mirror of https://github.com/opencv/opencv.git
Layers for fast-neural-style models: https://github.com/jcjohnson/fast-neural-style
parent
60cbc46da1
commit
4b52b8df34
7 changed files with 218 additions and 26 deletions
@ -0,0 +1,51 @@ |
|||||||
|
import cv2 as cv |
||||||
|
import numpy as np |
||||||
|
import argparse |
||||||
|
|
||||||
|
parser = argparse.ArgumentParser( |
||||||
|
description='This script is used to run style transfer models from ' |
||||||
|
'https://github.com/jcjohnson/fast-neural-style using OpenCV') |
||||||
|
parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera') |
||||||
|
parser.add_argument('--model', help='Path to .t7 model') |
||||||
|
parser.add_argument('--width', default=-1, type=int, help='Resize input to specific width.') |
||||||
|
parser.add_argument('--height', default=-1, type=int, help='Resize input to specific height.') |
||||||
|
parser.add_argument('--median_filter', default=0, type=int, help='Kernel size of postprocessing blurring.') |
||||||
|
args = parser.parse_args() |
||||||
|
|
||||||
|
net = cv.dnn.readNetFromTorch(args.model) |
||||||
|
|
||||||
|
if args.input: |
||||||
|
cap = cv.VideoCapture(args.input) |
||||||
|
else: |
||||||
|
cap = cv.VideoCapture(0) |
||||||
|
|
||||||
|
cv.namedWindow('Styled image', cv.WINDOW_NORMAL) |
||||||
|
while cv.waitKey(1) < 0: |
||||||
|
hasFrame, frame = cap.read() |
||||||
|
if not hasFrame: |
||||||
|
cv.waitKey() |
||||||
|
break |
||||||
|
|
||||||
|
inWidth = args.width if args.width != -1 else frame.shape[1] |
||||||
|
inHeight = args.height if args.height != -1 else frame.shape[0] |
||||||
|
inp = cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), |
||||||
|
(103.939, 116.779, 123.68), swapRB=False, crop=False) |
||||||
|
|
||||||
|
net.setInput(inp) |
||||||
|
out = net.forward() |
||||||
|
|
||||||
|
out = out.reshape(3, out.shape[2], out.shape[3]) |
||||||
|
out[0] += 103.939 |
||||||
|
out[1] += 116.779 |
||||||
|
out[2] += 123.68 |
||||||
|
out /= 255 |
||||||
|
out = out.transpose(1, 2, 0) |
||||||
|
|
||||||
|
t, _ = net.getPerfProfile() |
||||||
|
freq = cv.getTickFrequency() / 1000 |
||||||
|
print t / freq, 'ms' |
||||||
|
|
||||||
|
if args.median_filter: |
||||||
|
out = cv.medianBlur(out, args.median_filter) |
||||||
|
|
||||||
|
cv.imshow('Styled image', out) |
Loading…
Reference in new issue