
public:
OCL_FftPlan(int _size) : dft_size(_size), status(true)
OCL_FftPlan(int _size, int _depth) : dft_size(_size), dft_depth(_depth), status(true)
{
CV_Assert( dft_depth == CV_32F || dft_depth == CV_64F );
int min_radix;
std::vector<int> radixes, blocks;
ocl_getRadixes(dft_size, radixes, blocks, min_radix);
@ -1832,31 +1835,15 @@ public:
n *= radix;
}
twiddles.create(1, twiddle_size, CV_32FC2);
Mat tw = twiddles.getMat(ACCESS_WRITE);
float* ptr = tw.ptr<float>();
int ptr_index = 0;
n = 1;
for (size_t i=0; i<radixes.size(); i++)
{
int radix = radixes[i];
n *= radix;
for (int j=1; j<radix; j++)
{
double theta = -CV_2PI*j/n;
for (int k=0; k<(n/radix); k++)
{
ptr[ptr_index++] = (float) cos(k*theta);
ptr[ptr_index++] = (float) sin(k*theta);
}
}
}
twiddles.create(1, twiddle_size, CV_MAKE_TYPE(dft_depth, 2));
if (dft_depth == CV_32F)
fillRadixTable<float>(twiddles, radixes);
else
fillRadixTable<double>(twiddles, radixes);
buildOptions = format("-D LOCAL_SIZE=%d -D kercn=%d -D RADIX_PROCESS=%s",
dft_size, min_radix, radix_processing.c_str());
buildOptions = format("-D LOCAL_SIZE=%d -D kercn=%d -D FT=%s -D CT=%s%s -D RADIX_PROCESS=%s",
dft_size, min_radix, ocl::typeToStr(dft_depth), ocl::typeToStr(CV_MAKE_TYPE(dft_depth, 2)),
dft_depth == CV_64F ? " -D DOUBLE_SUPPORT" : "", radix_processing.c_str());
}
bool enqueueTransform(InputArray _src, OutputArray _dst, int num_dfts, int flags, int fftType, bool rows = true) const
@ -1913,7 +1900,7 @@ public:
if (k.empty())
return false;
k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::PtrReadOnly(twiddles), thread_count, num_dfts);
k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::ReadOnlyNoSize(twiddles), thread_count, num_dfts);
return k.run(2, globalsize, localsize, false);
}
@ -1986,6 +1973,32 @@ private:
min_radix = min(min_radix, block*radix);
}
}
template <typename T>
static void fillRadixTable(UMat twiddles, const std::vector<int>& radixes)
{
Mat tw = twiddles.getMat(ACCESS_WRITE);
T* ptr = tw.ptr<T>();
int ptr_index = 0;
int n = 1;
for (size_t i=0; i<radixes.size(); i++)
{
int radix = radixes[i];
n *= radix;
for (int j=1; j<radix; j++)
{
double theta = -CV_2PI*j/n;
for (int k=0; k<(n/radix); k++)
{
ptr[ptr_index++] = (T) cos(k*theta);
ptr[ptr_index++] = (T) sin(k*theta);
}
}
}
}
};
class OCL_FftPlanCache
@ -1997,17 +2010,18 @@ public:
return planCache;
}
Ptr<OCL_FftPlan> getFftPlan(int dft_size)
Ptr<OCL_FftPlan> getFftPlan(int dft_size, int depth)
{
std::map<int, Ptr<OCL_FftPlan> >::iterator f = planStorage.find(dft_size);
int key = (dft_size << 16) | (depth & 0xFFFF);
std::map<int, Ptr<OCL_FftPlan> >::iterator f = planStorage.find(key);
if (f != planStorage.end())
{
return f->second;
}
else
{
Ptr<OCL_FftPlan> newPlan = Ptr<OCL_FftPlan>(new OCL_FftPlan(dft_size));
planStorage[dft_size] = newPlan;
Ptr<OCL_FftPlan> newPlan = Ptr<OCL_FftPlan>(new OCL_FftPlan(dft_size, depth));
planStorage[key] = newPlan;
return newPlan;
}
}
@ -2027,21 +2041,25 @@ protected:
static bool ocl_dft_rows(InputArray _src, OutputArray _dst, int nonzero_rows, int flags, int fftType)
{
Ptr<OCL_FftPlan> plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.cols());
int type = _src.type(), depth = CV_MAT_DEPTH(type);
Ptr<OCL_FftPlan> plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.cols(), depth);
return plan->enqueueTransform(_src, _dst, nonzero_rows, flags, fftType, true);
}
static bool ocl_dft_cols(InputArray _src, OutputArray _dst, int nonzero_cols, int flags, int fftType)
{
Ptr<OCL_FftPlan> plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.rows());
int type = _src.type(), depth = CV_MAT_DEPTH(type);
Ptr<OCL_FftPlan> plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.rows(), depth);
return plan->enqueueTransform(_src, _dst, nonzero_cols, flags, fftType, false);
}
static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_rows)
{
int type = _src.type(), cn = CV_MAT_CN(type);
int type = _src.type(), cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
Size ssize = _src.size();
if ( !(type == CV_32FC1 || type == CV_32FC2) )
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if ( !((cn == 1 || cn == 2) && (depth == CV_32F || (depth == CV_64F && doubleSupport))) )
return false;
// if is not a multiplication of prime numbers { 2, 3, 5 }
@ -2082,7 +2100,7 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro
if (fftType == C2C || fftType == R2C)
{
// complex output
_dst.create(src.size(), CV_32FC2);
_dst.create(src.size(), CV_MAKETYPE(depth, 2));
output = _dst.getUMat();
}
else
@ -2090,13 +2108,13 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro
// real output
if (is1d)
{
_dst.create(src.size(), CV_32FC1);
_dst.create(src.size(), CV_MAKETYPE(depth, 1));
output = _dst.getUMat();
}
else
{
_dst.create(src.size(), CV_32FC1);
output.create(src.size(), CV_32FC2);
_dst.create(src.size(), CV_MAKETYPE(depth, 1));
output.create(src.size(), CV_MAKETYPE(depth, 2));
}
}

@ -12,22 +12,30 @@
#define fft5_4 -1.538841768587f
#define fft5_5 0.363271264002f
#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#endif
__attribute__((always_inline))
float2 mul_float2(float2 a, float2 b) {
return (float2)(fma(a.x, b.x, -a.y * b.y), fma(a.x, b.y, a.y * b.x));
CT mul_complex(CT a, CT b) {
return (CT)(fma(a.x, b.x, -a.y * b.y), fma(a.x, b.y, a.y * b.x));
}
__attribute__((always_inline))
float2 twiddle(float2 a) {
return (float2)(a.y, -a.x);
CT twiddle(CT a) {
return (CT)(a.y, -a.x);
}
__attribute__((always_inline))
void butterfly2(float2 a0, float2 a1, __local float2* smem, __global const float2* twiddles,
void butterfly2(CT a0, CT a1, __local CT* smem, __global const CT* twiddles,
const int x, const int block_size)
{
const int k = x & (block_size - 1);
a1 = mul_float2(twiddles[k], a1);
a1 = mul_complex(twiddles[k], a1);
const int dst_ind = (x << 1) - k;
smem[dst_ind] = a0 + a1;
@ -35,19 +43,19 @@ void butterfly2(float2 a0, float2 a1, __local float2* smem, __global const float
}
__attribute__((always_inline))
void butterfly4(float2 a0, float2 a1, float2 a2, float2 a3, __local float2* smem, __global const float2* twiddles,
void butterfly4(CT a0, CT a1, CT a2, CT a3, __local CT* smem, __global const CT* twiddles,
const int x, const int block_size)
{
const int k = x & (block_size - 1);
a1 = mul_float2(twiddles[k], a1);
a2 = mul_float2(twiddles[k + block_size], a2);
a3 = mul_float2(twiddles[k + 2*block_size], a3);
a1 = mul_complex(twiddles[k], a1);
a2 = mul_complex(twiddles[k + block_size], a2);
a3 = mul_complex(twiddles[k + 2*block_size], a3);
const int dst_ind = ((x - k) << 2) + k;
float2 b0 = a0 + a2;
CT b0 = a0 + a2;
a2 = a0 - a2;
float2 b1 = a1 + a3;
CT b1 = a1 + a3;
a3 = twiddle(a1 - a3);
smem[dst_ind] = b0 + b1;
@ -57,17 +65,17 @@ void butterfly4(float2 a0, float2 a1, float2 a2, float2 a3, __local float2* smem
}
__attribute__((always_inline))
void butterfly3(float2 a0, float2 a1, float2 a2, __local float2* smem, __global const float2* twiddles,
void butterfly3(CT a0, CT a1, CT a2, __local CT* smem, __global const CT* twiddles,
const int x, const int block_size)
{
const int k = x % block_size;
a1 = mul_float2(twiddles[k], a1);
a2 = mul_float2(twiddles[k+block_size], a2);
a1 = mul_complex(twiddles[k], a1);
a2 = mul_complex(twiddles[k+block_size], a2);
const int dst_ind = ((x - k) * 3) + k;
float2 b1 = a1 + a2;
CT b1 = a1 + a2;
a2 = twiddle(sin_120*(a1 - a2));
float2 b0 = a0 - (float2)(0.5f)*b1;
CT b0 = a0 - (CT)(0.5f)*b1;
smem[dst_ind] = a0 + b1;
smem[dst_ind + block_size] = b0 + a2;
@ -75,19 +83,19 @@ void butterfly3(float2 a0, float2 a1, float2 a2, __local float2* smem, __global
}
__attribute__((always_inline))
void butterfly5(float2 a0, float2 a1, float2 a2, float2 a3, float2 a4, __local float2* smem, __global const float2* twiddles,
void butterfly5(CT a0, CT a1, CT a2, CT a3, CT a4, __local CT* smem, __global const CT* twiddles,
const int x, const int block_size)
{
const int k = x % block_size;
a1 = mul_float2(twiddles[k], a1);
a2 = mul_float2(twiddles[k + block_size], a2);
a3 = mul_float2(twiddles[k+2*block_size], a3);
a4 = mul_float2(twiddles[k+3*block_size], a4);
a1 = mul_complex(twiddles[k], a1);
a2 = mul_complex(twiddles[k + block_size], a2);
a3 = mul_complex(twiddles[k+2*block_size], a3);
a4 = mul_complex(twiddles[k+3*block_size], a4);
const int dst_ind = ((x - k) * 5) + k;
__local float2* dst = smem + dst_ind;
__local CT* dst = smem + dst_ind;
float2 b0, b1, b5;
CT b0, b1, b5;
b1 = a1 + a4;
a1 -= a4;
@ -96,11 +104,11 @@ void butterfly5(float2 a0, float2 a1, float2 a2, float2 a3, float2 a4, __local f
a3 -= a2;
a2 = b1 + a4;
b0 = a0 - (float2)0.25f * a2;
b0 = a0 - (CT)0.25f * a2;
b1 = fft5_2 * (b1 - a4);
a4 = fft5_3 * (float2)(-a1.y - a3.y, a1.x + a3.x);
b5 = (float2)(a4.x - fft5_5 * a1.y, a4.y + fft5_5 * a1.x);
a4 = fft5_3 * (CT)(-a1.y - a3.y, a1.x + a3.x);
b5 = (CT)(a4.x - fft5_5 * a1.y, a4.y + fft5_5 * a1.x);
a4.x += fft5_4 * a3.y;
a4.y -= fft5_4 * a3.x;
@ -116,9 +124,9 @@ void butterfly5(float2 a0, float2 a1, float2 a2, float2 a3, float2 a4, __local f
}
__attribute__((always_inline))
void fft_radix2(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
void fft_radix2(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t)
{
float2 a0, a1;
CT a0, a1;
if (x < t)
{
@ -135,10 +143,10 @@ void fft_radix2(__local float2* smem, __global const float2* twiddles, const int
}
__attribute__((always_inline))
void fft_radix2_B2(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix2_B2(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/2;
float2 a0, a1, a2, a3;
CT a0, a1, a2, a3;
if (x1 < t/2)
{
@ -158,11 +166,11 @@ void fft_radix2_B2(__local float2* smem, __global const float2* twiddles, const
}
__attribute__((always_inline))
void fft_radix2_B3(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix2_B3(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/3;
const int x3 = x1 + 2*t/3;
float2 a0, a1, a2, a3, a4, a5;
CT a0, a1, a2, a3, a4, a5;
if (x1 < t/3)
{
@ -184,13 +192,13 @@ void fft_radix2_B3(__local float2* smem, __global const float2* twiddles, const
}
__attribute__((always_inline))
void fft_radix2_B4(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix2_B4(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
const int thread_block = t/4;
const int x2 = x1 + thread_block;
const int x3 = x1 + 2*thread_block;
const int x4 = x1 + 3*thread_block;
float2 a0, a1, a2, a3, a4, a5, a6, a7;
CT a0, a1, a2, a3, a4, a5, a6, a7;
if (x1 < t/4)
{
@ -214,14 +222,14 @@ void fft_radix2_B4(__local float2* smem, __global const float2* twiddles, const
}
__attribute__((always_inline))
void fft_radix2_B5(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix2_B5(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
const int thread_block = t/5;
const int x2 = x1 + thread_block;
const int x3 = x1 + 2*thread_block;
const int x4 = x1 + 3*thread_block;
const int x5 = x1 + 4*thread_block;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
CT a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
if (x1 < t/5)
{
@ -247,9 +255,9 @@ void fft_radix2_B5(__local float2* smem, __global const float2* twiddles, const
}
__attribute__((always_inline))
void fft_radix4(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
void fft_radix4(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t)
{
float2 a0, a1, a2, a3;
CT a0, a1, a2, a3;
if (x < t)
{
@ -265,10 +273,10 @@ void fft_radix4(__local float2* smem, __global const float2* twiddles, const int
}
__attribute__((always_inline))
void fft_radix4_B2(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix4_B2(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/2;
float2 a0, a1, a2, a3, a4, a5, a6, a7;
CT a0, a1, a2, a3, a4, a5, a6, a7;
if (x1 < t/2)
{
@ -288,11 +296,11 @@ void fft_radix4_B2(__local float2* smem, __global const float2* twiddles, const
}
__attribute__((always_inline))
void fft_radix4_B3(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix4_B3(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/3;
const int x3 = x2 + t/3;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11;
CT a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11;
if (x1 < t/3)
{
@ -314,35 +322,35 @@ void fft_radix4_B3(__local float2* smem, __global const float2* twiddles, const
}
__attribute__((always_inline))
void fft_radix8(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
void fft_radix8(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t)
{
const int k = x % block_size;
float2 a0, a1, a2, a3, a4, a5, a6, a7;
CT a0, a1, a2, a3, a4, a5, a6, a7;
if (x < t)
{
int tw_ind = block_size / 8;
a0 = smem[x];
a1 = mul_float2(twiddles[k], smem[x + t]);
a2 = mul_float2(twiddles[k + block_size],smem[x+2*t]);
a3 = mul_float2(twiddles[k+2*block_size],smem[x+3*t]);
a4 = mul_float2(twiddles[k+3*block_size],smem[x+4*t]);
a5 = mul_float2(twiddles[k+4*block_size],smem[x+5*t]);
a6 = mul_float2(twiddles[k+5*block_size],smem[x+6*t]);
a7 = mul_float2(twiddles[k+6*block_size],smem[x+7*t]);
a1 = mul_complex(twiddles[k], smem[x + t]);
a2 = mul_complex(twiddles[k + block_size],smem[x+2*t]);
a3 = mul_complex(twiddles[k+2*block_size],smem[x+3*t]);
a4 = mul_complex(twiddles[k+3*block_size],smem[x+4*t]);
a5 = mul_complex(twiddles[k+4*block_size],smem[x+5*t]);
a6 = mul_complex(twiddles[k+5*block_size],smem[x+6*t]);
a7 = mul_complex(twiddles[k+6*block_size],smem[x+7*t]);
float2 b0, b1, b6, b7;
CT b0, b1, b6, b7;
b0 = a0 + a4;
a4 = a0 - a4;
b1 = a1 + a5;
a5 = a1 - a5;
a5 = (float2)(SQRT_2) * (float2)(a5.x + a5.y, -a5.x + a5.y);
a5 = (CT)(SQRT_2) * (CT)(a5.x + a5.y, -a5.x + a5.y);
b6 = twiddle(a2 - a6);
a2 = a2 + a6;
b7 = a3 - a7;
b7 = (float2)(SQRT_2) * (float2)(-b7.x + b7.y, -b7.x - b7.y);
b7 = (CT)(SQRT_2) * (CT)(-b7.x + b7.y, -b7.x - b7.y);
a3 = a3 + a7;
a0 = b0 + a2;
@ -361,7 +369,7 @@ void fft_radix8(__local float2* smem, __global const float2* twiddles, const int
if (x < t)
{
const int dst_ind = ((x - k) << 3) + k;
__local float2* dst = smem + dst_ind;
__local CT* dst = smem + dst_ind;
dst[0] = a0 + a1;
dst[block_size] = a4 + a5;
@ -377,9 +385,9 @@ void fft_radix8(__local float2* smem, __global const float2* twiddles, const int
}
__attribute__((always_inline))
void fft_radix3(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
void fft_radix3(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t)
{
float2 a0, a1, a2;
CT a0, a1, a2;
if (x < t)
{
@ -395,10 +403,10 @@ void fft_radix3(__local float2* smem, __global const float2* twiddles, const int
}
__attribute__((always_inline))
void fft_radix3_B2(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix3_B2(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/2;
float2 a0, a1, a2, a3, a4, a5;
CT a0, a1, a2, a3, a4, a5;
if (x1 < t/2)
{
@ -418,11 +426,11 @@ void fft_radix3_B2(__local float2* smem, __global const float2* twiddles, const
}
__attribute__((always_inline))
void fft_radix3_B3(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix3_B3(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/3;
const int x3 = x2 + t/3;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8;
CT a0, a1, a2, a3, a4, a5, a6, a7, a8;
if (x1 < t/3)
{
@ -444,13 +452,13 @@ void fft_radix3_B3(__local float2* smem, __global const float2* twiddles, const
}
__attribute__((always_inline))
void fft_radix3_B4(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix3_B4(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
const int thread_block = t/4;
const int x2 = x1 + thread_block;
const int x3 = x1 + 2*thread_block;
const int x4 = x1 + 3*thread_block;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11;
CT a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11;
if (x1 < t/4)
{
@ -474,10 +482,10 @@ void fft_radix3_B4(__local float2* smem, __global const float2* twiddles, const
}
__attribute__((always_inline))
void fft_radix5(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
void fft_radix5(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t)
{
const int k = x % block_size;
float2 a0, a1, a2, a3, a4;
CT a0, a1, a2, a3, a4;
if (x < t)
{
@ -493,10 +501,10 @@ void fft_radix5(__local float2* smem, __global const float2* twiddles, const int
}
__attribute__((always_inline))
void fft_radix5_B2(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
void fft_radix5_B2(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1+t/2;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
CT a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
if (x1 < t/2)
{
@ -523,32 +531,32 @@ void fft_radix5_B2(__local float2* smem, __global const float2* twiddles, const
__kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global float2* twiddles_ptr, const int t, const int nz)
__global CT* twiddles_ptr, int twiddles_step, int twiddles_offset, const int t, const int nz)
{
const int x = get_global_id(0);
const int y = get_group_id(1);
const int block_size = LOCAL_SIZE/kercn;
if (y < nz)
{
__local float2 smem[LOCAL_SIZE];
__global const float2* twiddles = (__global float2*) twiddles_ptr;
__local CT smem[LOCAL_SIZE];
__global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset);
const int ind = x;
#ifdef IS_1D
float scale = 1.f/dst_cols;
FT scale = (FT) 1/dst_cols;
#else
float scale = 1.f/(dst_cols*dst_rows);
FT scale = (FT) 1/(dst_cols*dst_rows);
#endif
#ifdef COMPLEX_INPUT
__global const float2* src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset)));
__global const CT* src = (__global const CT*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(CT)), src_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
smem[x+i*block_size] = src[i*block_size];
#else
__global const float* src = (__global const float*)(src_ptr + mad24(y, src_step, mad24(x, (int)sizeof(float), src_offset)));
__global const FT* src = (__global const FT*)(src_ptr + mad24(y, src_step, mad24(x, (int)sizeof(FT), src_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
smem[x+i*block_size] = (float2)(src[i*block_size], 0.f);
smem[x+i*block_size] = (CT)(src[i*block_size], 0.f);
#endif
barrier(CLK_LOCAL_MEM_FENCE);
@ -562,14 +570,14 @@ __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
const int cols = dst_cols;
#endif
__global float2* dst = (__global float2*)(dst_ptr + mad24(y, dst_step, dst_offset));
__global CT* dst = (__global CT*)(dst_ptr + mad24(y, dst_step, dst_offset));
#pragma unroll
for (int i=x; i<cols; i+=block_size)
dst[i] = SCALE_VAL(smem[i], scale);
#else
// pack row to CCS
__local float* smem_1cn = (__local float*) smem;
__global float* dst = (__global float*)(dst_ptr + mad24(y, dst_step, dst_offset));
__local FT* smem_1cn = (__local FT*) smem;
__global FT* dst = (__global FT*)(dst_ptr + mad24(y, dst_step, dst_offset));
for (int i=x; i<dst_cols-1; i+=block_size)
dst[i+1] = SCALE_VAL(smem_1cn[i+2], scale);
if (x == 0)
@ -580,9 +588,9 @@ __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
{
// fill with zero other rows
#ifdef COMPLEX_OUTPUT
__global float2* dst = (__global float2*)(dst_ptr + mad24(y, dst_step, dst_offset));
__global CT* dst = (__global CT*)(dst_ptr + mad24(y, dst_step, dst_offset));
#else
__global float* dst = (__global float*)(dst_ptr + mad24(y, dst_step, dst_offset));
__global FT* dst = (__global FT*)(dst_ptr + mad24(y, dst_step, dst_offset));
#endif
#pragma unroll
for (int i=x; i<dst_cols; i+=block_size)
@ -592,60 +600,60 @@ __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
__kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global float2* twiddles_ptr, const int t, const int nz)
__global CT* twiddles_ptr, int twiddles_step, int twiddles_offset, const int t, const int nz)
{
const int x = get_group_id(0);
const int y = get_global_id(1);
if (x < nz)
{
__local float2 smem[LOCAL_SIZE];
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset));
__global const float2* twiddles = (__global float2*) twiddles_ptr;
__local CT smem[LOCAL_SIZE];
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(CT)), src_offset));
__global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset);
const int ind = y;
const int block_size = LOCAL_SIZE/kercn;
float scale = 1.f/(dst_rows*dst_cols);
FT scale = 1.f/(dst_rows*dst_cols);
#pragma unroll
for (int i=0; i<kercn; i++)
smem[y+i*block_size] = *((__global const float2*)(src + i*block_size*src_step));
smem[y+i*block_size] = *((__global const CT*)(src + i*block_size*src_step));
barrier(CLK_LOCAL_MEM_FENCE);
RADIX_PROCESS;
#ifdef COMPLEX_OUTPUT
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset));
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(CT)), dst_offset));
#pragma unroll
for (int i=0; i<kercn; i++)
*((__global float2*)(dst + i*block_size*dst_step)) = SCALE_VAL(smem[y + i*block_size], scale);
*((__global CT*)(dst + i*block_size*dst_step)) = SCALE_VAL(smem[y + i*block_size], scale);
#else
if (x == 0)
{
// pack first column to CCS
__local float* smem_1cn = (__local float*) smem;
__local FT* smem_1cn = (__local FT*) smem;
__global uchar* dst = dst_ptr + mad24(y+1, dst_step, dst_offset);
for (int i=y; i<dst_rows-1; i+=block_size, dst+=dst_step*block_size)
*((__global float*) dst) = SCALE_VAL(smem_1cn[i+2], scale);
*((__global FT*) dst) = SCALE_VAL(smem_1cn[i+2], scale);
if (y == 0)
*((__global float*) (dst_ptr + dst_offset)) = SCALE_VAL(smem_1cn[0], scale);
*((__global FT*) (dst_ptr + dst_offset)) = SCALE_VAL(smem_1cn[0], scale);
}
else if (x == (dst_cols+1)/2)
{
// pack last column to CCS (if needed)
__local float* smem_1cn = (__local float*) smem;
__global uchar* dst = dst_ptr + mad24(dst_cols-1, (int)sizeof(float), mad24(y+1, dst_step, dst_offset));
__local FT* smem_1cn = (__local FT*) smem;
__global uchar* dst = dst_ptr + mad24(dst_cols-1, (int)sizeof(FT), mad24(y+1, dst_step, dst_offset));
for (int i=y; i<dst_rows-1; i+=block_size, dst+=dst_step*block_size)
*((__global float*) dst) = SCALE_VAL(smem_1cn[i+2], scale);
*((__global FT*) dst) = SCALE_VAL(smem_1cn[i+2], scale);
if (y == 0)
*((__global float*) (dst_ptr + mad24(dst_cols-1, (int)sizeof(float), dst_offset))) = SCALE_VAL(smem_1cn[0], scale);
*((__global FT*) (dst_ptr + mad24(dst_cols-1, (int)sizeof(FT), dst_offset))) = SCALE_VAL(smem_1cn[0], scale);
}
else
{
__global uchar* dst = dst_ptr + mad24(x, (int)sizeof(float)*2, mad24(y, dst_step, dst_offset - (int)sizeof(float)));
__global uchar* dst = dst_ptr + mad24(x, (int)sizeof(FT)*2, mad24(y, dst_step, dst_offset - (int)sizeof(FT)));
#pragma unroll
for (int i=y; i<dst_rows; i+=block_size, dst+=block_size*dst_step)
vstore2(SCALE_VAL(smem[i], scale), 0, (__global float*) dst);
vstore2(SCALE_VAL(smem[i], scale), 0, (__global FT*) dst);
}
#endif
}
@ -653,25 +661,25 @@ __kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
__kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global float2* twiddles_ptr, const int t, const int nz)
__global CT* twiddles_ptr, int twiddles_step, int twiddles_offset, const int t, const int nz)
{
const int x = get_global_id(0);
const int y = get_group_id(1);
const int block_size = LOCAL_SIZE/kercn;
#ifdef IS_1D
const float scale = 1.f/dst_cols;
const FT scale = (FT) 1/dst_cols;
#else
const float scale = 1.f/(dst_cols*dst_rows);
const FT scale = (FT) 1/(dst_cols*dst_rows);
#endif
if (y < nz)
{
__local float2 smem[LOCAL_SIZE];
__global const float2* twiddles = (__global float2*) twiddles_ptr;
__local CT smem[LOCAL_SIZE];
__global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset);
const int ind = x;
#if defined(COMPLEX_INPUT) && !defined(NO_CONJUGATE)
__global const float2* src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset)));
__global const CT* src = (__global const CT*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(CT)), src_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
{
@ -681,7 +689,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
#else
#if !defined(REAL_INPUT) && defined(NO_CONJUGATE)
__global const float2* src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(2, (int)sizeof(float), src_offset)));
__global const CT* src = (__global const CT*)(src_ptr + mad24(y, src_step, mad24(2, (int)sizeof(FT), src_offset)));
#pragma unroll
for (int i=x; i<(LOCAL_SIZE-1)/2; i+=block_size)
@ -695,7 +703,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
#pragma unroll
for (int i=x; i<(LOCAL_SIZE-1)/2; i+=block_size)
{
float2 src = vload2(0, (__global const float*)(src_ptr + mad24(y, src_step, mad24(2*i+1, (int)sizeof(float), src_offset))));
CT src = vload2(0, (__global const FT*)(src_ptr + mad24(y, src_step, mad24(2*i+1, (int)sizeof(FT), src_offset))));
smem[i+1].x = src.x;
smem[i+1].y = -src.y;
@ -706,7 +714,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
if (x==0)
{
smem[0].x = *(__global const float*)(src_ptr + mad24(y, src_step, src_offset));
smem[0].x = *(__global const FT*)(src_ptr + mad24(y, src_step, src_offset));
smem[0].y = 0.f;
if(LOCAL_SIZE % 2 ==0)
@ -714,7 +722,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
#if !defined(REAL_INPUT) && defined(NO_CONJUGATE)
smem[LOCAL_SIZE/2].x = src[LOCAL_SIZE/2-1].x;
#else
smem[LOCAL_SIZE/2].x = *(__global const float*)(src_ptr + mad24(y, src_step, mad24(LOCAL_SIZE-1, (int)sizeof(float), src_offset)));
smem[LOCAL_SIZE/2].x = *(__global const FT*)(src_ptr + mad24(y, src_step, mad24(LOCAL_SIZE-1, (int)sizeof(FT), src_offset)));
#endif
smem[LOCAL_SIZE/2].y = 0.f;
}
@ -727,7 +735,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
// copy data to dst
#ifdef COMPLEX_OUTPUT
__global float2* dst = (__global float*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset)));
__global CT* dst = (__global CT*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(CT)), dst_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
{
@ -735,7 +743,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
dst[i*block_size].y = SCALE_VAL(-smem[x + i*block_size].y, scale);
}
#else
__global float* dst = (__global float*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)), dst_offset)));
__global FT* dst = (__global FT*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(FT)), dst_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
{
@ -747,9 +755,9 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
{
// fill with zero other rows
#ifdef COMPLEX_OUTPUT
__global float2* dst = (__global float2*)(dst_ptr + mad24(y, dst_step, dst_offset));
__global CT* dst = (__global CT*)(dst_ptr + mad24(y, dst_step, dst_offset));
#else
__global float* dst = (__global float*)(dst_ptr + mad24(y, dst_step, dst_offset));
__global FT* dst = (__global FT*)(dst_ptr + mad24(y, dst_step, dst_offset));
#endif
#pragma unroll
for (int i=x; i<dst_cols; i+=block_size)
@ -759,7 +767,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
__kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global float2* twiddles_ptr, const int t, const int nz)
__global CT* twiddles_ptr, int twiddles_step, int twiddles_offset, const int t, const int nz)
{
const int x = get_group_id(0);
const int y = get_global_id(1);
@ -767,17 +775,17 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
#ifdef COMPLEX_INPUT
if (x < nz)
{
__local float2 smem[LOCAL_SIZE];
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset));
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset));
__global const float2* twiddles = (__global float2*) twiddles_ptr;
__local CT smem[LOCAL_SIZE];
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(CT)), src_offset));
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(CT)), dst_offset));
__global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset);
const int ind = y;
const int block_size = LOCAL_SIZE/kercn;
#pragma unroll
for (int i=0; i<kercn; i++)
{
float2 temp = *((__global const float2*)(src + i*block_size*src_step));
CT temp = *((__global const CT*)(src + i*block_size*src_step));
smem[y+i*block_size].x = temp.x;
smem[y+i*block_size].y = -temp.y;
}
@ -790,7 +798,7 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
#pragma unroll
for (int i=0; i<kercn; i++)
{
__global float2* res = (__global float2*)(dst + i*block_size*dst_step);
__global CT* res = (__global CT*)(dst + i*block_size*dst_step);
res[0].x = smem[y + i*block_size].x;
res[0].y = -smem[y + i*block_size].y;
}
@ -798,22 +806,22 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
#else
if (x < nz)
{
__global const float2* twiddles = (__global float2*) twiddles_ptr;
__global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset);
const int ind = y;
const int block_size = LOCAL_SIZE/kercn;
__local float2 smem[LOCAL_SIZE];
__local CT smem[LOCAL_SIZE];
#ifdef EVEN
if (x!=0 && (x!=(nz-1)))
#else
if (x!=0)
#endif
{
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(2*x-1, (int)sizeof(float), src_offset));
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(2*x-1, (int)sizeof(FT), src_offset));
#pragma unroll
for (int i=0; i<kercn; i++)
{
float2 temp = vload2(0, (__global const float*)(src + i*block_size*src_step));
CT temp = vload2(0, (__global const FT*)(src + i*block_size*src_step));
smem[y+i*block_size].x = temp.x;
smem[y+i*block_size].y = -temp.y;
}
@ -821,8 +829,8 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
else
{
int ind = x==0 ? 0: 2*x-1;
__global const float* src = (__global const float*)(src_ptr + mad24(1, src_step, mad24(ind, (int)sizeof(float), src_offset)));
int step = src_step/(int)sizeof(float);
__global const FT* src = (__global const FT*)(src_ptr + mad24(1, src_step, mad24(ind, (int)sizeof(FT), src_offset)));
int step = src_step/(int)sizeof(FT);
#pragma unroll
for (int i=y; i<(LOCAL_SIZE-1)/2; i+=block_size)
@ -835,7 +843,7 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
}
if (y==0)
{
smem[0].x = *(__global const float*)(src_ptr + mad24(ind, (int)sizeof(float), src_offset));
smem[0].x = *(__global const FT*)(src_ptr + mad24(ind, (int)sizeof(FT), src_offset));
smem[0].y = 0.f;
if(LOCAL_SIZE % 2 ==0)
@ -850,12 +858,12 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
RADIX_PROCESS;
// copy data to dst
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float2)), dst_offset));
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(CT)), dst_offset));
#pragma unroll
for (int i=0; i<kercn; i++)
{
__global float2* res = (__global float2*)(dst + i*block_size*dst_step);
__global CT* res = (__global CT*)(dst + i*block_size*dst_step);
res[0].x = smem[y + i*block_size].x;
res[0].y = -smem[y + i*block_size].y;
}

@ -62,7 +62,7 @@ namespace ocl {
////////////////////////////////////////////////////////////////////////////
// Dft
PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool, bool, bool)
PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, MatDepth, bool, bool, bool, bool)
{
cv::Size dft_size;
int dft_flags, depth, cn, dft_type;
@ -76,7 +76,7 @@ PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool, bool, bool)
{
dft_size = GET_PARAM(0);
dft_type = GET_PARAM(1);
depth = CV_32F;
depth = GET_PARAM(2);
dft_flags = 0;
switch (dft_type)
@ -87,13 +87,13 @@ PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool, bool, bool)
case C2C: dft_flags |= cv::DFT_COMPLEX_OUTPUT; cn = 2; break;
}
if (GET_PARAM(2))
dft_flags |= cv::DFT_INVERSE;
if (GET_PARAM(3))
dft_flags |= cv::DFT_ROWS;
dft_flags |= cv::DFT_INVERSE;
if (GET_PARAM(4))
dft_flags |= cv::DFT_ROWS;
if (GET_PARAM(5))
dft_flags |= cv::DFT_SCALE;
hint = GET_PARAM(5);
hint = GET_PARAM(6);
is1d = (dft_flags & DFT_ROWS) != 0 || dft_size.height == 1;
}
@ -177,6 +177,7 @@ OCL_INSTANTIATE_TEST_CASE_P(OCL_ImgProc, MulSpectrums, testing::Combine(Bool(),
OCL_INSTANTIATE_TEST_CASE_P(Core, Dft, Combine(Values(cv::Size(45, 72), cv::Size(36, 36), cv::Size(512, 1), cv::Size(1280, 768)),
Values((OCL_FFT_TYPE) R2C, (OCL_FFT_TYPE) C2C, (OCL_FFT_TYPE) R2R, (OCL_FFT_TYPE) C2R),
Values(CV_32F, CV_64F),
Bool(), // DFT_INVERSE
Bool(), // DFT_ROWS
Bool(), // DFT_SCALE

Loading…
Cancel
Save