commit
4cb9faf6c9
28 changed files with 1300 additions and 349 deletions
@ -0,0 +1,207 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2020, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
#include "graph_simplifier.hpp" |
||||
|
||||
#include <queue> |
||||
|
||||
namespace cv { namespace dnn { |
||||
|
||||
Subgraph::~Subgraph() {} |
||||
|
||||
int Subgraph::addNodeToMatch(const std::string& op, int input_0, int input_1, |
||||
int input_2, int input_3) |
||||
{ |
||||
int nodeInputs[] = {input_0, input_1, input_2, input_3}; |
||||
int numInputs = 0; |
||||
for (int i = 0; i < 4; ++i) |
||||
{ |
||||
numInputs += (int)(nodeInputs[i] != -1); |
||||
} |
||||
return addNodeToMatch(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs)); |
||||
} |
||||
|
||||
int Subgraph::addNodeToMatch(const std::string& op, const std::vector<int>& inputs_) |
||||
{ |
||||
for (int i = 0; i < inputs_.size(); ++i) |
||||
{ |
||||
CV_Assert(inputs_[i] < (int)nodes.size()); |
||||
} |
||||
nodes.push_back(op); |
||||
inputs.push_back(inputs_); |
||||
return nodes.size() - 1; |
||||
} |
||||
|
||||
void Subgraph::setFusedNode(const std::string& op, int input_0, int input_1, |
||||
int input_2, int input_3, int input_4, int input_5) |
||||
{ |
||||
int nodeInputs[] = {input_0, input_1, input_2, input_3, input_4, input_5}; |
||||
int numInputs = 0; |
||||
for (int i = 0; i < 6; ++i) |
||||
{ |
||||
CV_Assert(nodeInputs[i] < (int)nodes.size()); |
||||
numInputs += (int)(nodeInputs[i] != -1); |
||||
} |
||||
setFusedNode(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs)); |
||||
} |
||||
|
||||
void Subgraph::setFusedNode(const std::string& op, const std::vector<int>& inputs_) |
||||
{ |
||||
fusedNodeInputs = inputs_; |
||||
fusedNodeOp = op; |
||||
} |
||||
|
||||
int Subgraph::getInputNodeId(const Ptr<ImportGraphWrapper>& net, |
||||
const Ptr<ImportNodeWrapper>& node, |
||||
int inpId) |
||||
{ |
||||
CV_Assert(inpId < node->getNumInputs()); |
||||
std::string name = node->getInputName(inpId); |
||||
// If operation produces several tensors, they are specified by index
|
||||
// after ':' character. In example, "input:0".
|
||||
name = name.substr(0, name.rfind(':')); |
||||
const int numNodes = net->getNumNodes(); |
||||
for (int i = 0; i < numNodes; ++i) |
||||
{ |
||||
if (net->getNodeName(i) == name) |
||||
return i; |
||||
} |
||||
CV_Error(Error::StsParseError, "Input node with name " + name + " not found"); |
||||
} |
||||
|
||||
bool Subgraph::match(const Ptr<ImportGraphWrapper>& net, int nodeId, |
||||
std::vector<int>& matchedNodesIds, |
||||
std::vector<int>& targetNodesIds) |
||||
{ |
||||
matchedNodesIds.clear(); |
||||
targetNodesIds.clear(); |
||||
|
||||
std::queue<int> nodesToMatch; |
||||
std::queue<int> targetNodes; |
||||
nodesToMatch.push(nodeId); |
||||
targetNodes.push(nodes.size() - 1); |
||||
while (!nodesToMatch.empty()) |
||||
{ |
||||
int nodeToMatch = nodesToMatch.front(); |
||||
int targetNodeId = targetNodes.front(); |
||||
nodesToMatch.pop(); |
||||
targetNodes.pop(); |
||||
|
||||
if (std::find(matchedNodesIds.begin(), matchedNodesIds.end(), nodeToMatch) != |
||||
matchedNodesIds.end()) |
||||
continue; |
||||
|
||||
const Ptr<ImportNodeWrapper> node = net->getNode(nodeToMatch); |
||||
if (node->getType() != nodes[targetNodeId]) |
||||
return false; |
||||
|
||||
std::vector<int>& inputNodes = inputs[targetNodeId]; |
||||
if (inputNodes.size() != node->getNumInputs()) |
||||
return false; |
||||
|
||||
for (int j = 0; j < inputNodes.size(); ++j) |
||||
{ |
||||
if (nodes[inputNodes[j]].empty()) // Unknown input node type.
|
||||
continue; |
||||
nodeId = getInputNodeId(net, node, j); |
||||
const Ptr<ImportNodeWrapper> inpNode = net->getNode(nodeId); |
||||
if (inpNode->getType() != "Const") |
||||
{ |
||||
nodesToMatch.push(nodeId); |
||||
targetNodes.push(inputNodes[j]); |
||||
} |
||||
else if (nodes[inputNodes[j]] != "Const") |
||||
return false; |
||||
} |
||||
matchedNodesIds.push_back(nodeToMatch); |
||||
targetNodesIds.push_back(targetNodeId); |
||||
} |
||||
|
||||
const int n = matchedNodesIds.size(); |
||||
std::vector<std::pair<int, int> > elements(n); |
||||
for (int i = 0; i < n; ++i) |
||||
elements[i] = std::make_pair(matchedNodesIds[i], targetNodesIds[i]); |
||||
std::sort(elements.begin(), elements.end()); |
||||
for (int i = 0; i < n; ++i) |
||||
{ |
||||
matchedNodesIds[i] = elements[i].first; |
||||
targetNodesIds[i] = elements[i].second; |
||||
} |
||||
return true; |
||||
} |
||||
|
||||
void Subgraph::replace(const Ptr<ImportGraphWrapper>& net, const std::vector<int>& matchedNodesIds, |
||||
const std::vector<int>& targetNodesIds) |
||||
{ |
||||
// Extract names of input nodes.
|
||||
std::vector<std::string> inputsNames(fusedNodeInputs.size()); |
||||
for (int i = 0; i < fusedNodeInputs.size(); ++i) |
||||
{ |
||||
std::string inpName; |
||||
// Find input node name looking at inputs of fused nodes.
|
||||
for (int j = 0; j < matchedNodesIds.size() && inpName.empty(); ++j) |
||||
{ |
||||
Ptr<ImportNodeWrapper> node = net->getNode(matchedNodesIds[j]); |
||||
std::vector<int>& inpIndices = inputs[targetNodesIds[j]]; |
||||
|
||||
CV_Assert(node->getNumInputs() == inpIndices.size()); |
||||
for (int k = 0; k < inpIndices.size(); ++k) |
||||
{ |
||||
if (inpIndices[k] == fusedNodeInputs[i]) |
||||
{ |
||||
inpName = node->getInputName(k); |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
CV_Assert(!inpName.empty()); |
||||
inputsNames[i] = inpName; |
||||
} |
||||
|
||||
// Remove matched nodes except the last one. Indices in ascending order are expected.
|
||||
Ptr<ImportNodeWrapper> node = net->getNode(matchedNodesIds.back()); |
||||
for (int i = matchedNodesIds.size() - 2; i >= 0; --i) |
||||
net->removeNode(matchedNodesIds[i]); |
||||
|
||||
// Modify the last node to be a fused one.
|
||||
node->setType(fusedNodeOp); |
||||
node->setInputNames(inputsNames); |
||||
|
||||
std::vector<Ptr<ImportNodeWrapper> > inputNodes(inputsNames.size()); |
||||
for (int i = 0; i < inputsNames.size(); ++i) |
||||
{ |
||||
inputNodes[i] = net->getNode(getInputNodeId(net, node, i)); |
||||
} |
||||
finalize(net, node, inputNodes); |
||||
} |
||||
|
||||
void Subgraph::finalize(const Ptr<ImportGraphWrapper>& net, |
||||
const Ptr<ImportNodeWrapper>& fusedNode, |
||||
std::vector<Ptr<ImportNodeWrapper> >& inputs) {} |
||||
|
||||
void simplifySubgraphs(const Ptr<ImportGraphWrapper>& net, |
||||
const std::vector<Ptr<Subgraph> >& patterns) |
||||
{ |
||||
int numNodes = net->getNumNodes(); |
||||
std::vector<int> matchedNodesIds, targetNodesIds; |
||||
for (int i = 0; i < numNodes; ++i) |
||||
{ |
||||
for (int j = 0; j < patterns.size(); ++j) |
||||
{ |
||||
if (patterns[j]->match(net, i, matchedNodesIds, targetNodesIds)) |
||||
{ |
||||
patterns[j]->replace(net, matchedNodesIds, targetNodesIds); |
||||
numNodes -= matchedNodesIds.size() - 1; // #matchedNodes removed and one added.
|
||||
break; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
}} // namespace cv::dnn
|
@ -0,0 +1,100 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2020, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#ifndef __OPENCV_DNN_GRAPH_SIMPLIFIER_HPP__ |
||||
#define __OPENCV_DNN_GRAPH_SIMPLIFIER_HPP__ |
||||
|
||||
#include <string> |
||||
|
||||
#include <opencv2/core.hpp> |
||||
|
||||
namespace cv { namespace dnn { |
||||
|
||||
class ImportNodeWrapper |
||||
{ |
||||
public: |
||||
virtual ~ImportNodeWrapper() {}; |
||||
|
||||
virtual int getNumInputs() const = 0; |
||||
|
||||
virtual std::string getInputName(int idx) const = 0; |
||||
|
||||
virtual std::string getType() const = 0; |
||||
|
||||
virtual void setType(const std::string& type) = 0; |
||||
|
||||
virtual void setInputNames(const std::vector<std::string>& inputs) = 0; |
||||
}; |
||||
|
||||
class ImportGraphWrapper |
||||
{ |
||||
public: |
||||
virtual ~ImportGraphWrapper() {}; |
||||
|
||||
virtual Ptr<ImportNodeWrapper> getNode(int idx) const = 0; |
||||
|
||||
virtual int getNumNodes() const = 0; |
||||
|
||||
virtual std::string getNodeName(int idx) const = 0; |
||||
|
||||
virtual void removeNode(int idx) = 0; |
||||
}; |
||||
|
||||
class Subgraph // Interface to match and replace subgraphs.
|
||||
{ |
||||
public: |
||||
virtual ~Subgraph(); |
||||
|
||||
// Add a node to be matched in the origin graph. Specify ids of nodes that
|
||||
// are expected to be inputs. Returns id of a newly added node.
|
||||
// TODO: Replace inputs to std::vector<int> in C++11
|
||||
int addNodeToMatch(const std::string& op, int input_0 = -1, int input_1 = -1, |
||||
int input_2 = -1, int input_3 = -1); |
||||
|
||||
int addNodeToMatch(const std::string& op, const std::vector<int>& inputs_); |
||||
|
||||
// Specify resulting node. All the matched nodes in subgraph excluding
|
||||
// input nodes will be fused into this single node.
|
||||
// TODO: Replace inputs to std::vector<int> in C++11
|
||||
void setFusedNode(const std::string& op, int input_0 = -1, int input_1 = -1, |
||||
int input_2 = -1, int input_3 = -1, int input_4 = -1, |
||||
int input_5 = -1); |
||||
|
||||
void setFusedNode(const std::string& op, const std::vector<int>& inputs_); |
||||
|
||||
static int getInputNodeId(const Ptr<ImportGraphWrapper>& net, |
||||
const Ptr<ImportNodeWrapper>& node, |
||||
int inpId); |
||||
|
||||
// Match TensorFlow subgraph starting from <nodeId> with a set of nodes to be fused.
|
||||
// Const nodes are skipped during matching. Returns true if nodes are matched and can be fused.
|
||||
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId, |
||||
std::vector<int>& matchedNodesIds, |
||||
std::vector<int>& targetNodesIds); |
||||
|
||||
// Fuse matched subgraph.
|
||||
void replace(const Ptr<ImportGraphWrapper>& net, const std::vector<int>& matchedNodesIds, |
||||
const std::vector<int>& targetNodesIds); |
||||
|
||||
virtual void finalize(const Ptr<ImportGraphWrapper>& net, |
||||
const Ptr<ImportNodeWrapper>& fusedNode, |
||||
std::vector<Ptr<ImportNodeWrapper> >& inputs); |
||||
|
||||
private: |
||||
std::vector<std::string> nodes; // Nodes to be matched in the origin graph.
|
||||
std::vector<std::vector<int> > inputs; // Connections of an every node to it's inputs.
|
||||
|
||||
std::string fusedNodeOp; // Operation name of resulting fused node.
|
||||
std::vector<int> fusedNodeInputs; // Inputs of fused node.
|
||||
}; |
||||
|
||||
void simplifySubgraphs(const Ptr<ImportGraphWrapper>& net, |
||||
const std::vector<Ptr<Subgraph> >& patterns); |
||||
|
||||
}} // namespace dnn, namespace cv
|
||||
|
||||
#endif // __OPENCV_DNN_GRAPH_SIMPLIFIER_HPP__
|
@ -0,0 +1,157 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2020, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#include "../precomp.hpp" |
||||
|
||||
#include "../graph_simplifier.hpp" |
||||
#include "onnx_graph_simplifier.hpp" |
||||
|
||||
#include <queue> |
||||
|
||||
namespace cv { namespace dnn { |
||||
CV__DNN_INLINE_NS_BEGIN |
||||
|
||||
// This wrapper can behave differently for fake input nodes and real graph nodes.
|
||||
class ONNXNodeWrapper : public ImportNodeWrapper |
||||
{ |
||||
public: |
||||
ONNXNodeWrapper(opencv_onnx::NodeProto* _node = 0) : node(_node) {} |
||||
|
||||
virtual int getNumInputs() const CV_OVERRIDE |
||||
{ |
||||
return node ? node->input_size() : 0; |
||||
} |
||||
|
||||
virtual std::string getInputName(int idx) const CV_OVERRIDE |
||||
{ |
||||
CV_Assert_N(node, idx < node->input_size()); |
||||
return node->input(idx); |
||||
} |
||||
|
||||
virtual std::string getType() const CV_OVERRIDE |
||||
{ |
||||
return node ? node->op_type() : ""; |
||||
} |
||||
|
||||
virtual void setType(const std::string& type) CV_OVERRIDE |
||||
{ |
||||
CV_Assert(node); |
||||
node->set_op_type(type); |
||||
} |
||||
|
||||
virtual void setInputNames(const std::vector<std::string>& inputs) CV_OVERRIDE |
||||
{ |
||||
CV_Assert(node); |
||||
node->clear_input(); |
||||
for (int i = 0; i < inputs.size(); ++i) |
||||
node->add_input(inputs[i]); |
||||
} |
||||
|
||||
opencv_onnx::NodeProto* node; |
||||
}; |
||||
|
||||
// ONNX graph's inputs are separate from nodes so we index them before the rest of nodes.
|
||||
class ONNXGraphWrapper : public ImportGraphWrapper |
||||
{ |
||||
public: |
||||
ONNXGraphWrapper(opencv_onnx::GraphProto& _net) : net(_net) |
||||
{ |
||||
numInputs = net.input_size(); |
||||
} |
||||
|
||||
virtual Ptr<ImportNodeWrapper> getNode(int idx) const CV_OVERRIDE |
||||
{ |
||||
opencv_onnx::NodeProto* node = 0; |
||||
if (idx >= numInputs) |
||||
node = net.mutable_node(idx - numInputs); |
||||
return makePtr<ONNXNodeWrapper>(node); |
||||
} |
||||
|
||||
virtual int getNumNodes() const CV_OVERRIDE |
||||
{ |
||||
return numInputs + net.node_size(); |
||||
} |
||||
|
||||
virtual std::string getNodeName(int idx) const CV_OVERRIDE |
||||
{ |
||||
if (idx < numInputs) |
||||
return net.input(idx).name(); |
||||
else |
||||
return net.node(idx - numInputs).output(0); |
||||
} |
||||
|
||||
virtual void removeNode(int idx) CV_OVERRIDE |
||||
{ |
||||
CV_Assert(idx >= numInputs); |
||||
net.mutable_node()->DeleteSubrange(idx - numInputs, 1); |
||||
} |
||||
|
||||
private: |
||||
int numInputs; |
||||
opencv_onnx::GraphProto& net; |
||||
}; |
||||
|
||||
class SoftMaxSubgraph : public Subgraph |
||||
{ |
||||
public: |
||||
SoftMaxSubgraph() |
||||
{ |
||||
int input = addNodeToMatch(""); |
||||
int inpExp = addNodeToMatch("Exp", input); |
||||
int sum = addNodeToMatch("ReduceSum", inpExp); |
||||
addNodeToMatch("Div", inpExp, sum); |
||||
setFusedNode("Softmax", input); |
||||
} |
||||
|
||||
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId, |
||||
std::vector<int>& matchedNodesIds, |
||||
std::vector<int>& targetNodesIds) CV_OVERRIDE |
||||
{ |
||||
if (Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds)) |
||||
{ |
||||
Ptr<ImportNodeWrapper> sum = net->getNode(matchedNodesIds[1]); |
||||
opencv_onnx::NodeProto* node = sum.dynamicCast<ONNXNodeWrapper>()->node; |
||||
|
||||
for (int i = 0; i < node->attribute_size(); i++) |
||||
{ |
||||
opencv_onnx::AttributeProto attr = node->attribute(i); |
||||
if (attr.name() != "axes") |
||||
continue; |
||||
if (attr.ints_size() != 1) |
||||
CV_Error(Error::StsNotImplemented, format("Unexpected number of axes: %d", attr.ints_size())); |
||||
axis = attr.ints(0); |
||||
return true; |
||||
} |
||||
CV_Error(Error::StsNotImplemented, "Missed axes attribute"); |
||||
} |
||||
return false; |
||||
} |
||||
|
||||
virtual void finalize(const Ptr<ImportGraphWrapper>&, |
||||
const Ptr<ImportNodeWrapper>& fusedNode, |
||||
std::vector<Ptr<ImportNodeWrapper> >&) CV_OVERRIDE |
||||
{ |
||||
opencv_onnx::NodeProto* node = fusedNode.dynamicCast<ONNXNodeWrapper>()->node; |
||||
opencv_onnx::AttributeProto* attr = node->add_attribute(); |
||||
attr->set_name("axis"); |
||||
attr->set_i(axis); |
||||
} |
||||
|
||||
private: |
||||
int axis; |
||||
}; |
||||
|
||||
void simplifySubgraphs(opencv_onnx::GraphProto& net) |
||||
{ |
||||
std::vector<Ptr<Subgraph> > subgraphs; |
||||
subgraphs.push_back(makePtr<SoftMaxSubgraph>()); |
||||
|
||||
simplifySubgraphs(Ptr<ImportGraphWrapper>(new ONNXGraphWrapper(net)), subgraphs); |
||||
} |
||||
|
||||
CV__DNN_INLINE_NS_END |
||||
}} // namespace cv::dnn
|
@ -0,0 +1,30 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2020, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#ifndef __OPENCV_DNN_ONNX_SIMPLIFIER_HPP__ |
||||
#define __OPENCV_DNN_ONNX_SIMPLIFIER_HPP__ |
||||
|
||||
#include "../precomp.hpp" |
||||
|
||||
#if defined(__GNUC__) && __GNUC__ >= 5 |
||||
#pragma GCC diagnostic push |
||||
#pragma GCC diagnostic ignored "-Wsuggest-override" |
||||
#endif |
||||
#include "opencv-onnx.pb.h" |
||||
#if defined(__GNUC__) && __GNUC__ >= 5 |
||||
#pragma GCC diagnostic pop |
||||
#endif |
||||
|
||||
namespace cv { namespace dnn { |
||||
CV__DNN_INLINE_NS_BEGIN |
||||
|
||||
void simplifySubgraphs(opencv_onnx::GraphProto& net); |
||||
|
||||
CV__DNN_INLINE_NS_END |
||||
}} // namespace dnn, namespace cv
|
||||
|
||||
#endif // __OPENCV_DNN_ONNX_SIMPLIFIER_HPP__
|
@ -0,0 +1,173 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
from itertools import product |
||||
from functools import reduce |
||||
|
||||
import numpy as np |
||||
import cv2 as cv |
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
|
||||
def norm_inf(x, y=None): |
||||
def norm(vec): |
||||
return np.linalg.norm(vec.flatten(), np.inf) |
||||
|
||||
x = x.astype(np.float64) |
||||
return norm(x) if y is None else norm(x - y.astype(np.float64)) |
||||
|
||||
|
||||
def norm_l1(x, y=None): |
||||
def norm(vec): |
||||
return np.linalg.norm(vec.flatten(), 1) |
||||
|
||||
x = x.astype(np.float64) |
||||
return norm(x) if y is None else norm(x - y.astype(np.float64)) |
||||
|
||||
|
||||
def norm_l2(x, y=None): |
||||
def norm(vec): |
||||
return np.linalg.norm(vec.flatten()) |
||||
|
||||
x = x.astype(np.float64) |
||||
return norm(x) if y is None else norm(x - y.astype(np.float64)) |
||||
|
||||
|
||||
def norm_l2sqr(x, y=None): |
||||
def norm(vec): |
||||
return np.square(vec).sum() |
||||
|
||||
x = x.astype(np.float64) |
||||
return norm(x) if y is None else norm(x - y.astype(np.float64)) |
||||
|
||||
|
||||
def norm_hamming(x, y=None): |
||||
def norm(vec): |
||||
return sum(bin(i).count('1') for i in vec.flatten()) |
||||
|
||||
return norm(x) if y is None else norm(np.bitwise_xor(x, y)) |
||||
|
||||
|
||||
def norm_hamming2(x, y=None): |
||||
def norm(vec): |
||||
def element_norm(element): |
||||
binary_str = bin(element).split('b')[-1] |
||||
if len(binary_str) % 2 == 1: |
||||
binary_str = '0' + binary_str |
||||
gen = filter(lambda p: p != '00', |
||||
(binary_str[i:i+2] |
||||
for i in range(0, len(binary_str), 2))) |
||||
return sum(1 for _ in gen) |
||||
|
||||
return sum(element_norm(element) for element in vec.flatten()) |
||||
|
||||
return norm(x) if y is None else norm(np.bitwise_xor(x, y)) |
||||
|
||||
|
||||
norm_type_under_test = { |
||||
cv.NORM_INF: norm_inf, |
||||
cv.NORM_L1: norm_l1, |
||||
cv.NORM_L2: norm_l2, |
||||
cv.NORM_L2SQR: norm_l2sqr, |
||||
cv.NORM_HAMMING: norm_hamming, |
||||
cv.NORM_HAMMING2: norm_hamming2 |
||||
} |
||||
|
||||
norm_name = { |
||||
cv.NORM_INF: 'inf', |
||||
cv.NORM_L1: 'L1', |
||||
cv.NORM_L2: 'L2', |
||||
cv.NORM_L2SQR: 'L2SQR', |
||||
cv.NORM_HAMMING: 'Hamming', |
||||
cv.NORM_HAMMING2: 'Hamming2' |
||||
} |
||||
|
||||
|
||||
def get_element_types(norm_type): |
||||
if norm_type in (cv.NORM_HAMMING, cv.NORM_HAMMING2): |
||||
return (np.uint8,) |
||||
else: |
||||
return (np.uint8, np.int8, np.uint16, np.int16, np.int32, np.float32, |
||||
np.float64) |
||||
|
||||
|
||||
def generate_vector(shape, dtype): |
||||
if np.issubdtype(dtype, np.integer): |
||||
return np.random.randint(0, 100, shape).astype(dtype) |
||||
else: |
||||
return np.random.normal(10., 12.5, shape).astype(dtype) |
||||
|
||||
|
||||
shapes = (1, 2, 3, 5, 7, 16, (1, 1), (2, 2), (3, 5), (1, 7)) |
||||
|
||||
|
||||
class norm_test(NewOpenCVTests): |
||||
|
||||
def test_norm_for_one_array(self): |
||||
np.random.seed(123) |
||||
for norm_type, norm in norm_type_under_test.items(): |
||||
element_types = get_element_types(norm_type) |
||||
for shape, element_type in product(shapes, element_types): |
||||
array = generate_vector(shape, element_type) |
||||
expected = norm(array) |
||||
actual = cv.norm(array, norm_type) |
||||
self.assertAlmostEqual( |
||||
expected, actual, places=2, |
||||
msg='Array {0} of {1} and norm {2}'.format( |
||||
array, element_type.__name__, norm_name[norm_type] |
||||
) |
||||
) |
||||
|
||||
def test_norm_for_two_arrays(self): |
||||
np.random.seed(456) |
||||
for norm_type, norm in norm_type_under_test.items(): |
||||
element_types = get_element_types(norm_type) |
||||
for shape, element_type in product(shapes, element_types): |
||||
first = generate_vector(shape, element_type) |
||||
second = generate_vector(shape, element_type) |
||||
expected = norm(first, second) |
||||
actual = cv.norm(first, second, norm_type) |
||||
self.assertAlmostEqual( |
||||
expected, actual, places=2, |
||||
msg='Arrays {0} {1} of type {2} and norm {3}'.format( |
||||
first, second, element_type.__name__, |
||||
norm_name[norm_type] |
||||
) |
||||
) |
||||
|
||||
def test_norm_fails_for_wrong_type(self): |
||||
for norm_type in (cv.NORM_HAMMING, cv.NORM_HAMMING2): |
||||
with self.assertRaises(Exception, |
||||
msg='Type is not checked {0}'.format( |
||||
norm_name[norm_type] |
||||
)): |
||||
cv.norm(np.array([1, 2], dtype=np.int32), norm_type) |
||||
|
||||
def test_norm_fails_for_array_and_scalar(self): |
||||
for norm_type in norm_type_under_test: |
||||
with self.assertRaises(Exception, |
||||
msg='Exception is not thrown for {0}'.format( |
||||
norm_name[norm_type] |
||||
)): |
||||
cv.norm(np.array([1, 2], dtype=np.uint8), 123, norm_type) |
||||
|
||||
def test_norm_fails_for_scalar_and_array(self): |
||||
for norm_type in norm_type_under_test: |
||||
with self.assertRaises(Exception, |
||||
msg='Exception is not thrown for {0}'.format( |
||||
norm_name[norm_type] |
||||
)): |
||||
cv.norm(4, np.array([1, 2], dtype=np.uint8), norm_type) |
||||
|
||||
def test_norm_fails_for_array_and_norm_type_as_scalar(self): |
||||
for norm_type in norm_type_under_test: |
||||
with self.assertRaises(Exception, |
||||
msg='Exception is not thrown for {0}'.format( |
||||
norm_name[norm_type] |
||||
)): |
||||
cv.norm(np.array([3, 4, 5], dtype=np.uint8), |
||||
norm_type, normType=norm_type) |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
NewOpenCVTests.bootstrap() |
Loading…
Reference in new issue