Merge remote-tracking branch 'upstream/3.4' into merge-3.4

pull/16346/head
Alexander Alekhin 5 years ago
commit 4cb9faf6c9
  1. 17
      modules/dnn/src/dnn.cpp
  2. 207
      modules/dnn/src/graph_simplifier.cpp
  3. 100
      modules/dnn/src/graph_simplifier.hpp
  4. 25
      modules/dnn/src/ie_ngraph.cpp
  5. 44
      modules/dnn/src/layers/concat_layer.cpp
  6. 6
      modules/dnn/src/layers/normalize_bbox_layer.cpp
  7. 2
      modules/dnn/src/layers/pooling_layer.cpp
  8. 157
      modules/dnn/src/onnx/onnx_graph_simplifier.cpp
  9. 30
      modules/dnn/src/onnx/onnx_graph_simplifier.hpp
  10. 5
      modules/dnn/src/onnx/onnx_importer.cpp
  11. 16
      modules/dnn/src/op_inf_engine.cpp
  12. 257
      modules/dnn/src/tensorflow/tf_graph_simplifier.cpp
  13. 8
      modules/dnn/test/test_backends.cpp
  14. 12
      modules/dnn/test/test_caffe_importer.cpp
  15. 11
      modules/dnn/test/test_darknet_importer.cpp
  16. 8
      modules/dnn/test/test_halide_layers.cpp
  17. 9
      modules/dnn/test/test_ie_models.cpp
  18. 6
      modules/dnn/test/test_layers.cpp
  19. 39
      modules/dnn/test/test_onnx_importer.cpp
  20. 25
      modules/dnn/test/test_tf_importer.cpp
  21. 12
      modules/dnn/test/test_torch_importer.cpp
  22. 16
      modules/photo/src/seamless_cloning_impl.cpp
  23. 328
      modules/python/src2/cv2.cpp
  24. 77
      modules/python/src2/gen2.py
  25. 25
      modules/python/test/test_misc.py
  26. 173
      modules/python/test/test_norm.py
  27. 20
      samples/python/digits.py
  28. 14
      samples/python/digits_video.py

@ -109,6 +109,22 @@ public:
#ifdef HAVE_INF_ENGINE
static inline bool checkIETarget(Target target)
{
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2019R3)
// Lightweight detection
const std::vector<std::string> devices = getCore().GetAvailableDevices();
for (std::vector<std::string>::const_iterator i = devices.begin(); i != devices.end(); ++i)
{
if (std::string::npos != i->find("MYRIAD") && target == DNN_TARGET_MYRIAD)
return true;
else if (std::string::npos != i->find("FPGA") && target == DNN_TARGET_FPGA)
return true;
else if (std::string::npos != i->find("CPU") && target == DNN_TARGET_CPU)
return true;
else if (std::string::npos != i->find("GPU") && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
return true;
}
return false;
#else
cv::dnn::Net net;
cv::dnn::LayerParams lp;
lp.set("kernel_size", 1);
@ -132,6 +148,7 @@ public:
return false;
}
return true;
#endif
}
#endif

@ -0,0 +1,207 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2020, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "precomp.hpp"
#include "graph_simplifier.hpp"
#include <queue>
namespace cv { namespace dnn {
Subgraph::~Subgraph() {}
int Subgraph::addNodeToMatch(const std::string& op, int input_0, int input_1,
int input_2, int input_3)
{
int nodeInputs[] = {input_0, input_1, input_2, input_3};
int numInputs = 0;
for (int i = 0; i < 4; ++i)
{
numInputs += (int)(nodeInputs[i] != -1);
}
return addNodeToMatch(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
}
int Subgraph::addNodeToMatch(const std::string& op, const std::vector<int>& inputs_)
{
for (int i = 0; i < inputs_.size(); ++i)
{
CV_Assert(inputs_[i] < (int)nodes.size());
}
nodes.push_back(op);
inputs.push_back(inputs_);
return nodes.size() - 1;
}
void Subgraph::setFusedNode(const std::string& op, int input_0, int input_1,
int input_2, int input_3, int input_4, int input_5)
{
int nodeInputs[] = {input_0, input_1, input_2, input_3, input_4, input_5};
int numInputs = 0;
for (int i = 0; i < 6; ++i)
{
CV_Assert(nodeInputs[i] < (int)nodes.size());
numInputs += (int)(nodeInputs[i] != -1);
}
setFusedNode(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
}
void Subgraph::setFusedNode(const std::string& op, const std::vector<int>& inputs_)
{
fusedNodeInputs = inputs_;
fusedNodeOp = op;
}
int Subgraph::getInputNodeId(const Ptr<ImportGraphWrapper>& net,
const Ptr<ImportNodeWrapper>& node,
int inpId)
{
CV_Assert(inpId < node->getNumInputs());
std::string name = node->getInputName(inpId);
// If operation produces several tensors, they are specified by index
// after ':' character. In example, "input:0".
name = name.substr(0, name.rfind(':'));
const int numNodes = net->getNumNodes();
for (int i = 0; i < numNodes; ++i)
{
if (net->getNodeName(i) == name)
return i;
}
CV_Error(Error::StsParseError, "Input node with name " + name + " not found");
}
bool Subgraph::match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds)
{
matchedNodesIds.clear();
targetNodesIds.clear();
std::queue<int> nodesToMatch;
std::queue<int> targetNodes;
nodesToMatch.push(nodeId);
targetNodes.push(nodes.size() - 1);
while (!nodesToMatch.empty())
{
int nodeToMatch = nodesToMatch.front();
int targetNodeId = targetNodes.front();
nodesToMatch.pop();
targetNodes.pop();
if (std::find(matchedNodesIds.begin(), matchedNodesIds.end(), nodeToMatch) !=
matchedNodesIds.end())
continue;
const Ptr<ImportNodeWrapper> node = net->getNode(nodeToMatch);
if (node->getType() != nodes[targetNodeId])
return false;
std::vector<int>& inputNodes = inputs[targetNodeId];
if (inputNodes.size() != node->getNumInputs())
return false;
for (int j = 0; j < inputNodes.size(); ++j)
{
if (nodes[inputNodes[j]].empty()) // Unknown input node type.
continue;
nodeId = getInputNodeId(net, node, j);
const Ptr<ImportNodeWrapper> inpNode = net->getNode(nodeId);
if (inpNode->getType() != "Const")
{
nodesToMatch.push(nodeId);
targetNodes.push(inputNodes[j]);
}
else if (nodes[inputNodes[j]] != "Const")
return false;
}
matchedNodesIds.push_back(nodeToMatch);
targetNodesIds.push_back(targetNodeId);
}
const int n = matchedNodesIds.size();
std::vector<std::pair<int, int> > elements(n);
for (int i = 0; i < n; ++i)
elements[i] = std::make_pair(matchedNodesIds[i], targetNodesIds[i]);
std::sort(elements.begin(), elements.end());
for (int i = 0; i < n; ++i)
{
matchedNodesIds[i] = elements[i].first;
targetNodesIds[i] = elements[i].second;
}
return true;
}
void Subgraph::replace(const Ptr<ImportGraphWrapper>& net, const std::vector<int>& matchedNodesIds,
const std::vector<int>& targetNodesIds)
{
// Extract names of input nodes.
std::vector<std::string> inputsNames(fusedNodeInputs.size());
for (int i = 0; i < fusedNodeInputs.size(); ++i)
{
std::string inpName;
// Find input node name looking at inputs of fused nodes.
for (int j = 0; j < matchedNodesIds.size() && inpName.empty(); ++j)
{
Ptr<ImportNodeWrapper> node = net->getNode(matchedNodesIds[j]);
std::vector<int>& inpIndices = inputs[targetNodesIds[j]];
CV_Assert(node->getNumInputs() == inpIndices.size());
for (int k = 0; k < inpIndices.size(); ++k)
{
if (inpIndices[k] == fusedNodeInputs[i])
{
inpName = node->getInputName(k);
break;
}
}
}
CV_Assert(!inpName.empty());
inputsNames[i] = inpName;
}
// Remove matched nodes except the last one. Indices in ascending order are expected.
Ptr<ImportNodeWrapper> node = net->getNode(matchedNodesIds.back());
for (int i = matchedNodesIds.size() - 2; i >= 0; --i)
net->removeNode(matchedNodesIds[i]);
// Modify the last node to be a fused one.
node->setType(fusedNodeOp);
node->setInputNames(inputsNames);
std::vector<Ptr<ImportNodeWrapper> > inputNodes(inputsNames.size());
for (int i = 0; i < inputsNames.size(); ++i)
{
inputNodes[i] = net->getNode(getInputNodeId(net, node, i));
}
finalize(net, node, inputNodes);
}
void Subgraph::finalize(const Ptr<ImportGraphWrapper>& net,
const Ptr<ImportNodeWrapper>& fusedNode,
std::vector<Ptr<ImportNodeWrapper> >& inputs) {}
void simplifySubgraphs(const Ptr<ImportGraphWrapper>& net,
const std::vector<Ptr<Subgraph> >& patterns)
{
int numNodes = net->getNumNodes();
std::vector<int> matchedNodesIds, targetNodesIds;
for (int i = 0; i < numNodes; ++i)
{
for (int j = 0; j < patterns.size(); ++j)
{
if (patterns[j]->match(net, i, matchedNodesIds, targetNodesIds))
{
patterns[j]->replace(net, matchedNodesIds, targetNodesIds);
numNodes -= matchedNodesIds.size() - 1; // #matchedNodes removed and one added.
break;
}
}
}
}
}} // namespace cv::dnn

@ -0,0 +1,100 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2020, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#ifndef __OPENCV_DNN_GRAPH_SIMPLIFIER_HPP__
#define __OPENCV_DNN_GRAPH_SIMPLIFIER_HPP__
#include <string>
#include <opencv2/core.hpp>
namespace cv { namespace dnn {
class ImportNodeWrapper
{
public:
virtual ~ImportNodeWrapper() {};
virtual int getNumInputs() const = 0;
virtual std::string getInputName(int idx) const = 0;
virtual std::string getType() const = 0;
virtual void setType(const std::string& type) = 0;
virtual void setInputNames(const std::vector<std::string>& inputs) = 0;
};
class ImportGraphWrapper
{
public:
virtual ~ImportGraphWrapper() {};
virtual Ptr<ImportNodeWrapper> getNode(int idx) const = 0;
virtual int getNumNodes() const = 0;
virtual std::string getNodeName(int idx) const = 0;
virtual void removeNode(int idx) = 0;
};
class Subgraph // Interface to match and replace subgraphs.
{
public:
virtual ~Subgraph();
// Add a node to be matched in the origin graph. Specify ids of nodes that
// are expected to be inputs. Returns id of a newly added node.
// TODO: Replace inputs to std::vector<int> in C++11
int addNodeToMatch(const std::string& op, int input_0 = -1, int input_1 = -1,
int input_2 = -1, int input_3 = -1);
int addNodeToMatch(const std::string& op, const std::vector<int>& inputs_);
// Specify resulting node. All the matched nodes in subgraph excluding
// input nodes will be fused into this single node.
// TODO: Replace inputs to std::vector<int> in C++11
void setFusedNode(const std::string& op, int input_0 = -1, int input_1 = -1,
int input_2 = -1, int input_3 = -1, int input_4 = -1,
int input_5 = -1);
void setFusedNode(const std::string& op, const std::vector<int>& inputs_);
static int getInputNodeId(const Ptr<ImportGraphWrapper>& net,
const Ptr<ImportNodeWrapper>& node,
int inpId);
// Match TensorFlow subgraph starting from <nodeId> with a set of nodes to be fused.
// Const nodes are skipped during matching. Returns true if nodes are matched and can be fused.
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds);
// Fuse matched subgraph.
void replace(const Ptr<ImportGraphWrapper>& net, const std::vector<int>& matchedNodesIds,
const std::vector<int>& targetNodesIds);
virtual void finalize(const Ptr<ImportGraphWrapper>& net,
const Ptr<ImportNodeWrapper>& fusedNode,
std::vector<Ptr<ImportNodeWrapper> >& inputs);
private:
std::vector<std::string> nodes; // Nodes to be matched in the origin graph.
std::vector<std::vector<int> > inputs; // Connections of an every node to it's inputs.
std::string fusedNodeOp; // Operation name of resulting fused node.
std::vector<int> fusedNodeInputs; // Inputs of fused node.
};
void simplifySubgraphs(const Ptr<ImportGraphWrapper>& net,
const std::vector<Ptr<Subgraph> >& patterns);
}} // namespace dnn, namespace cv
#endif // __OPENCV_DNN_GRAPH_SIMPLIFIER_HPP__

@ -168,21 +168,26 @@ void InfEngineNgraphNet::init(Target targetId)
{
if (!hasNetOwner)
{
if (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) {
if (targetId == DNN_TARGET_OPENCL_FP16)
{
auto nodes = ngraph_function->get_ordered_ops();
for (auto& node : nodes) {
for (auto& node : nodes)
{
auto parameter = std::dynamic_pointer_cast<ngraph::op::Parameter>(node);
if (parameter && parameter->get_element_type() == ngraph::element::f32) {
if (parameter && parameter->get_element_type() == ngraph::element::f32)
{
parameter->set_element_type(ngraph::element::f16);
}
auto constant = std::dynamic_pointer_cast<ngraph::op::Constant>(node);
if (constant && constant->get_element_type() == ngraph::element::f32) {
auto data = constant->get_vector<float>();
std::vector<ngraph::float16> new_data(data.size());
for (size_t i = 0; i < data.size(); ++i) {
new_data[i] = ngraph::float16(data[i]);
}
auto new_const = std::make_shared<ngraph::op::Constant>(ngraph::element::f16, constant->get_shape(), new_data);
if (constant && constant->get_element_type() == ngraph::element::f32)
{
const float* floatsData = constant->get_data_ptr<float>();
size_t total = ngraph::shape_size(constant->get_shape());
Mat floats(1, total, CV_32F, (void*)floatsData);
Mat halfs;
cv::convertFp16(floats, halfs);
auto new_const = std::make_shared<ngraph::op::Constant>(ngraph::element::f16, constant->get_shape(), halfs.data);
new_const->set_friendly_name(constant->get_friendly_name());
ngraph::replace_node(constant, new_const);
}

@ -114,7 +114,8 @@ public:
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
(backendId == DNN_BACKEND_HALIDE && haveHalide() && axis == 1 && !padding) || // By channels
((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && haveInfEngine() && !padding) ||
(backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && haveInfEngine() && !padding) ||
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ||
(backendId == DNN_BACKEND_VKCOM && haveVulkan() && !padding);
}
@ -351,14 +352,45 @@ public:
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
InferenceEngine::DataPtr data = ngraphDataNode(inputs[0]);
const int numDims = data->getDims().size();
const int cAxis = clamp(axis, numDims);
std::vector<size_t> maxDims(numDims, 0);
CV_Assert(inputs.size() == nodes.size());
ngraph::NodeVector inp_nodes;
for (auto& node : nodes) {
inp_nodes.push_back(node.dynamicCast<InfEngineNgraphNode>()->node);
}
for (int i = 0; i < nodes.size(); ++i)
{
inp_nodes.push_back(nodes[i].dynamicCast<InfEngineNgraphNode>()->node);
InferenceEngine::DataPtr data = ngraphDataNode(inputs[0]);
auto concat = std::make_shared<ngraph::op::Concat>(inp_nodes, clamp(axis, data->getDims().size()));
std::vector<size_t> inpShape = ngraphDataNode(inputs[i])->getDims();
for (int i = 0; i < numDims; ++i)
maxDims[i] = std::max(maxDims[i], inpShape[i]);
}
for (int i = 0; i < inp_nodes.size(); ++i)
{
bool needPadding = false;
std::vector<size_t> inpShape = ngraphDataNode(inputs[i])->getDims();
std::vector<int64_t> begins(inpShape.size(), 0), ends(inpShape.size(), 0);
for (int j = 0; j < inpShape.size(); ++j)
{
if (j != cAxis && inpShape[j] != maxDims[j])
{
needPadding = true;
begins[j] = static_cast<int64_t>((maxDims[j] - inpShape[j]) / 2);
ends[j] = static_cast<int64_t>(maxDims[j] - inpShape[j] - begins[j]);
}
}
if (needPadding)
{
inp_nodes[i] = std::make_shared<ngraph::op::v1::Pad>(
inp_nodes[i],
std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{begins.size()}, begins.data()),
std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{ends.size()}, ends.data()),
ngraph::op::PadMode::CONSTANT);
}
}
auto concat = std::make_shared<ngraph::op::Concat>(inp_nodes, cAxis);
return Ptr<BackendNode>(new InfEngineNgraphNode(concat));
}
#endif // HAVE_DNN_NGRAPH

@ -75,7 +75,10 @@ public:
if (pnorm != 2)
return false;
return preferableTarget == DNN_TARGET_MYRIAD ? !acrossSpatial : startAxis == 1;
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && preferableTarget == DNN_TARGET_MYRIAD)
return !acrossSpatial;
return startAxis == 1;
}
return backendId == DNN_BACKEND_OPENCV ||
(backendId == DNN_BACKEND_CUDA && (pnorm == 1 || pnorm == 2));
@ -373,7 +376,6 @@ public:
}
else
{
// weight->get_shape().size() > 1 ~> channel_shared = false
weight = std::make_shared<ngraph::op::Constant>(
ngraph::element::f32, ngraph::Shape(shape), blobs[0].data);
}

@ -203,7 +203,7 @@ public:
#endif
}
else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) {
return type != STOCHASTIC;
return !computeMaxIdx && type != STOCHASTIC;
}
else
{

@ -0,0 +1,157 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2020, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "../precomp.hpp"
#include "../graph_simplifier.hpp"
#include "onnx_graph_simplifier.hpp"
#include <queue>
namespace cv { namespace dnn {
CV__DNN_INLINE_NS_BEGIN
// This wrapper can behave differently for fake input nodes and real graph nodes.
class ONNXNodeWrapper : public ImportNodeWrapper
{
public:
ONNXNodeWrapper(opencv_onnx::NodeProto* _node = 0) : node(_node) {}
virtual int getNumInputs() const CV_OVERRIDE
{
return node ? node->input_size() : 0;
}
virtual std::string getInputName(int idx) const CV_OVERRIDE
{
CV_Assert_N(node, idx < node->input_size());
return node->input(idx);
}
virtual std::string getType() const CV_OVERRIDE
{
return node ? node->op_type() : "";
}
virtual void setType(const std::string& type) CV_OVERRIDE
{
CV_Assert(node);
node->set_op_type(type);
}
virtual void setInputNames(const std::vector<std::string>& inputs) CV_OVERRIDE
{
CV_Assert(node);
node->clear_input();
for (int i = 0; i < inputs.size(); ++i)
node->add_input(inputs[i]);
}
opencv_onnx::NodeProto* node;
};
// ONNX graph's inputs are separate from nodes so we index them before the rest of nodes.
class ONNXGraphWrapper : public ImportGraphWrapper
{
public:
ONNXGraphWrapper(opencv_onnx::GraphProto& _net) : net(_net)
{
numInputs = net.input_size();
}
virtual Ptr<ImportNodeWrapper> getNode(int idx) const CV_OVERRIDE
{
opencv_onnx::NodeProto* node = 0;
if (idx >= numInputs)
node = net.mutable_node(idx - numInputs);
return makePtr<ONNXNodeWrapper>(node);
}
virtual int getNumNodes() const CV_OVERRIDE
{
return numInputs + net.node_size();
}
virtual std::string getNodeName(int idx) const CV_OVERRIDE
{
if (idx < numInputs)
return net.input(idx).name();
else
return net.node(idx - numInputs).output(0);
}
virtual void removeNode(int idx) CV_OVERRIDE
{
CV_Assert(idx >= numInputs);
net.mutable_node()->DeleteSubrange(idx - numInputs, 1);
}
private:
int numInputs;
opencv_onnx::GraphProto& net;
};
class SoftMaxSubgraph : public Subgraph
{
public:
SoftMaxSubgraph()
{
int input = addNodeToMatch("");
int inpExp = addNodeToMatch("Exp", input);
int sum = addNodeToMatch("ReduceSum", inpExp);
addNodeToMatch("Div", inpExp, sum);
setFusedNode("Softmax", input);
}
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE
{
if (Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds))
{
Ptr<ImportNodeWrapper> sum = net->getNode(matchedNodesIds[1]);
opencv_onnx::NodeProto* node = sum.dynamicCast<ONNXNodeWrapper>()->node;
for (int i = 0; i < node->attribute_size(); i++)
{
opencv_onnx::AttributeProto attr = node->attribute(i);
if (attr.name() != "axes")
continue;
if (attr.ints_size() != 1)
CV_Error(Error::StsNotImplemented, format("Unexpected number of axes: %d", attr.ints_size()));
axis = attr.ints(0);
return true;
}
CV_Error(Error::StsNotImplemented, "Missed axes attribute");
}
return false;
}
virtual void finalize(const Ptr<ImportGraphWrapper>&,
const Ptr<ImportNodeWrapper>& fusedNode,
std::vector<Ptr<ImportNodeWrapper> >&) CV_OVERRIDE
{
opencv_onnx::NodeProto* node = fusedNode.dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::AttributeProto* attr = node->add_attribute();
attr->set_name("axis");
attr->set_i(axis);
}
private:
int axis;
};
void simplifySubgraphs(opencv_onnx::GraphProto& net)
{
std::vector<Ptr<Subgraph> > subgraphs;
subgraphs.push_back(makePtr<SoftMaxSubgraph>());
simplifySubgraphs(Ptr<ImportGraphWrapper>(new ONNXGraphWrapper(net)), subgraphs);
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn

@ -0,0 +1,30 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2020, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#ifndef __OPENCV_DNN_ONNX_SIMPLIFIER_HPP__
#define __OPENCV_DNN_ONNX_SIMPLIFIER_HPP__
#include "../precomp.hpp"
#if defined(__GNUC__) && __GNUC__ >= 5
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsuggest-override"
#endif
#include "opencv-onnx.pb.h"
#if defined(__GNUC__) && __GNUC__ >= 5
#pragma GCC diagnostic pop
#endif
namespace cv { namespace dnn {
CV__DNN_INLINE_NS_BEGIN
void simplifySubgraphs(opencv_onnx::GraphProto& net);
CV__DNN_INLINE_NS_END
}} // namespace dnn, namespace cv
#endif // __OPENCV_DNN_ONNX_SIMPLIFIER_HPP__

@ -26,6 +26,8 @@
#pragma GCC diagnostic pop
#endif
#include "onnx_graph_simplifier.hpp"
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
@ -326,6 +328,9 @@ void ONNXImporter::populateNet(Net dstNet)
{
CV_Assert(model_proto.has_graph());
opencv_onnx::GraphProto graph_proto = model_proto.graph();
simplifySubgraphs(graph_proto);
std::map<std::string, Mat> constBlobs = getGraphTensors(graph_proto);
// List of internal blobs shapes.
std::map<std::string, MatShape> outShapes;

@ -574,6 +574,21 @@ InferenceEngine::Core& getCore()
#if !defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT)
static bool detectMyriadX_()
{
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2019R3)
// Lightweight detection
InferenceEngine::Core& ie = getCore();
const std::vector<std::string> devices = ie.GetAvailableDevices();
for (std::vector<std::string>::const_iterator i = devices.begin(); i != devices.end(); ++i)
{
if (i->find("MYRIAD") != std::string::npos)
{
const std::string name = ie.GetMetric(*i, METRIC_KEY(FULL_DEVICE_NAME)).as<std::string>();
CV_LOG_INFO(NULL, "Myriad device: " << name);
return name.find("MyriadX") != std::string::npos || name.find("Myriad X") != std::string::npos;
}
}
return false;
#else
InferenceEngine::Builder::Network builder("");
InferenceEngine::idx_t inpId = builder.addLayer(
InferenceEngine::Builder::InputLayer().setPort(InferenceEngine::Port({1})));
@ -634,6 +649,7 @@ static bool detectMyriadX_()
return false;
}
return true;
#endif
}
#endif // !defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT)

@ -9,6 +9,7 @@
#ifdef HAVE_PROTOBUF
#include "../graph_simplifier.hpp"
#include "tf_graph_simplifier.hpp"
#include <queue>
@ -18,203 +19,87 @@ CV__DNN_INLINE_NS_BEGIN
using ::google::protobuf::RepeatedField;
using ::google::protobuf::MapPair;
class Subgraph // Interface to match and replace TensorFlow subgraphs.
class TFNodeWrapper : public ImportNodeWrapper
{
public:
virtual ~Subgraph() {}
TFNodeWrapper(tensorflow::NodeDef* _node) : node(_node) {}
// Add a node to be matched in the origin graph. Specify ids of nodes that
// are expected to be inputs. Returns id of a newly added node.
// TODO: Replace inputs to std::vector<int> in C++11
int addNodeToMatch(const std::string& op, int input_0 = -1, int input_1 = -1,
int input_2 = -1, int input_3 = -1)
virtual int getNumInputs() const CV_OVERRIDE
{
int nodeInputs[] = {input_0, input_1, input_2, input_3};
int numInputs = 0;
for (int i = 0; i < 4; ++i)
{
numInputs += (int)(nodeInputs[i] != -1);
}
return addNodeToMatch(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
return node->input_size();
}
int addNodeToMatch(const std::string& op, const std::vector<int>& inputs_)
virtual std::string getInputName(int idx) const CV_OVERRIDE
{
for (int i = 0; i < inputs_.size(); ++i)
{
CV_Assert(inputs_[i] < (int)nodes.size());
}
nodes.push_back(op);
inputs.push_back(inputs_);
return nodes.size() - 1;
return node->input(idx);
}
// Specify resulting node. All the matched nodes in subgraph excluding
// input nodes will be fused into this single node.
// TODO: Replace inputs to std::vector<int> in C++11
void setFusedNode(const std::string& op, int input_0 = -1, int input_1 = -1,
int input_2 = -1, int input_3 = -1, int input_4 = -1,
int input_5 = -1)
virtual std::string getType() const CV_OVERRIDE
{
int nodeInputs[] = {input_0, input_1, input_2, input_3, input_4, input_5};
int numInputs = 0;
for (int i = 0; i < 6; ++i)
{
CV_Assert(nodeInputs[i] < (int)nodes.size());
numInputs += (int)(nodeInputs[i] != -1);
}
setFusedNode(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
return node->op();
}
void setFusedNode(const std::string& op, const std::vector<int>& inputs_)
virtual void setType(const std::string& type) CV_OVERRIDE
{
fusedNodeInputs = inputs_;
fusedNodeOp = op;
node->set_op(type);
}
static int getInputNodeId(const tensorflow::GraphDef& net,
const tensorflow::NodeDef& node,
int inpId)
virtual void setInputNames(const std::vector<std::string>& inputs) CV_OVERRIDE
{
CV_Assert(inpId < node.input_size());
std::string name = node.input(inpId);
// If operation produces several tensors, they are specified by index
// after ':' character. In example, "input:0".
name = name.substr(0, name.rfind(':'));
const int numNodes = net.node_size();
for (int i = 0; i < numNodes; ++i)
{
if (net.node(i).name() == name)
return i;
}
CV_Error(Error::StsParseError, "Input node with name " + name + " not found");
node->clear_input();
for (int i = 0; i < inputs.size(); ++i)
node->add_input(inputs[i]);
}
// Match TensorFlow subgraph starting from <nodeId> with a set of nodes to be fused.
// Const nodes are skipped during matching. Returns true if nodes are matched and can be fused.
virtual bool match(const tensorflow::GraphDef& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds)
{
matchedNodesIds.clear();
targetNodesIds.clear();
std::queue<int> nodesToMatch;
std::queue<int> targetNodes;
nodesToMatch.push(nodeId);
targetNodes.push(nodes.size() - 1);
while (!nodesToMatch.empty())
{
int nodeToMatch = nodesToMatch.front();
int targetNodeId = targetNodes.front();
nodesToMatch.pop();
targetNodes.pop();
if (std::find(matchedNodesIds.begin(), matchedNodesIds.end(), nodeToMatch) !=
matchedNodesIds.end())
continue;
const tensorflow::NodeDef& node = net.node(nodeToMatch);
if (node.op() != nodes[targetNodeId])
return false;
std::vector<int>& inputNodes = inputs[targetNodeId];
if (inputNodes.size() != node.input_size())
return false;
tensorflow::NodeDef* node;
};
for (int j = 0; j < inputNodes.size(); ++j)
{
if (nodes[inputNodes[j]].empty()) // Unknown input node type.
continue;
nodeId = getInputNodeId(net, node, j);
const tensorflow::NodeDef& inpNode = net.node(nodeId);
if (inpNode.op() != "Const")
{
nodesToMatch.push(nodeId);
targetNodes.push(inputNodes[j]);
}
else if (nodes[inputNodes[j]] != "Const")
return false;
}
matchedNodesIds.push_back(nodeToMatch);
targetNodesIds.push_back(targetNodeId);
}
class TFGraphWrapper : public ImportGraphWrapper
{
public:
TFGraphWrapper(tensorflow::GraphDef& _net) : net(_net) {}
const int n = matchedNodesIds.size();
std::vector<std::pair<int, int> > elements(n);
for (int i = 0; i < n; ++i)
elements[i] = std::make_pair(matchedNodesIds[i], targetNodesIds[i]);
std::sort(elements.begin(), elements.end());
for (int i = 0; i < n; ++i)
{
matchedNodesIds[i] = elements[i].first;
targetNodesIds[i] = elements[i].second;
}
return true;
virtual Ptr<ImportNodeWrapper> getNode(int idx) const CV_OVERRIDE
{
return makePtr<TFNodeWrapper>(net.mutable_node(idx));
}
// Fuse matched subgraph.
void replace(tensorflow::GraphDef& net, const std::vector<int>& matchedNodesIds,
const std::vector<int>& targetNodesIds)
virtual int getNumNodes() const CV_OVERRIDE
{
// Extract names of input nodes.
std::vector<std::string> inputsNames(fusedNodeInputs.size());
for (int i = 0; i < fusedNodeInputs.size(); ++i)
{
std::string inpName;
// Find input node name looking at inputs of fused nodes.
for (int j = 0; j < matchedNodesIds.size() && inpName.empty(); ++j)
{
const tensorflow::NodeDef &node = net.node(matchedNodesIds[j]);
std::vector<int>& inpIndices = inputs[targetNodesIds[j]];
CV_Assert(node.input_size() == inpIndices.size());
for (int k = 0; k < inpIndices.size(); ++k)
{
if (inpIndices[k] == fusedNodeInputs[i])
{
inpName = node.input(k);
break;
}
}
}
CV_Assert(!inpName.empty());
inputsNames[i] = inpName;
}
// Remove matched nodes except the last one. Indices in ascending order are expected.
tensorflow::NodeDef* node = net.mutable_node(matchedNodesIds.back());
for (int i = matchedNodesIds.size() - 2; i >= 0; --i)
net.mutable_node()->DeleteSubrange(matchedNodesIds[i], 1);
return net.node_size();
}
// Modify the last node to be a fused one.
node->set_op(fusedNodeOp);
node->clear_input();
for (int i = 0; i < inputsNames.size(); ++i)
{
node->add_input(inputsNames[i]);
}
virtual std::string getNodeName(int idx) const CV_OVERRIDE
{
return net.node(idx).name();
}
std::vector<tensorflow::NodeDef*> inputNodes(inputsNames.size());
for (int i = 0; i < inputsNames.size(); ++i)
{
inputNodes[i] = net.mutable_node(getInputNodeId(net, *node, i));
}
finalize(net, node, inputNodes);
virtual void removeNode(int idx) CV_OVERRIDE
{
net.mutable_node()->DeleteSubrange(idx, 1);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef*,
std::vector<tensorflow::NodeDef*>&) {}
tensorflow::GraphDef& net;
};
private:
std::vector<std::string> nodes; // Nodes to be matched in the origin graph.
std::vector<std::vector<int> > inputs; // Connections of an every node to it's inputs.
class TFSubgraph : public Subgraph
{
virtual void finalize(const Ptr<ImportGraphWrapper>& netWrapper,
const Ptr<ImportNodeWrapper>& fusedNodeWrapper,
std::vector<Ptr<ImportNodeWrapper> >& inputs) CV_OVERRIDE
{
std::vector<tensorflow::NodeDef*> inputNodes(inputs.size());
for (int i = 0; i < inputs.size(); ++i)
inputNodes[i] = inputs[i].dynamicCast<TFNodeWrapper>()->node;
finalize(netWrapper.dynamicCast<TFGraphWrapper>()->net,
fusedNodeWrapper.dynamicCast<TFNodeWrapper>()->node, inputNodes);
}
std::string fusedNodeOp; // Operation name of resulting fused node.
std::vector<int> fusedNodeInputs; // Inputs of fused node.
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) {}
};
class BatchNormSubgraph : public Subgraph
class BatchNormSubgraph : public TFSubgraph
{
public:
BatchNormSubgraph()
@ -250,7 +135,7 @@ public:
}
};
class BatchNormNoGammaSubgraph : public Subgraph
class BatchNormNoGammaSubgraph : public TFSubgraph
{
public:
BatchNormNoGammaSubgraph()
@ -366,20 +251,21 @@ public:
setFusedNode("Relu6", input);
}
virtual bool match(const tensorflow::GraphDef& net, int nodeId,
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE
{
if (!Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds))
return false;
Mat maxValue = getTensorContent(net.node(matchedNodesIds.front() + 1).attr().at("value").tensor());
tensorflow::NodeDef* node = net->getNode(matchedNodesIds.front() + 1).dynamicCast<TFNodeWrapper>()->node;
Mat maxValue = getTensorContent(node->attr().at("value").tensor());
return maxValue.type() == CV_32FC1 && maxValue.total() == 1 && maxValue.at<float>(0) == 6;
}
};
// Keras' reshape stores output shape in separate Const nodes by one value.
// Need to merge them into a single Const node.
class ReshapeKerasSubgraph : public Subgraph
class ReshapeKerasSubgraph : public TFSubgraph
{
public:
ReshapeKerasSubgraph(int _numOutDims) : numOutDims(_numOutDims)
@ -402,15 +288,15 @@ public:
setFusedNode("Reshape", ids);
}
virtual bool match(const tensorflow::GraphDef& net, int nodeId,
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE
{
const tensorflow::NodeDef& node = net.node(nodeId);
if (node.input_size() == 0)
Ptr<ImportNodeWrapper> node = net->getNode(nodeId);
if (node->getNumInputs() == 0)
return false;
inpName = node.input(0);
inpName = node->getInputName(0);
return Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds);
}
@ -457,7 +343,7 @@ public:
}
};
class DeconvolutionValidKerasSubgraph : public Subgraph
class DeconvolutionValidKerasSubgraph : public TFSubgraph
{
public:
DeconvolutionValidKerasSubgraph()
@ -518,7 +404,7 @@ public:
}
};
class DeconvolutionSameKerasSubgraph : public Subgraph
class DeconvolutionSameKerasSubgraph : public TFSubgraph
{
public:
DeconvolutionSameKerasSubgraph()
@ -608,7 +494,7 @@ public:
};
// In case of resizing by factor.
class UpsamplingKerasSubgraph : public Subgraph
class UpsamplingKerasSubgraph : public TFSubgraph
{
public:
UpsamplingKerasSubgraph(const std::string& type)
@ -703,7 +589,7 @@ public:
}
};
class KerasMVNSubgraph : public Subgraph
class KerasMVNSubgraph : public TFSubgraph
{
public:
KerasMVNSubgraph()
@ -758,20 +644,7 @@ void simplifySubgraphs(tensorflow::GraphDef& net)
subgraphs.push_back(Ptr<Subgraph>(new ReshapeAsShapeSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new KerasMVNSubgraph()));
int numNodes = net.node_size();
std::vector<int> matchedNodesIds, targetNodesIds;
for (int i = 0; i < numNodes; ++i)
{
for (int j = 0; j < subgraphs.size(); ++j)
{
if (subgraphs[j]->match(net, i, matchedNodesIds, targetNodesIds))
{
subgraphs[j]->replace(net, matchedNodesIds, targetNodesIds);
numNodes -= matchedNodesIds.size() - 1; // #matchedNodes removed and one added.
break;
}
}
}
simplifySubgraphs(Ptr<ImportGraphWrapper>(new TFGraphWrapper(net)), subgraphs);
}
void RemoveIdentityOps(tensorflow::GraphDef& net)

@ -197,8 +197,8 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe_Different_Width_Height)
if (backend == DNN_BACKEND_HALIDE)
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) &&
target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
#endif
Mat sample = imread(findDataFile("dnn/street.png"));
@ -249,8 +249,8 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow_Different_Width_Height)
if (backend == DNN_BACKEND_HALIDE)
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) &&
target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000)

@ -691,9 +691,11 @@ TEST_P(Test_Caffe_nets, FasterRCNN_zf)
(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB),
CV_TEST_TAG_DEBUG_LONG
);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL_FP16)
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
if (target == DNN_TARGET_CUDA_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
@ -710,9 +712,11 @@ TEST_P(Test_Caffe_nets, RFCN)
CV_TEST_TAG_LONG,
CV_TEST_TAG_DEBUG_VERYLONG
);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL_FP16)
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
float scoreDiff = default_l1, iouDiff = default_lInf;
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)

@ -307,8 +307,8 @@ TEST_P(Test_Darknet_nets, YoloVoc)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
#endif
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) &&
target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); // need to update check function
#endif
@ -352,8 +352,8 @@ TEST_P(Test_Darknet_nets, TinyYoloVoc)
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) &&
target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); // need to update check function
#endif
// batchId, classId, confidence, left, top, right, bottom
@ -486,7 +486,8 @@ TEST_P(Test_Darknet_nets, YOLOv3)
std::string weights_file = "yolov3.weights";
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD &&
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD &&
getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
{
scoreDiff = 0.04;

@ -357,11 +357,6 @@ TEST_P(MaxPooling, Accuracy)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
#if defined(INF_ENGINE_RELEASE)
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && stride != Size(1, 1) && pad != Size(0, 0))
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
LayerParams lp;
lp.set("pool", "max");
lp.set("kernel_w", kernel.width);
@ -399,7 +394,8 @@ TEST_P(FullyConnected, Accuracy)
bool hasBias = get<3>(GetParam());
Backend backendId = get<0>(get<4>(GetParam()));
Target targetId = get<1>(get<4>(GetParam()));
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (targetId == DNN_TARGET_OPENCL_FP16 ||
if ((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && (targetId == DNN_TARGET_OPENCL_FP16 ||
(targetId == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X))) {
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);

@ -134,12 +134,13 @@ static const std::vector<std::string> getOpenVINOTestModelsList()
return result;
}
static inline void genData(const std::vector<size_t>& dims, Mat& m, Blob::Ptr& dataPtr)
static inline void genData(const InferenceEngine::TensorDesc& desc, Mat& m, Blob::Ptr& dataPtr)
{
const std::vector<size_t>& dims = desc.getDims();
m.create(std::vector<int>(dims.begin(), dims.end()), CV_32F);
randu(m, -1, 1);
dataPtr = make_shared_blob<float>({Precision::FP32, dims, Layout::ANY}, (float*)m.data);
dataPtr = make_shared_blob<float>(desc, (float*)m.data);
}
void runIE(Target target, const std::string& xmlPath, const std::string& binPath,
@ -238,7 +239,7 @@ void runIE(Target target, const std::string& xmlPath, const std::string& binPath
BlobMap inputBlobs;
for (auto& it : net.getInputsInfo())
{
genData(it.second->getTensorDesc().getDims(), inputsMap[it.first], inputBlobs[it.first]);
genData(it.second->getTensorDesc(), inputsMap[it.first], inputBlobs[it.first]);
}
infRequest.SetInput(inputBlobs);
@ -247,7 +248,7 @@ void runIE(Target target, const std::string& xmlPath, const std::string& binPath
BlobMap outputBlobs;
for (auto& it : net.getOutputsInfo())
{
genData(it.second->getTensorDesc().getDims(), outputsMap[it.first], outputBlobs[it.first]);
genData(it.second->getTensorDesc(), outputsMap[it.first], outputBlobs[it.first]);
}
infRequest.SetOutput(outputBlobs);

@ -864,6 +864,8 @@ TEST_P(Test_Caffe_layers, PriorBox_squares)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
LayerParams lp;
lp.name = "testPriorBox";
lp.type = "PriorBox";
@ -1301,7 +1303,7 @@ static void test_dldt_fused_output(Backend backend, Target target)
}
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
net.setInput(Mat({1, 1, 1, 1}, CV_32FC1, Scalar(1)));
net.setInput(Mat({1, 1, 2, 3}, CV_32FC1, Scalar(1)));
net.forward();
}
@ -1340,7 +1342,7 @@ TEST_P(Test_DLDT_layers, multiple_networks)
nets[i].addLayerToPrev(lp.name, lp.type, lp);
nets[i].setPreferableBackend(backend);
nets[i].setPreferableTarget(target);
nets[i].setInput(Mat({1, 1, 1, 1}, CV_32FC1, Scalar(1)));
nets[i].setInput(Mat({1, 1, 2, 3}, CV_32FC1, Scalar(1)));
}
Mat out_1 = nets[0].forward();
Mat out_2 = nets[1].forward();

@ -369,9 +369,12 @@ TEST_P(Test_ONNX_layers, Div)
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat inp1 = blobFromNPY(_tf("data/input_div_0.npy"));
Mat inp2 = blobFromNPY(_tf("data/input_div_1.npy"));
// Reference output values range is -68.80928, 2.991873. So to avoid computational
// difference for FP16 we'll perform reversed division (just swap inputs).
Mat inp1 = blobFromNPY(_tf("data/input_div_1.npy"));
Mat inp2 = blobFromNPY(_tf("data/input_div_0.npy"));
Mat ref = blobFromNPY(_tf("data/output_div.npy"));
cv::divide(1.0, ref, ref);
checkBackend(&inp1, &ref);
net.setInput(inp1, "0");
@ -421,6 +424,7 @@ TEST_P(Test_ONNX_layers, Softmax)
{
testONNXModels("softmax");
testONNXModels("log_softmax", npy, 0, 0, false, false);
testONNXModels("softmax_unfused");
}
TEST_P(Test_ONNX_layers, Split_EltwiseMax)
@ -473,6 +477,9 @@ TEST_P(Test_ONNX_nets, Googlenet)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
const String model = _tf("models/googlenet.onnx", false);
Net net = readNetFromONNX(model);
@ -516,7 +523,7 @@ TEST_P(Test_ONNX_nets, RCNN_ILSVRC13)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
// Reference output values are in range [-4.992, -1.161]
testONNXModels("rcnn_ilsvrc13", pb, 0.0045);
testONNXModels("rcnn_ilsvrc13", pb, 0.0046);
}
TEST_P(Test_ONNX_nets, VGG16_bn)
@ -583,10 +590,12 @@ TEST_P(Test_ONNX_nets, TinyYolov2)
)
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
if (target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X,
backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ?
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER :
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
// output range: [-11; 8]
@ -628,6 +637,12 @@ TEST_P(Test_ONNX_nets, LResNet100E_IR)
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
}
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
}
double l1 = default_l1, lInf = default_lInf;
// output range: [-3; 3]
@ -652,10 +667,11 @@ TEST_P(Test_ONNX_nets, LResNet100E_IR)
TEST_P(Test_ONNX_nets, Emotion_ferplus)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X,
backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ?
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER :
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
double l1 = default_l1;
@ -692,7 +708,8 @@ TEST_P(Test_ONNX_nets, DenseNet121)
TEST_P(Test_ONNX_nets, Inception_v1)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
#endif
testONNXModels("inception_v1", pb);

@ -261,10 +261,13 @@ TEST_P(Test_TensorFlow_layers, ave_pool_same)
{
// Reference output values are in range [-0.519531, 0.112976]
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
if (target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
}
#endif
runTensorFlowNet("ave_pool_same");
}
@ -399,6 +402,8 @@ TEST_P(Test_TensorFlow_layers, l2_normalize_3d)
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
runTensorFlowNet("l2_normalize_3d");
@ -409,11 +414,15 @@ class Test_TensorFlow_nets : public DNNTestLayer {};
TEST_P(Test_TensorFlow_nets, MobileNet_SSD)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
if (target == DNN_TARGET_MYRIAD)
{
#if INF_ENGINE_VER_MAJOR_GE(2019020000)
if (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X,
backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ?
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER :
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH,
CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
}
#endif
@ -554,6 +563,10 @@ TEST_P(Test_TensorFlow_nets, Faster_RCNN)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 &&
(INF_ENGINE_VER_MAJOR_LT(2019020000) || target != DNN_TARGET_CPU))
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
if (INF_ENGINE_VER_MAJOR_GT(2019030000) &&
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
// segfault: inference-engine/thirdparty/clDNN/src/gpu/detection_output_cpu.cpp:111:
// Assertion `prior_height > 0' failed.

@ -239,6 +239,8 @@ TEST_P(Test_Torch_layers, net_conv_gemm_lrn)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
double l1 = 0.0, lInf = 0.0;
if (target == DNN_TARGET_OPENCL_FP16)
{
@ -398,6 +400,13 @@ TEST_P(Test_Torch_nets, ENet_accuracy)
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
throw SkipTestException("");
}
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
{
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
throw SkipTestException("");
}
Net net;
{
@ -450,6 +459,9 @@ TEST_P(Test_Torch_nets, FastNeuralStyle_accuracy)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
checkBackend();

@ -57,12 +57,8 @@ void Cloning::computeGradientX( const Mat &img, Mat &gx)
}
else if (img.channels() == 1)
{
Mat tmp[3];
for(int chan = 0 ; chan < 3 ; ++chan)
{
filter2D(img, tmp[chan], CV_32F, kernel);
}
merge(tmp, 3, gx);
filter2D(img, gx, CV_32F, kernel);
cvtColor(gx, gx, COLOR_GRAY2BGR);
}
}
@ -78,12 +74,8 @@ void Cloning::computeGradientY( const Mat &img, Mat &gy)
}
else if (img.channels() == 1)
{
Mat tmp[3];
for(int chan = 0 ; chan < 3 ; ++chan)
{
filter2D(img, tmp[chan], CV_32F, kernel);
}
merge(tmp, 3, gy);
filter2D(img, gy, CV_32F, kernel);
cvtColor(gy, gy, COLOR_GRAY2BGR);
}
}

@ -13,11 +13,14 @@
# define Py_LIMITED_API 0x03030000
#endif
#include <math.h>
#include <cmath>
#include <Python.h>
#include <limits>
#if PY_MAJOR_VERSION < 3
#undef CVPY_DYNAMIC_INIT
#else
#define CV_PYTHON_3 1
#endif
#if defined(_MSC_VER) && (_MSC_VER > 1800)
@ -40,16 +43,17 @@
#include <type_traits> // std::enable_if
#define CV_HAS_CONVERSION_ERROR(x) (((x) == -1) && PyErr_Occurred())
class ArgInfo
{
public:
const char * name;
const char* name;
bool outputarg;
// more fields may be added if necessary
ArgInfo(const char * name_, bool outputarg_)
: name(name_)
, outputarg(outputarg_) {}
ArgInfo(const char* name_, bool outputarg_) : name(name_), outputarg(outputarg_) {}
private:
ArgInfo(const ArgInfo&) = delete;
@ -162,6 +166,135 @@ catch (const cv::Exception &e) \
using namespace cv;
namespace {
template<class T>
NPY_TYPES asNumpyType()
{
return NPY_OBJECT;
}
template<>
NPY_TYPES asNumpyType<bool>()
{
return NPY_BOOL;
}
#define CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(src, dst) \
template<> \
NPY_TYPES asNumpyType<src>() \
{ \
return NPY_##dst; \
} \
template<> \
NPY_TYPES asNumpyType<u##src>() \
{ \
return NPY_U##dst; \
}
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int8_t, INT8);
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int16_t, INT16);
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int32_t, INT32);
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int64_t, INT64);
#undef CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION
template<>
NPY_TYPES asNumpyType<float>()
{
return NPY_FLOAT;
}
template<>
NPY_TYPES asNumpyType<double>()
{
return NPY_DOUBLE;
}
template <class T>
PyArray_Descr* getNumpyTypeDescriptor()
{
return PyArray_DescrFromType(asNumpyType<T>());
}
template <>
PyArray_Descr* getNumpyTypeDescriptor<size_t>()
{
#if SIZE_MAX == ULONG_MAX
return PyArray_DescrFromType(NPY_ULONG);
#elif SIZE_MAX == ULLONG_MAX
return PyArray_DescrFromType(NPY_ULONGLONG);
#else
return PyArray_DescrFromType(NPY_UINT);
#endif
}
template <class T, class U>
bool isRepresentable(U value) {
return (std::numeric_limits<T>::min() <= value) && (value <= std::numeric_limits<T>::max());
}
template<class T>
bool canBeSafelyCasted(PyObject* obj, PyArray_Descr* to)
{
return PyArray_CanCastTo(PyArray_DescrFromScalar(obj), to) != 0;
}
template<>
bool canBeSafelyCasted<size_t>(PyObject* obj, PyArray_Descr* to)
{
PyArray_Descr* from = PyArray_DescrFromScalar(obj);
if (PyArray_CanCastTo(from, to))
{
return true;
}
else
{
// False negative scenarios:
// - Signed input is positive so it can be safely cast to unsigned output
// - Input has wider limits but value is representable within output limits
// - All the above
if (PyDataType_ISSIGNED(from))
{
int64_t input = 0;
PyArray_CastScalarToCtype(obj, &input, getNumpyTypeDescriptor<int64_t>());
return (input >= 0) && isRepresentable<size_t>(static_cast<uint64_t>(input));
}
else
{
uint64_t input = 0;
PyArray_CastScalarToCtype(obj, &input, getNumpyTypeDescriptor<uint64_t>());
return isRepresentable<size_t>(input);
}
return false;
}
}
template<class T>
bool parseNumpyScalar(PyObject* obj, T& value)
{
if (PyArray_CheckScalar(obj))
{
// According to the numpy documentation:
// There are 21 statically-defined PyArray_Descr objects for the built-in data-types
// So descriptor pointer is not owning.
PyArray_Descr* to = getNumpyTypeDescriptor<T>();
if (canBeSafelyCasted<T>(obj, to))
{
PyArray_CastScalarToCtype(obj, &value, to);
return true;
}
}
return false;
}
} // namespace
typedef std::vector<uchar> vector_uchar;
typedef std::vector<char> vector_char;
typedef std::vector<int> vector_int;
@ -271,6 +404,11 @@ NumpyAllocator g_numpyAllocator;
enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 };
static bool isBool(PyObject* obj) CV_NOEXCEPT
{
return PyArray_IsScalar(obj, Bool) || PyBool_Check(obj);
}
// special case, when the converter needs full ArgInfo structure
static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo& info)
{
@ -581,14 +719,22 @@ PyObject* pyopencv_from(const bool& value)
template<>
bool pyopencv_to(PyObject* obj, bool& value, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
if (!obj || obj == Py_None)
{
return true;
int _val = PyObject_IsTrue(obj);
if(_val < 0)
return false;
value = _val > 0;
return true;
}
if (isBool(obj) || PyArray_IsIntegerScalar(obj))
{
npy_bool npy_value = NPY_FALSE;
const int ret_code = PyArray_BoolConverter(obj, &npy_value);
if (ret_code >= 0)
{
value = (npy_value == NPY_TRUE);
return true;
}
}
failmsg("Argument '%s' is not convertable to bool", info.name);
return false;
}
template<>
@ -600,11 +746,62 @@ PyObject* pyopencv_from(const size_t& value)
template<>
bool pyopencv_to(PyObject* obj, size_t& value, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
if (!obj || obj == Py_None)
{
return true;
value = (int)PyLong_AsUnsignedLong(obj);
return value != (size_t)-1 || !PyErr_Occurred();
}
if (isBool(obj))
{
failmsg("Argument '%s' must be integer type, not bool", info.name);
return false;
}
if (PyArray_IsIntegerScalar(obj))
{
if (PyLong_Check(obj))
{
#if defined(CV_PYTHON_3)
value = PyLong_AsSize_t(obj);
#else
#if ULONG_MAX == SIZE_MAX
value = PyLong_AsUnsignedLong(obj);
#else
value = PyLong_AsUnsignedLongLong(obj);
#endif
#endif
}
#if !defined(CV_PYTHON_3)
// Python 2.x has PyIntObject which is not a subtype of PyLongObject
// Overflow check here is unnecessary because object will be converted to long on the
// interpreter side
else if (PyInt_Check(obj))
{
const long res = PyInt_AsLong(obj);
if (res < 0) {
failmsg("Argument '%s' can not be safely parsed to 'size_t'", info.name);
return false;
}
#if ULONG_MAX == SIZE_MAX
value = PyInt_AsUnsignedLongMask(obj);
#else
value = PyInt_AsUnsignedLongLongMask(obj);
#endif
}
#endif
else
{
const bool isParsed = parseNumpyScalar<size_t>(obj, value);
if (!isParsed) {
failmsg("Argument '%s' can not be safely parsed to 'size_t'", info.name);
return false;
}
}
}
else
{
failmsg("Argument '%s' is required to be an integer", info.name);
return false;
}
return !PyErr_Occurred();
}
template<>
@ -616,16 +813,25 @@ PyObject* pyopencv_from(const int& value)
template<>
bool pyopencv_to(PyObject* obj, int& value, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
if (!obj || obj == Py_None)
{
return true;
if(PyInt_Check(obj))
value = (int)PyInt_AsLong(obj);
else if(PyLong_Check(obj))
value = (int)PyLong_AsLong(obj);
}
if (isBool(obj))
{
failmsg("Argument '%s' must be integer, not bool", info.name);
return false;
}
if (PyArray_IsIntegerScalar(obj))
{
value = PyArray_PyIntAsInt(obj);
}
else
{
failmsg("Argument '%s' is required to be an integer", info.name);
return false;
return value != -1 || !PyErr_Occurred();
}
return !CV_HAS_CONVERSION_ERROR(value);
}
// There is conflict between "size_t" and "unsigned int".
@ -680,13 +886,39 @@ PyObject* pyopencv_from(const double& value)
template<>
bool pyopencv_to(PyObject* obj, double& value, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
if (!obj || obj == Py_None)
{
return true;
if(!!PyInt_CheckExact(obj))
value = (double)PyInt_AS_LONG(obj);
}
if (isBool(obj))
{
failmsg("Argument '%s' must be double, not bool", info.name);
return false;
}
if (PyArray_IsPythonNumber(obj))
{
if (PyLong_Check(obj))
{
value = PyLong_AsDouble(obj);
}
else
{
value = PyFloat_AsDouble(obj);
}
}
else if (PyArray_CheckScalar(obj))
{
const bool isParsed = parseNumpyScalar<double>(obj, value);
if (!isParsed) {
failmsg("Argument '%s' can not be safely parsed to 'double'", info.name);
return false;
}
}
else
value = PyFloat_AsDouble(obj);
{
failmsg("Argument '%s' can not be treated as a double", info.name);
return false;
}
return !PyErr_Occurred();
}
@ -699,13 +931,41 @@ PyObject* pyopencv_from(const float& value)
template<>
bool pyopencv_to(PyObject* obj, float& value, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
if (!obj || obj == Py_None)
{
return true;
if(!!PyInt_CheckExact(obj))
value = (float)PyInt_AS_LONG(obj);
}
if (isBool(obj))
{
failmsg("Argument '%s' must be float, not bool", info.name);
return false;
}
if (PyArray_IsPythonNumber(obj))
{
if (PyLong_Check(obj))
{
double res = PyLong_AsDouble(obj);
value = static_cast<float>(res);
}
else
{
double res = PyFloat_AsDouble(obj);
value = static_cast<float>(res);
}
}
else if (PyArray_CheckScalar(obj))
{
const bool isParsed = parseNumpyScalar<float>(obj, value);
if (!isParsed) {
failmsg("Argument '%s' can not be safely parsed to 'float'", info.name);
return false;
}
}
else
value = (float)PyFloat_AsDouble(obj);
{
failmsg("Argument '%s' can't be treated as a float", info.name);
return false;
}
return !PyErr_Occurred();
}
@ -1781,7 +2041,7 @@ static bool init_body(PyObject * m)
#pragma GCC visibility push(default)
#endif
#if PY_MAJOR_VERSION >= 3
#if defined(CV_PYTHON_3)
// === Python 3
static struct PyModuleDef cv2_moduledef =

@ -4,12 +4,14 @@ from __future__ import print_function
import hdr_parser, sys, re, os
from string import Template
from pprint import pprint
from collections import namedtuple
if sys.version_info[0] >= 3:
from io import StringIO
else:
from cStringIO import StringIO
forbidden_arg_types = ["void*"]
ignored_arg_types = ["RNG*"]
@ -172,18 +174,48 @@ gen_template_prop_init = Template("""
gen_template_rw_prop_init = Template("""
{(char*)"${member}", (getter)pyopencv_${name}_get_${member}, (setter)pyopencv_${name}_set_${member}, (char*)"${member}", NULL},""")
class FormatStrings:
string = 's'
unsigned_char = 'b'
short_int = 'h'
int = 'i'
unsigned_int = 'I'
long = 'l'
unsigned_long = 'k'
long_long = 'L'
unsigned_long_long = 'K'
size_t = 'n'
float = 'f'
double = 'd'
object = 'O'
ArgTypeInfo = namedtuple('ArgTypeInfo',
['atype', 'format_str', 'default_value',
'strict_conversion'])
# strict_conversion is False by default
ArgTypeInfo.__new__.__defaults__ = (False,)
simple_argtype_mapping = {
"bool": ("bool", "b", "0"),
"size_t": ("size_t", "I", "0"),
"int": ("int", "i", "0"),
"float": ("float", "f", "0.f"),
"double": ("double", "d", "0"),
"c_string": ("char*", "s", '(char*)""')
"bool": ArgTypeInfo("bool", FormatStrings.unsigned_char, "0", True),
"size_t": ArgTypeInfo("size_t", FormatStrings.unsigned_long_long, "0", True),
"int": ArgTypeInfo("int", FormatStrings.int, "0", True),
"float": ArgTypeInfo("float", FormatStrings.float, "0.f", True),
"double": ArgTypeInfo("double", FormatStrings.double, "0", True),
"c_string": ArgTypeInfo("char*", FormatStrings.string, '(char*)""')
}
def normalize_class_name(name):
return re.sub(r"^cv\.", "", name).replace(".", "_")
def get_type_format_string(arg_type_info):
if arg_type_info.strict_conversion:
return FormatStrings.object
else:
return arg_type_info.format_str
class ClassProp(object):
def __init__(self, decl):
self.tp = decl[0].replace("*", "_ptr")
@ -575,7 +607,7 @@ class FuncInfo(object):
fullname = selfinfo.wname + "." + fullname
all_code_variants = []
declno = -1
for v in self.variants:
code_decl = ""
code_ret = ""
@ -583,7 +615,6 @@ class FuncInfo(object):
code_args = "("
all_cargs = []
parse_arglist = []
if v.isphantom and ismethod and not self.is_static:
code_args += "_self_"
@ -616,22 +647,22 @@ class FuncInfo(object):
if any(tp in codegen.enums.keys() for tp in tp_candidates):
defval0 = "static_cast<%s>(%d)" % (a.tp, 0)
amapping = simple_argtype_mapping.get(tp, (tp, "O", defval0))
arg_type_info = simple_argtype_mapping.get(tp, ArgTypeInfo(tp, FormatStrings.object, defval0, True))
parse_name = a.name
if a.py_inputarg:
if amapping[1] == "O":
if arg_type_info.strict_conversion:
code_decl += " PyObject* pyobj_%s = NULL;\n" % (a.name,)
parse_name = "pyobj_" + a.name
if a.tp == 'char':
code_cvt_list.append("convert_to_char(pyobj_%s, &%s, %s)"% (a.name, a.name, a.crepr()))
code_cvt_list.append("convert_to_char(pyobj_%s, &%s, %s)" % (a.name, a.name, a.crepr()))
else:
code_cvt_list.append("pyopencv_to(pyobj_%s, %s, %s)" % (a.name, a.name, a.crepr()))
all_cargs.append([amapping, parse_name])
all_cargs.append([arg_type_info, parse_name])
defval = a.defval
if not defval:
defval = amapping[2]
defval = arg_type_info.default_value
else:
if "UMat" in tp:
if "Mat" in defval and "UMat" not in defval:
@ -640,14 +671,14 @@ class FuncInfo(object):
if "Mat" in defval and "GpuMat" not in defval:
defval = defval.replace("Mat", "cuda::GpuMat")
# "tp arg = tp();" is equivalent to "tp arg;" in the case of complex types
if defval == tp + "()" and amapping[1] == "O":
if defval == tp + "()" and arg_type_info.format_str == FormatStrings.object:
defval = ""
if a.outputarg and not a.inputarg:
defval = ""
if defval:
code_decl += " %s %s=%s;\n" % (amapping[0], a.name, defval)
code_decl += " %s %s=%s;\n" % (arg_type_info.atype, a.name, defval)
else:
code_decl += " %s %s;\n" % (amapping[0], a.name)
code_decl += " %s %s;\n" % (arg_type_info.atype, a.name)
if not code_args.endswith("("):
code_args += ", "
@ -689,12 +720,16 @@ class FuncInfo(object):
if v.rettype:
tp = v.rettype
tp1 = tp.replace("*", "_ptr")
amapping = simple_argtype_mapping.get(tp, (tp, "O", "0"))
all_cargs.append(amapping)
default_info = ArgTypeInfo(tp, FormatStrings.object, "0")
arg_type_info = simple_argtype_mapping.get(tp, default_info)
all_cargs.append(arg_type_info)
if v.args and v.py_arglist:
# form the format spec for PyArg_ParseTupleAndKeywords
fmtspec = "".join([all_cargs[argno][0][1] for aname, argno in v.py_arglist])
fmtspec = "".join([
get_type_format_string(all_cargs[argno][0])
for aname, argno in v.py_arglist
])
if v.py_noptargs > 0:
fmtspec = fmtspec[:-v.py_noptargs] + "|" + fmtspec[-v.py_noptargs:]
fmtspec += ":" + fullname
@ -722,10 +757,6 @@ class FuncInfo(object):
else:
# there is more than 1 return parameter; form the tuple out of them
fmtspec = "N"*len(v.py_outlist)
backcvt_arg_list = []
for aname, argno in v.py_outlist:
amapping = all_cargs[argno][0]
backcvt_arg_list.append("%s(%s)" % (amapping[2], aname))
code_ret = "return Py_BuildValue(\"(%s)\", %s)" % \
(fmtspec, ", ".join(["pyopencv_from(" + aname + ")" for aname, argno in v.py_outlist]))

@ -136,13 +136,12 @@ class Arguments(NewOpenCVTests):
msg=get_conversion_error_msg(convertible_false, 'bool: false', actual))
def test_parse_to_bool_not_convertible(self):
for not_convertible in (1.2, np.float(2.3), 's', 'str', (1, 2), [1, 2], complex(1, 1), None,
for not_convertible in (1.2, np.float(2.3), 's', 'str', (1, 2), [1, 2], complex(1, 1),
complex(imag=2), complex(1.1), np.array([1, 0], dtype=np.bool)):
with self.assertRaises((TypeError, OverflowError),
msg=get_no_exception_msg(not_convertible)):
_ = cv.utils.dumpBool(not_convertible)
@unittest.skip('Wrong conversion behavior')
def test_parse_to_bool_convertible_extra(self):
try_to_convert = partial(self._try_to_convert, cv.utils.dumpBool)
_, max_size_t = get_limits(ctypes.c_size_t)
@ -151,7 +150,6 @@ class Arguments(NewOpenCVTests):
self.assertEqual('bool: true', actual,
msg=get_conversion_error_msg(convertible_true, 'bool: true', actual))
@unittest.skip('Wrong conversion behavior')
def test_parse_to_bool_not_convertible_extra(self):
for not_convertible in (np.array([False]), np.array([True], dtype=np.bool)):
with self.assertRaises((TypeError, OverflowError),
@ -172,12 +170,11 @@ class Arguments(NewOpenCVTests):
min_int, max_int = get_limits(ctypes.c_int)
for not_convertible in (1.2, np.float(4), float(3), np.double(45), 's', 'str',
np.array([1, 2]), (1,), [1, 2], min_int - 1, max_int + 1,
complex(1, 1), complex(imag=2), complex(1.1), None):
complex(1, 1), complex(imag=2), complex(1.1)):
with self.assertRaises((TypeError, OverflowError, ValueError),
msg=get_no_exception_msg(not_convertible)):
_ = cv.utils.dumpInt(not_convertible)
@unittest.skip('Wrong conversion behavior')
def test_parse_to_int_not_convertible_extra(self):
for not_convertible in (np.bool_(True), True, False, np.float32(2.3),
np.array([3, ], dtype=int), np.array([-2, ], dtype=np.int32),
@ -189,7 +186,7 @@ class Arguments(NewOpenCVTests):
def test_parse_to_size_t_convertible(self):
try_to_convert = partial(self._try_to_convert, cv.utils.dumpSizeT)
_, max_uint = get_limits(ctypes.c_uint)
for convertible in (2, True, False, max_uint, (12), np.uint8(34), np.int8(12), np.int16(23),
for convertible in (2, max_uint, (12), np.uint8(34), np.int8(12), np.int16(23),
np.int32(123), np.int64(344), np.uint64(3), np.uint16(2), np.uint32(5),
np.uint(44)):
expected = 'size_t: {0:d}'.format(convertible).lower()
@ -198,14 +195,15 @@ class Arguments(NewOpenCVTests):
msg=get_conversion_error_msg(convertible, expected, actual))
def test_parse_to_size_t_not_convertible(self):
for not_convertible in (1.2, np.float(4), float(3), np.double(45), 's', 'str',
np.array([1, 2]), (1,), [1, 2], np.float64(6), complex(1, 1),
complex(imag=2), complex(1.1), None):
min_long, _ = get_limits(ctypes.c_long)
for not_convertible in (1.2, True, False, np.bool_(True), np.float(4), float(3),
np.double(45), 's', 'str', np.array([1, 2]), (1,), [1, 2],
np.float64(6), complex(1, 1), complex(imag=2), complex(1.1),
-1, min_long, np.int8(-35)):
with self.assertRaises((TypeError, OverflowError),
msg=get_no_exception_msg(not_convertible)):
_ = cv.utils.dumpSizeT(not_convertible)
@unittest.skip('Wrong conversion behavior')
def test_parse_to_size_t_convertible_extra(self):
try_to_convert = partial(self._try_to_convert, cv.utils.dumpSizeT)
_, max_size_t = get_limits(ctypes.c_size_t)
@ -215,7 +213,6 @@ class Arguments(NewOpenCVTests):
self.assertEqual(expected, actual,
msg=get_conversion_error_msg(convertible, expected, actual))
@unittest.skip('Wrong conversion behavior')
def test_parse_to_size_t_not_convertible_extra(self):
for not_convertible in (np.bool_(True), True, False, np.array([123, ], dtype=np.uint8),):
with self.assertRaises((TypeError, OverflowError),
@ -251,13 +248,12 @@ class Arguments(NewOpenCVTests):
msg=get_conversion_error_msg(inf, expected, actual))
def test_parse_to_float_not_convertible(self):
for not_convertible in ('s', 'str', (12,), [1, 2], None, np.array([1, 2], dtype=np.float),
for not_convertible in ('s', 'str', (12,), [1, 2], np.array([1, 2], dtype=np.float),
np.array([1, 2], dtype=np.double), complex(1, 1), complex(imag=2),
complex(1.1)):
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
_ = cv.utils.dumpFloat(not_convertible)
@unittest.skip('Wrong conversion behavior')
def test_parse_to_float_not_convertible_extra(self):
for not_convertible in (np.bool_(False), True, False, np.array([123, ], dtype=int),
np.array([1., ]), np.array([False]),
@ -289,13 +285,12 @@ class Arguments(NewOpenCVTests):
"Actual: {}".format(type(nan).__name__, actual))
def test_parse_to_double_not_convertible(self):
for not_convertible in ('s', 'str', (12,), [1, 2], None, np.array([1, 2], dtype=np.float),
for not_convertible in ('s', 'str', (12,), [1, 2], np.array([1, 2], dtype=np.float),
np.array([1, 2], dtype=np.double), complex(1, 1), complex(imag=2),
complex(1.1)):
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
_ = cv.utils.dumpDouble(not_convertible)
@unittest.skip('Wrong conversion behavior')
def test_parse_to_double_not_convertible_extra(self):
for not_convertible in (np.bool_(False), True, False, np.array([123, ], dtype=int),
np.array([1., ]), np.array([False]),

@ -0,0 +1,173 @@
#!/usr/bin/env python
from itertools import product
from functools import reduce
import numpy as np
import cv2 as cv
from tests_common import NewOpenCVTests
def norm_inf(x, y=None):
def norm(vec):
return np.linalg.norm(vec.flatten(), np.inf)
x = x.astype(np.float64)
return norm(x) if y is None else norm(x - y.astype(np.float64))
def norm_l1(x, y=None):
def norm(vec):
return np.linalg.norm(vec.flatten(), 1)
x = x.astype(np.float64)
return norm(x) if y is None else norm(x - y.astype(np.float64))
def norm_l2(x, y=None):
def norm(vec):
return np.linalg.norm(vec.flatten())
x = x.astype(np.float64)
return norm(x) if y is None else norm(x - y.astype(np.float64))
def norm_l2sqr(x, y=None):
def norm(vec):
return np.square(vec).sum()
x = x.astype(np.float64)
return norm(x) if y is None else norm(x - y.astype(np.float64))
def norm_hamming(x, y=None):
def norm(vec):
return sum(bin(i).count('1') for i in vec.flatten())
return norm(x) if y is None else norm(np.bitwise_xor(x, y))
def norm_hamming2(x, y=None):
def norm(vec):
def element_norm(element):
binary_str = bin(element).split('b')[-1]
if len(binary_str) % 2 == 1:
binary_str = '0' + binary_str
gen = filter(lambda p: p != '00',
(binary_str[i:i+2]
for i in range(0, len(binary_str), 2)))
return sum(1 for _ in gen)
return sum(element_norm(element) for element in vec.flatten())
return norm(x) if y is None else norm(np.bitwise_xor(x, y))
norm_type_under_test = {
cv.NORM_INF: norm_inf,
cv.NORM_L1: norm_l1,
cv.NORM_L2: norm_l2,
cv.NORM_L2SQR: norm_l2sqr,
cv.NORM_HAMMING: norm_hamming,
cv.NORM_HAMMING2: norm_hamming2
}
norm_name = {
cv.NORM_INF: 'inf',
cv.NORM_L1: 'L1',
cv.NORM_L2: 'L2',
cv.NORM_L2SQR: 'L2SQR',
cv.NORM_HAMMING: 'Hamming',
cv.NORM_HAMMING2: 'Hamming2'
}
def get_element_types(norm_type):
if norm_type in (cv.NORM_HAMMING, cv.NORM_HAMMING2):
return (np.uint8,)
else:
return (np.uint8, np.int8, np.uint16, np.int16, np.int32, np.float32,
np.float64)
def generate_vector(shape, dtype):
if np.issubdtype(dtype, np.integer):
return np.random.randint(0, 100, shape).astype(dtype)
else:
return np.random.normal(10., 12.5, shape).astype(dtype)
shapes = (1, 2, 3, 5, 7, 16, (1, 1), (2, 2), (3, 5), (1, 7))
class norm_test(NewOpenCVTests):
def test_norm_for_one_array(self):
np.random.seed(123)
for norm_type, norm in norm_type_under_test.items():
element_types = get_element_types(norm_type)
for shape, element_type in product(shapes, element_types):
array = generate_vector(shape, element_type)
expected = norm(array)
actual = cv.norm(array, norm_type)
self.assertAlmostEqual(
expected, actual, places=2,
msg='Array {0} of {1} and norm {2}'.format(
array, element_type.__name__, norm_name[norm_type]
)
)
def test_norm_for_two_arrays(self):
np.random.seed(456)
for norm_type, norm in norm_type_under_test.items():
element_types = get_element_types(norm_type)
for shape, element_type in product(shapes, element_types):
first = generate_vector(shape, element_type)
second = generate_vector(shape, element_type)
expected = norm(first, second)
actual = cv.norm(first, second, norm_type)
self.assertAlmostEqual(
expected, actual, places=2,
msg='Arrays {0} {1} of type {2} and norm {3}'.format(
first, second, element_type.__name__,
norm_name[norm_type]
)
)
def test_norm_fails_for_wrong_type(self):
for norm_type in (cv.NORM_HAMMING, cv.NORM_HAMMING2):
with self.assertRaises(Exception,
msg='Type is not checked {0}'.format(
norm_name[norm_type]
)):
cv.norm(np.array([1, 2], dtype=np.int32), norm_type)
def test_norm_fails_for_array_and_scalar(self):
for norm_type in norm_type_under_test:
with self.assertRaises(Exception,
msg='Exception is not thrown for {0}'.format(
norm_name[norm_type]
)):
cv.norm(np.array([1, 2], dtype=np.uint8), 123, norm_type)
def test_norm_fails_for_scalar_and_array(self):
for norm_type in norm_type_under_test:
with self.assertRaises(Exception,
msg='Exception is not thrown for {0}'.format(
norm_name[norm_type]
)):
cv.norm(4, np.array([1, 2], dtype=np.uint8), norm_type)
def test_norm_fails_for_array_and_norm_type_as_scalar(self):
for norm_type in norm_type_under_test:
with self.assertRaises(Exception,
msg='Exception is not thrown for {0}'.format(
norm_name[norm_type]
)):
cv.norm(np.array([3, 4, 5], dtype=np.uint8),
norm_type, normType=norm_type)
if __name__ == '__main__':
NewOpenCVTests.bootstrap()

@ -70,13 +70,8 @@ def deskew(img):
img = cv.warpAffine(img, M, (SZ, SZ), flags=cv.WARP_INVERSE_MAP | cv.INTER_LINEAR)
return img
class StatModel(object):
def load(self, fn):
self.model.load(fn) # Known bug: https://github.com/opencv/opencv/issues/4969
def save(self, fn):
self.model.save(fn)
class KNearest(StatModel):
class KNearest(object):
def __init__(self, k = 3):
self.k = k
self.model = cv.ml.KNearest_create()
@ -88,7 +83,13 @@ class KNearest(StatModel):
_retval, results, _neigh_resp, _dists = self.model.findNearest(samples, self.k)
return results.ravel()
class SVM(StatModel):
def load(self, fn):
self.model = cv.ml.KNearest_load(fn)
def save(self, fn):
self.model.save(fn)
class SVM(object):
def __init__(self, C = 1, gamma = 0.5):
self.model = cv.ml.SVM_create()
self.model.setGamma(gamma)
@ -102,6 +103,11 @@ class SVM(StatModel):
def predict(self, samples):
return self.model.predict(samples)[1].ravel()
def load(self, fn):
self.model = cv.ml.SVM_load(fn)
def save(self, fn):
self.model.save(fn)
def evaluate_model(model, digits, samples, labels):
resp = model.predict(samples)

@ -1,4 +1,12 @@
#!/usr/bin/env python
'''
Digit recognition from video.
Run digits.py before, to train and save the SVM.
Usage:
digits_video.py [{camera_id|video_file}]
'''
# Python 2/3 compatibility
from __future__ import print_function
@ -28,11 +36,7 @@ def main():
print('"%s" not found, run digits.py first' % classifier_fn)
return
if True:
model = cv.ml.SVM_load(classifier_fn)
else:
model = cv.ml.SVM_create()
model.load_(classifier_fn) #Known bug: https://github.com/opencv/opencv/issues/4969
model = cv.ml.SVM_load(classifier_fn)
while True:
_ret, frame = cap.read()

Loading…
Cancel
Save