Merge pull request #20460 from cv3d:flannHeapPool

pull/20569/head
Alexander Alekhin 3 years ago
commit 4bbe28bdf0
  1. 167
      modules/flann/include/opencv2/flann/heap.h
  2. 6
      modules/flann/include/opencv2/flann/hierarchical_clustering_index.h
  3. 9
      modules/flann/include/opencv2/flann/kdtree_index.h
  4. 8
      modules/flann/include/opencv2/flann/kmeans_index.h

@ -36,9 +36,21 @@
#include <algorithm>
#include <vector>
#include <unordered_map>
namespace cvflann
{
// TODO: Define x > y operator and use std::greater<T> instead
template <typename T>
struct greater
{
bool operator()(const T& x, const T& y) const
{
return y < x;
}
};
/**
* Priority Queue Implementation
*
@ -49,117 +61,180 @@ namespace cvflann
template <typename T>
class Heap
{
/**
* Storage array for the heap.
* Type T must be comparable.
*/
std::vector<T> heap;
int length;
public:
/**
* Number of element in the heap
* \brief Constructs a heap with a pre-allocated capacity
*
* \param capacity heap maximum capacity
*/
int count;
Heap(const int capacity)
{
reserve(capacity);
}
public:
/**
* Constructor.
* \brief Move-constructs a heap from an external vector
*
* Params:
* sz = heap size
* \param vec external vector
*/
Heap(std::vector<T>&& vec)
: heap(std::move(vec))
{
std::make_heap(heap.begin(), heap.end(), greater<T>());
}
Heap(int sz)
/**
*
* \returns heap size
*/
int size() const
{
length = sz;
heap.reserve(length);
count = 0;
return (int)heap.size();
}
/**
*
* Returns: heap size
* \returns heap capacity
*/
int size()
int capacity() const
{
return count;
return (int)heap.capacity();
}
/**
* Tests if the heap is empty
* \brief Tests if the heap is empty
*
* Returns: true is heap empty, false otherwise
* \returns true is heap empty, false otherwise
*/
bool empty()
{
return size()==0;
return heap.empty();
}
/**
* Clears the heap.
* \brief Clears the heap.
*/
void clear()
{
heap.clear();
count = 0;
}
struct CompareT
/**
* \brief Sets the heap maximum capacity.
*
* \param capacity heap maximum capacity
*/
void reserve(const int capacity)
{
bool operator()(const T& t_1, const T& t_2) const
{
return t_2 < t_1;
}
};
heap.reserve(capacity);
}
/**
* Insert a new element in the heap.
* \brief Inserts a new element in the heap.
*
* We select the next empty leaf node, and then keep moving any larger
* parents down until the right location is found to store this element.
*
* Params:
* value = the new element to be inserted in the heap
* \param value the new element to be inserted in the heap
*/
void insert(T value)
{
/* If heap is full, then return without adding this element. */
if (count == length) {
if (size() == capacity()) {
return;
}
heap.push_back(value);
static CompareT compareT;
std::push_heap(heap.begin(), heap.end(), compareT);
++count;
std::push_heap(heap.begin(), heap.end(), greater<T>());
}
/**
* Returns the node of minimum value from the heap (top of the heap).
* \brief Returns the node of minimum value from the heap (top of the heap).
*
* Params:
* value = out parameter used to return the min element
* Returns: false if heap empty
* \param[out] value parameter used to return the min element
* \returns false if heap empty
*/
bool popMin(T& value)
{
if (count == 0) {
if (empty()) {
return false;
}
value = heap[0];
static CompareT compareT;
std::pop_heap(heap.begin(), heap.end(), compareT);
std::pop_heap(heap.begin(), heap.end(), greater<T>());
heap.pop_back();
--count;
return true; /* Return old last node. */
}
/**
* \brief Returns a shared heap for the given memory pool ID.
*
* It constructs the heap if it does not already exists.
*
* \param poolId a user-chosen hashable ID for identifying the heap.
* For thread-safe operations, using current thread ID is a good choice.
* \param capacity heap maximum capacity
* \param iterThreshold remove heaps that were not reused for more than specified iterations count
* if iterThreshold value is less 2, it will be internally adjusted to twice the number of CPU threads
* \returns pointer to the heap
*/
template <typename HashableT>
static cv::Ptr<Heap<T>> getPooledInstance(
const HashableT& poolId, const int capacity, int iterThreshold = 0)
{
static cv::Mutex mutex;
const cv::AutoLock lock(mutex);
struct HeapMapValueType {
cv::Ptr<Heap<T>> heapPtr;
int iterCounter;
};
typedef std::unordered_map<HashableT, HeapMapValueType> HeapMapType;
static HeapMapType heapsPool;
typename HeapMapType::iterator heapIt = heapsPool.find(poolId);
if (heapIt == heapsPool.end())
{
// Construct the heap as it does not already exists
HeapMapValueType heapAndTimePair = {cv::makePtr<Heap<T>>(capacity), 0};
const std::pair<typename HeapMapType::iterator, bool>& emplaceResult = heapsPool.emplace(poolId, std::move(heapAndTimePair));
CV_CheckEQ(static_cast<int>(emplaceResult.second), 1, "Failed to insert the heap into its memory pool");
heapIt = emplaceResult.first;
}
else
{
CV_CheckEQ(heapIt->second.heapPtr.use_count(), 1, "Cannot modify a heap that is currently accessed by another caller");
heapIt->second.heapPtr->clear();
heapIt->second.heapPtr->reserve(capacity);
heapIt->second.iterCounter = 0;
}
if (iterThreshold <= 1) {
iterThreshold = 2 * cv::getNumThreads();
}
// Remove heaps that were not reused for more than given iterThreshold
typename HeapMapType::iterator cleanupIt = heapsPool.begin();
while (cleanupIt != heapsPool.end())
{
if (cleanupIt->second.iterCounter++ > iterThreshold)
{
CV_Assert(cleanupIt != heapIt);
cleanupIt = heapsPool.erase(cleanupIt);
continue;
}
++cleanupIt;
}
return heapIt->second.heapPtr;
}
};
}

@ -532,7 +532,7 @@ public:
const bool explore_all_trees = get_param(searchParams,"explore_all_trees",false);
// Priority queue storing intermediate branches in the best-bin-first search
Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
const cv::Ptr<Heap<BranchSt>>& heap = Heap<BranchSt>::getPooledInstance(cv::utils::getThreadID(), (int)size_);
std::vector<bool> checked(size_,false);
int checks = 0;
@ -548,8 +548,6 @@ public:
findNN(node, result, vec, checks, maxChecks, heap, checked, false);
}
delete heap;
CV_Assert(result.full());
}
@ -742,7 +740,7 @@ private:
void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
Heap<BranchSt>* heap, std::vector<bool>& checked, bool explore_all_trees = false)
const cv::Ptr<Heap<BranchSt>>& heap, std::vector<bool>& checked, bool explore_all_trees = false)
{
if (node->childs==NULL) {
if (!explore_all_trees && (checks>=maxChecks) && result.full()) {

@ -445,11 +445,12 @@ private:
{
int i;
BranchSt branch;
int checkCount = 0;
Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
DynamicBitset checked(size_);
// Priority queue storing intermediate branches in the best-bin-first search
const cv::Ptr<Heap<BranchSt>>& heap = Heap<BranchSt>::getPooledInstance(cv::utils::getThreadID(), (int)size_);
/* Search once through each tree down to root. */
for (i = 0; i < trees_; ++i) {
searchLevel(result, vec, tree_roots_[i], 0, checkCount, maxCheck,
@ -464,8 +465,6 @@ private:
epsError, heap, checked, false);
}
delete heap;
CV_Assert(result.full());
}
@ -476,7 +475,7 @@ private:
* at least "mindistsq".
*/
void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, NodePtr node, DistanceType mindist, int& checkCount, int maxCheck,
float epsError, Heap<BranchSt>* heap, DynamicBitset& checked, bool explore_all_trees = false)
float epsError, const cv::Ptr<Heap<BranchSt>>& heap, DynamicBitset& checked, bool explore_all_trees = false)
{
if (result_set.worstDist()<mindist) {
// printf("Ignoring branch, too far\n");

@ -528,7 +528,7 @@ public:
}
else {
// Priority queue storing intermediate branches in the best-bin-first search
Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
const cv::Ptr<Heap<BranchSt>>& heap = Heap<BranchSt>::getPooledInstance(cv::utils::getThreadID(), (int)size_);
int checks = 0;
for (int i=0; i<trees_; ++i) {
@ -542,8 +542,6 @@ public:
KMeansNodePtr node = branch.node;
findNN(node, result, vec, checks, maxChecks, heap);
}
delete heap;
CV_Assert(result.full());
}
}
@ -1529,7 +1527,7 @@ private:
void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
Heap<BranchSt>* heap)
const cv::Ptr<Heap<BranchSt>>& heap)
{
// Ignore those clusters that are too far away
{
@ -1577,7 +1575,7 @@ private:
* distances = array with the distances to each child node.
* Returns:
*/
int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap<BranchSt>* heap)
int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, const cv::Ptr<Heap<BranchSt>>& heap)
{
int best_index = 0;

Loading…
Cancel
Save