connectedComponents: peep-hole optimizations, mostly surrouding the fact that cv::Mat::at is expensive in a tight-loop -also added a "blobstats" version

pull/135/head
Jason Newton 13 years ago
parent 45b4f4f32b
commit 4c0cb2576d
  1. 17
      modules/imgproc/include/opencv2/imgproc/imgproc.hpp
  2. 354
      modules/imgproc/src/connectedcomponents.cpp
  3. 2
      samples/cpp/connected_components.cpp

@ -1091,9 +1091,24 @@ enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF
CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
OutputArray result, int method );
struct CV_EXPORTS ConnectedComponentStats
{
int32_t lower_x;
int32_t lower_y;
int32_t upper_x;
int32_t upper_y;
double centroid_x;
double centroid_y;
uint64_t integral_x;
uint64_t integral_y;
uint32_t area;
};
//! computes the connected components labeled image of boolean image I with 4 or 8 way connectivity - returns N, the total
//number of labels [0, N-1] where 0 represents the background label.
//number of labels [0, N-1] where 0 represents the background label. L's value type determines the label type, an important
//consideration based on the total number of labels or alternatively the total number of pixels.
CV_EXPORTS_W uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity = 8);
CV_EXPORTS_W uint64_t connectedComponents(Mat &L, const Mat &I, std::vector<ConnectedComponentStats> &statsv, int connectivity = 8);
//! mode of the contour retrieval algorithm

@ -41,15 +41,81 @@
//M*/
//
#include "precomp.hpp"
#include <vector>
namespace cv{
namespace connectedcomponents{
using std::vector;
template<typename LabelT>
struct NoOp{
NoOp(){
}
void init(const LabelT labels){
(void) labels;
}
inline
void operator()(int r, int c, LabelT l){
(void) r;
(void) c;
(void) l;
}
void finish(){}
};
template<typename LabelT>
struct CCStatsOp{
std::vector<cv::ConnectedComponentStats> &statsv;
CCStatsOp(std::vector<cv::ConnectedComponentStats> &_statsv): statsv(_statsv){
}
inline
void init(const LabelT nlabels){
statsv.clear();
cv::ConnectedComponentStats stats = cv::ConnectedComponentStats();
stats.lower_x = std::numeric_limits<LabelT>::max();
stats.lower_y = std::numeric_limits<LabelT>::max();
stats.upper_x = std::numeric_limits<LabelT>::min();
stats.upper_y = std::numeric_limits<LabelT>::min();
stats.centroid_x = 0;
stats.centroid_y = 0;
stats.integral_x = 0;
stats.integral_y = 0;
stats.area = 0;
statsv.resize(nlabels, stats);
}
void operator()(int r, int c, LabelT l){
ConnectedComponentStats &stats = statsv[l];
if(c > stats.upper_x){
stats.upper_x = c;
}else{
if(c < stats.lower_x){
stats.lower_x = c;
}
}
if(r > stats.upper_y){
stats.upper_y = r;
}else{
if(r < stats.lower_y){
stats.lower_y = r;
}
}
stats.integral_x += c;
stats.integral_y += r;
stats.area++;
}
void finish(){
for(size_t l = 0; l < statsv.size(); ++l){
ConnectedComponentStats &stats = statsv[l];
stats.lower_x = std::min(stats.lower_x, stats.upper_x);
stats.lower_y = std::min(stats.lower_y, stats.upper_y);
stats.centroid_x = stats.integral_x / double(stats.area);
stats.centroid_y = stats.integral_y / double(stats.area);
}
}
};
//Find the root of the tree of node i
template<typename LabelT>
inline static
LabelT findRoot(const vector<LabelT> &P, LabelT i){
LabelT findRoot(const LabelT *P, LabelT i){
LabelT root = i;
while(P[root] < root){
root = P[root];
@ -60,7 +126,7 @@ namespace cv{
//Make all nodes in the path of node i point to root
template<typename LabelT>
inline static
void setRoot(vector<LabelT> &P, LabelT i, LabelT root){
void setRoot(LabelT *P, LabelT i, LabelT root){
while(P[i] < i){
LabelT j = P[i];
P[i] = root;
@ -72,7 +138,7 @@ namespace cv{
//Find the root of the tree of the node i and compress the path in the process
template<typename LabelT>
inline static
LabelT find(vector<LabelT> &P, LabelT i){
LabelT find(LabelT *P, LabelT i){
LabelT root = findRoot(P, i);
setRoot(P, i, root);
return root;
@ -81,7 +147,7 @@ namespace cv{
//unite the two trees containing nodes i and j and return the new root
template<typename LabelT>
inline static
LabelT set_union(vector<LabelT> &P, LabelT i, LabelT j){
LabelT set_union(LabelT *P, LabelT i, LabelT j){
LabelT root = findRoot(P, i);
if(i != j){
LabelT rootj = findRoot(P, j);
@ -97,9 +163,9 @@ namespace cv{
//Flatten the Union Find tree and relabel the components
template<typename LabelT>
inline static
LabelT flattenL(vector<LabelT> &P){
LabelT flattenL(LabelT *P, LabelT length){
LabelT k = 1;
for(size_t i = 1; i < P.size(); ++i){
for(LabelT i = 1; i < length; ++i){
if(P[i] < i){
P[i] = P[P[i]];
}else{
@ -109,137 +175,155 @@ namespace cv{
return k;
}
////Flatten the Union Find tree - inconsistent labels
//void flatten(int P[], int size){
// for(int i = 1; i < size; ++i){
// P[i] = P[P[i]];
// }
//}
const int G4[2][2] = {{-1, 0}, {0, -1}};//b, d neighborhoods
const int G8[4][2] = {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}};//a, b, c, d neighborhoods
//Based on "Two Strategies to Speed up Connected Components Algorithms", the SAUF (Scan array union find) variant
//using decision trees
//Kesheng Wu, et al
template<typename LabelT, typename PixelT, int connectivity = 8>
//Note: rows are encoded as position in the "rows" array to save lookup times
//reference for 4-way: {{-1, 0}, {0, -1}};//b, d neighborhoods
const int G4[2][2] = {{1, 0}, {0, -1}};//b, d neighborhoods
//reference for 8-way: {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}};//a, b, c, d neighborhoods
const int G8[4][2] = {{1, -1}, {1, 0}, {1, 1}, {0, -1}};//a, b, c, d neighborhoods
template<typename LabelT, typename PixelT, typename StatsOp = NoOp<LabelT>, int connectivity = 8>
struct LabelingImpl{
LabelT operator()(Mat &L, const Mat &I){
LabelT operator()(Mat &L, const Mat &I, StatsOp &sop){
const int rows = L.rows;
const int cols = L.cols;
size_t nPixels = size_t(rows) * cols;
vector<LabelT> P; P.push_back(0);
LabelT l = 1;
size_t Plength = (size_t(rows + 3 - 1)/3) * (size_t(cols + 3 - 1)/3);
if(connectivity == 4){
Plength = 4 * Plength;//a quick and dirty upper bound, an exact answer exists if you want to find it
//the 4 comes from the fact that a 3x3 block can never have more than 4 unique labels
}
LabelT *P = (LabelT *) fastMalloc(sizeof(LabelT) * Plength);
P[0] = 0;
LabelT lunique = 1;
//scanning phase
for(int r_i = 0; r_i < rows; ++r_i){
for(int c_i = 0; c_i < cols; ++c_i){
if(!I.at<PixelT>(r_i, c_i)){
L.at<LabelT>(r_i, c_i) = 0;
continue;
}
if(connectivity == 8){
const int a = 0;
const int b = 1;
const int c = 2;
const int d = 3;
bool T[4];
for(size_t i = 0; i < 4; ++i){
int gr = r_i + G8[i][0];
int gc = c_i + G8[i][1];
T[i] = false;
if(gr >= 0 && gr < rows && gc >= 0 && gc < cols){
if(I.at<PixelT>(gr, gc)){
T[i] = true;
}
}
LabelT *Lrow = (LabelT *)(L.data + L.step.p[0] * r_i);
LabelT *Lrow_prev = (LabelT *)(((char *)Lrow) - L.step.p[0]);
const PixelT *Irow = (PixelT *)(I.data + I.step.p[0] * r_i);
const PixelT *Irow_prev = (const PixelT *)(((char *)Irow) - I.step.p[0]);
LabelT *Lrows[2] = {
Lrow,
Lrow_prev
};
const PixelT *Irows[2] = {
Irow,
Irow_prev
};
if(connectivity == 8){
const int a = 0;
const int b = 1;
const int c = 2;
const int d = 3;
const bool T_a_r = (r_i - G8[a][0]) >= 0;
const bool T_b_r = (r_i - G8[b][0]) >= 0;
const bool T_c_r = (r_i - G8[c][0]) >= 0;
for(int c_i = 0; Irows[0] != Irow + cols; ++Irows[0], c_i++){
if(!*Irows[0]){
Lrow[c_i] = 0;
continue;
}
Irows[1] = Irow_prev + c_i;
Lrows[0] = Lrow + c_i;
Lrows[1] = Lrow_prev + c_i;
const bool T_a = T_a_r && (c_i + G8[a][1]) >= 0 && *(Irows[G8[a][0]] + G8[a][1]);
const bool T_b = T_b_r && *(Irows[G8[b][0]] + G8[b][1]);
const bool T_c = T_c_r && (c_i + G8[c][1]) < cols && *(Irows[G8[c][0]] + G8[c][1]);
const bool T_d = (c_i + G8[d][1]) >= 0 && *(Irows[G8[d][0]] + G8[d][1]);
//decision tree
if(T[b]){
if(T_b){
//copy(b)
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[b][0], c_i + G8[b][1]);
*Lrows[0] = *(Lrows[G8[b][0]] + G8[b][1]);
}else{//not b
if(T[c]){
if(T[a]){
if(T_c){
if(T_a){
//copy(c, a)
L.at<LabelT>(r_i, c_i) = set_union(P, L.at<LabelT>(r_i + G8[c][0], c_i + G8[c][1]), L.at<LabelT>(r_i + G8[a][0], c_i + G8[a][1]));
*Lrows[0] = set_union(P, *(Lrows[G8[c][0]] + G8[c][1]), *(Lrows[G8[a][0]] + G8[a][1]));
}else{
if(T[d]){
if(T_d){
//copy(c, d)
L.at<LabelT>(r_i, c_i) = set_union(P, L.at<LabelT>(r_i + G8[c][0], c_i + G8[c][1]), L.at<LabelT>(r_i + G8[d][0], c_i + G8[d][1]));
*Lrows[0] = set_union(P, *(Lrows[G8[c][0]] + G8[c][1]), *(Lrows[G8[d][0]] + G8[d][1]));
}else{
//copy(c)
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[c][0], c_i + G8[c][1]);
*Lrows[0] = *(Lrows[G8[c][0]] + G8[c][1]);
}
}
}else{//not c
if(T[a]){
if(T_a){
//copy(a)
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[a][0], c_i + G8[a][1]);
*Lrows[0] = *(Lrows[G8[a][0]] + G8[a][1]);
}else{
if(T[d]){
if(T_d){
//copy(d)
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[d][0], c_i + G8[d][1]);
*Lrows[0] = *(Lrows[G8[d][0]] + G8[d][1]);
}else{
//new label
L.at<LabelT>(r_i, c_i) = l;
P.push_back(l);//P[l] = l;
l = l + 1;
*Lrows[0] = lunique;
P[lunique] = lunique;
lunique = lunique + 1;
}
}
}
}
}else{
//B & D only
const int b = 0;
const int d = 1;
assert(connectivity == 4);
bool T[2];
for(size_t i = 0; i < 2; ++i){
int gr = r_i + G4[i][0];
int gc = c_i + G4[i][1];
T[i] = false;
if(gr >= 0 && gr < rows && gc >= 0 && gc < cols){
if(I.at<PixelT>(gr, gc)){
T[i] = true;
}
}
}
}else{
//B & D only
assert(connectivity == 4);
const int b = 0;
const int d = 1;
const bool T_b_r = (r_i - G4[b][0]) >= 0;
for(int c_i = 0; Irows[0] != Irow + cols; ++Irows[0], c_i++){
if(!*Irows[0]){
Lrow[c_i] = 0;
continue;
}
if(T[b]){
if(T[d]){
Irows[1] = Irow_prev + c_i;
Lrows[0] = Lrow + c_i;
Lrows[1] = Lrow_prev + c_i;
const bool T_b = T_b_r && *(Irows[G4[b][0]] + G4[b][1]);
const bool T_d = (c_i + G4[d][1]) >= 0 && *(Irows[G4[d][0]] + G4[d][1]);
if(T_b){
if(T_d){
//copy(d, b)
L.at<LabelT>(r_i, c_i) = set_union(P, L.at<LabelT>(r_i + G4[d][0], c_i + G4[d][1]), L.at<LabelT>(r_i + G4[b][0], c_i + G4[b][1]));
*Lrows[0] = set_union(P, *(Lrows[G4[d][0]] + G4[d][1]), *(Lrows[G4[b][0]] + G4[b][1]));
}else{
//copy(b)
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G4[b][0], c_i + G4[b][1]);
*Lrows[0] = *(Lrows[G4[b][0]] + G4[b][1]);
}
}else{
if(T[d]){
if(T_d){
//copy(d)
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G4[d][0], c_i + G4[d][1]);
*Lrows[0] = *(Lrows[G4[d][0]] + G4[d][1]);
}else{
//new label
L.at<LabelT>(r_i, c_i) = l;
P.push_back(l);//P[l] = l;
l = l + 1;
*Lrows[0] = lunique;
P[lunique] = lunique;
lunique = lunique + 1;
}
}
}
}
}
//analysis
LabelT nLabels = flattenL(P);
LabelT nLabels = flattenL(P, lunique);
sop.init(nLabels);
//assign final labels
for(size_t r = 0; r < rows; ++r){
for(size_t c = 0; c < cols; ++c){
L.at<LabelT>(r, c) = P[L.at<LabelT>(r, c)];
for(int r_i = 0; r_i < rows; ++r_i){
LabelT *Lrow_start = (LabelT *)(L.data + L.step.p[0] * r_i);
LabelT *Lrow_end = Lrow_start + cols;
LabelT *Lrow = Lrow_start;
for(int c_i = 0; Lrow != Lrow_end; ++Lrow, ++c_i){
const LabelT l = P[*Lrow];
*Lrow = l;
sop(r_i, c_i, l);
}
}
sop.finish();
fastFree(P);
return nLabels;
}//End function LabelingImpl operator()
@ -247,7 +331,8 @@ namespace cv{
}//end namespace connectedcomponents
//L's type must have an appropriate depth for the number of pixels in I
uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity){
template<typename StatsOp>
uint64_t connectedComponents_sub1(Mat &L, const Mat &I, int connectivity, StatsOp &sop){
CV_Assert(L.rows == I.rows);
CV_Assert(L.cols == I.cols);
CV_Assert(L.channels() == 1 && I.channels() == 1);
@ -261,98 +346,102 @@ uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity){
if(lDepth == CV_8U){
if(iDepth == CV_8U || iDepth == CV_8S){
if(connectivity == 4){
return (uint64_t) LabelingImpl<uint8_t, uint8_t, 4>()(L, I);
return (uint64_t) LabelingImpl<uint8_t, uint8_t, StatsOp, 4>()(L, I, sop);
}else{
return (uint64_t) LabelingImpl<uint8_t, uint8_t, 8>()(L, I);
return (uint64_t) LabelingImpl<uint8_t, uint8_t, StatsOp, 8>()(L, I, sop);
}
}else if(iDepth == CV_16U || iDepth == CV_16S){
if(connectivity == 4){
return (uint64_t) LabelingImpl<uint8_t, uint16_t, 4>()(L, I);
return (uint64_t) LabelingImpl<uint8_t, uint16_t, StatsOp, 4>()(L, I, sop);
}else{
return (uint64_t) LabelingImpl<uint8_t, uint16_t, 8>()(L, I);
return (uint64_t) LabelingImpl<uint8_t, uint16_t, StatsOp, 8>()(L, I, sop);
}
}else if(iDepth == CV_32S){
if(connectivity == 4){
return (uint64_t) LabelingImpl<uint8_t, int32_t, 4>()(L, I);
return (uint64_t) LabelingImpl<uint8_t, int32_t, StatsOp, 4>()(L, I, sop);
}else{
return (uint64_t) LabelingImpl<uint8_t, int32_t, 8>()(L, I);
return (uint64_t) LabelingImpl<uint8_t, int32_t, StatsOp, 8>()(L, I, sop);
}
}else if(iDepth == CV_32F){
if(connectivity == 4){
return (uint64_t) LabelingImpl<uint8_t, float, 4>()(L, I);
return (uint64_t) LabelingImpl<uint8_t, float, StatsOp, 4>()(L, I, sop);
}else{
return (uint64_t) LabelingImpl<uint8_t, float, 8>()(L, I);
return (uint64_t) LabelingImpl<uint8_t, float, StatsOp, 8>()(L, I, sop);
}
}else if(iDepth == CV_64F){
if(connectivity == 4){
return (uint64_t) LabelingImpl<uint8_t, double, 4>()(L, I);
return (uint64_t) LabelingImpl<uint8_t, double, StatsOp, 4>()(L, I, sop);
}else{
return (uint64_t) LabelingImpl<uint8_t, double, 8>()(L, I);
return (uint64_t) LabelingImpl<uint8_t, double, StatsOp, 8>()(L, I, sop);
}
}
}else if(lDepth == CV_16U){
if(iDepth == CV_8U || iDepth == CV_8S){
if(connectivity == 4){
return (uint64_t) LabelingImpl<uint16_t, uint8_t, 4>()(L, I);
return (uint64_t) LabelingImpl<uint16_t, uint8_t, StatsOp, 4>()(L, I, sop);
}else{
return (uint64_t) LabelingImpl<uint16_t, uint8_t, 8>()(L, I);
return (uint64_t) LabelingImpl<uint16_t, uint8_t, StatsOp, 8>()(L, I, sop);
}
}else if(iDepth == CV_16U || iDepth == CV_16S){
if(connectivity == 4){
return (uint64_t) LabelingImpl<uint16_t, uint16_t, 4>()(L, I);
return (uint64_t) LabelingImpl<uint16_t, uint16_t, StatsOp, 4>()(L, I, sop);
}else{
return (uint64_t) LabelingImpl<uint16_t, uint16_t, 8>()(L, I);
return (uint64_t) LabelingImpl<uint16_t, uint16_t, StatsOp, 8>()(L, I, sop);
}
}else if(iDepth == CV_32S){
if(connectivity == 4){
return (uint64_t) LabelingImpl<uint16_t, int32_t, 4>()(L, I);
return (uint64_t) LabelingImpl<uint16_t, int32_t, StatsOp, 4>()(L, I, sop);
}else{
return (uint64_t) LabelingImpl<uint16_t, int32_t, 8>()(L, I);
return (uint64_t) LabelingImpl<uint16_t, int32_t, StatsOp, 8>()(L, I, sop);
}
}else if(iDepth == CV_32F){
if(connectivity == 4){
return (uint64_t) LabelingImpl<uint16_t, float, 4>()(L, I);
return (uint64_t) LabelingImpl<uint16_t, float, StatsOp, 4>()(L, I, sop);
}else{
return (uint64_t) LabelingImpl<uint16_t, float, 8>()(L, I);
return (uint64_t) LabelingImpl<uint16_t, float, StatsOp, 8>()(L, I, sop);
}
}else if(iDepth == CV_64F){
if(connectivity == 4){
return (uint64_t) LabelingImpl<uint16_t, double, 4>()(L, I);
return (uint64_t) LabelingImpl<uint16_t, double, StatsOp, 4>()(L, I, sop);
}else{
return (uint64_t) LabelingImpl<uint16_t, double, 8>()(L, I);
return (uint64_t) LabelingImpl<uint16_t, double, StatsOp, 8>()(L, I, sop);
}
}
}else if(lDepth == CV_32S){
//note that signed types don't really make sense here and not being able to use uint32_t matters for scientific projects
//OpenCV: how should we proceed? .at<T> typechecks in debug mode
if(iDepth == CV_8U || iDepth == CV_8S){
if(connectivity == 4){
return (uint64_t) LabelingImpl<int32_t, uint8_t, 4>()(L, I);
return (uint64_t) LabelingImpl<int32_t, uint8_t, StatsOp, 4>()(L, I, sop);
}else{
return (uint64_t) LabelingImpl<int32_t, uint8_t, 8>()(L, I);
return (uint64_t) LabelingImpl<int32_t, uint8_t, StatsOp, 8>()(L, I, sop);
}
}else if(iDepth == CV_16U || iDepth == CV_16S){
if(connectivity == 4){
return (uint64_t) LabelingImpl<int32_t, uint16_t, 4>()(L, I);
return (uint64_t) LabelingImpl<int32_t, uint16_t, StatsOp, 4>()(L, I, sop);
}else{
return (uint64_t) LabelingImpl<int32_t, uint16_t, 8>()(L, I);
return (uint64_t) LabelingImpl<int32_t, uint16_t, StatsOp, 8>()(L, I, sop);
}
}else if(iDepth == CV_32S){
if(connectivity == 4){
return (uint64_t) LabelingImpl<int32_t, int32_t, 4>()(L, I);
return (uint64_t) LabelingImpl<int32_t, int32_t, StatsOp, 4>()(L, I, sop);
}else{
return (uint64_t) LabelingImpl<int32_t, int32_t, 8>()(L, I);
return (uint64_t) LabelingImpl<int32_t, int32_t, StatsOp, 8>()(L, I, sop);
}
}else if(iDepth == CV_32F){
if(connectivity == 4){
return (uint64_t) LabelingImpl<int32_t, float, 4>()(L, I);
return (uint64_t) LabelingImpl<int32_t, float, StatsOp, 4>()(L, I, sop);
}else{
return (uint64_t) LabelingImpl<int32_t, float, 8>()(L, I);
return (uint64_t) LabelingImpl<int32_t, float, StatsOp, 8>()(L, I, sop);
}
}else if(iDepth == CV_64F){
if(connectivity == 4){
return (uint64_t) LabelingImpl<int32_t, double, 4>()(L, I);
return (uint64_t) LabelingImpl<int32_t, double, StatsOp, 4>()(L, I, sop);
}else{
return (uint64_t) LabelingImpl<int32_t, double, 8>()(L, I);
return (uint64_t) LabelingImpl<int32_t, double, StatsOp, 8>()(L, I, sop);
}
}else{
CV_Assert(false);
}
}
@ -360,6 +449,33 @@ uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity){
return -1;
}
uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity){
int lDepth = L.depth();
if(lDepth == CV_8U){
connectedcomponents::NoOp<uint8_t> sop; return connectedComponents_sub1(L, I, connectivity, sop);
}else if(lDepth == CV_16U){
connectedcomponents::NoOp<uint16_t> sop; return connectedComponents_sub1(L, I, connectivity, sop);
}else if(lDepth == CV_32S){
connectedcomponents::NoOp<uint32_t> sop; return connectedComponents_sub1(L, I, connectivity, sop);
}else{
CV_Assert(false);
return 0;
}
}
uint64_t connectedComponents(Mat &L, const Mat &I, std::vector<ConnectedComponentStats> &statsv, int connectivity){
int lDepth = L.depth();
if(lDepth == CV_8U){
connectedcomponents::CCStatsOp<uint8_t> sop(statsv); return connectedComponents_sub1(L, I, connectivity, sop);
}else if(lDepth == CV_16U){
connectedcomponents::CCStatsOp<uint16_t> sop(statsv); return connectedComponents_sub1(L, I, connectivity, sop);
}else if(lDepth == CV_32S){
connectedcomponents::CCStatsOp<uint32_t> sop(statsv); return connectedComponents_sub1(L, I, connectivity, sop);
}else{
CV_Assert(false);
return 0;
}
}
}

@ -12,7 +12,7 @@ static void on_trackbar(int, void*)
{
Mat bw = threshval < 128 ? (img < threshval) : (img > threshval);
Mat labelImage(img.size(), CV_32S);
int nLabels = connectedComponents(labelImage, bw, 8);
uint64_t nLabels = connectedComponents(labelImage, bw, 8);
Vec3b colors[nLabels];
colors[0] = Vec3b(0, 0, 0);//background
for(int label = 1; label < nLabels; ++label){

Loading…
Cancel
Save