mirror of https://github.com/opencv/opencv.git
parent
856c717783
commit
4b1f183bcd
8 changed files with 1544 additions and 3 deletions
@ -0,0 +1,856 @@ |
||||
/*********************************************************************
|
||||
* Software License Agreement (BSD License) |
||||
* |
||||
* Copyright (c) 2009, Willow Garage, Inc. |
||||
* All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* |
||||
* * Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* * Redistributions in binary form must reproduce the above |
||||
* copyright notice, this list of conditions and the following |
||||
* disclaimer in the documentation and/or other materials provided |
||||
* with the distribution. |
||||
* * Neither the name of the Willow Garage nor the names of its |
||||
* contributors may be used to endorse or promote products derived |
||||
* from this software without specific prior written permission. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||
* POSSIBILITY OF SUCH DAMAGE. |
||||
*********************************************************************/ |
||||
|
||||
/** Authors: Ethan Rublee, Vincent Rabaud, Gary Bradski */ |
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace |
||||
{ |
||||
|
||||
/** Function that computes the Harris response in a 9 x 9 patch at a given point in an image
|
||||
* @param patch the 9 x 9 patch |
||||
* @param k the k in the Harris formula |
||||
* @param dX_offsets pre-computed offset to get all the interesting dX values |
||||
* @param dY_offsets pre-computed offset to get all the interesting dY values |
||||
* @return |
||||
*/ |
||||
template<typename PatchType, typename SumType> |
||||
inline float harris(const cv::Mat& patch, float k, const std::vector<int> &dX_offsets, |
||||
const std::vector<int> &dY_offsets) |
||||
{ |
||||
float a = 0, b = 0, c = 0; |
||||
|
||||
static cv::Mat_<SumType> dX(9, 7), dY(7, 9); |
||||
SumType * dX_data = reinterpret_cast<SumType*> (dX.data), *dY_data = reinterpret_cast<SumType*> (dY.data); |
||||
SumType * dX_data_end = dX_data + 9 * 7; |
||||
PatchType * patch_data = reinterpret_cast<PatchType*> (patch.data); |
||||
int two_row_offset = 2 * patch.step1(); |
||||
std::vector<int>::const_iterator dX_offset = dX_offsets.begin(), dY_offset = dY_offsets.begin(); |
||||
// Compute the differences
|
||||
for (; dX_data != dX_data_end; ++dX_data, ++dY_data, ++dX_offset, ++dY_offset) |
||||
{ |
||||
*dX_data = (SumType)(*(patch_data + *dX_offset)) - (SumType)(*(patch_data + *dX_offset - 2)); |
||||
*dY_data = (SumType)(*(patch_data + *dY_offset)) - (SumType)(*(patch_data + *dY_offset - two_row_offset)); |
||||
} |
||||
|
||||
// Compute the Scharr result
|
||||
dX_data = reinterpret_cast<SumType*> (dX.data); |
||||
dY_data = reinterpret_cast<SumType*> (dY.data); |
||||
for (size_t v = 0; v <= 6; v++, dY_data += 2) |
||||
{ |
||||
for (size_t u = 0; u <= 6; u++, ++dX_data, ++dY_data) |
||||
{ |
||||
// 1, 2 for Sobel, 3 and 10 for Scharr
|
||||
float Ix = 1 * (*dX_data + *(dX_data + 14)) + 2 * (*(dX_data + 7)); |
||||
float Iy = 1 * (*dY_data + *(dY_data + 2)) + 2 * (*(dY_data + 1)); |
||||
|
||||
a += Ix * Ix; |
||||
b += Iy * Iy; |
||||
c += Ix * Iy; |
||||
} |
||||
} |
||||
|
||||
return ((a * b - c * c) - (k * ((a + b) * (a + b)))); |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/** Class used to compute the cornerness of specific points in an image */ |
||||
struct HarrisResponse |
||||
{ |
||||
/** Constructor
|
||||
* @param image the image on which the cornerness will be computed (only its step is used |
||||
* @param k the k in the Harris formula |
||||
*/ |
||||
explicit HarrisResponse(const cv::Mat& image, double k = 0.04); |
||||
|
||||
/** Compute the cornerness for given keypoints
|
||||
* @param kpts points at which the cornerness is computed and stored |
||||
*/ |
||||
void operator()(std::vector<cv::KeyPoint>& kpts) const; |
||||
private: |
||||
/** The cached image to analyze */ |
||||
cv::Mat image_; |
||||
|
||||
/** The k factor in the Harris corner detection */ |
||||
double k_; |
||||
|
||||
/** The offset in X to compute the differences */ |
||||
std::vector<int> dX_offsets_; |
||||
|
||||
/** The offset in Y to compute the differences */ |
||||
std::vector<int> dY_offsets_; |
||||
}; |
||||
|
||||
/** Constructor
|
||||
* @param image the image on which the cornerness will be computed (only its step is used |
||||
* @param k the k in the Harris formula |
||||
*/ |
||||
HarrisResponse::HarrisResponse(const cv::Mat& image, double k) : |
||||
image_(image), k_(k) |
||||
{ |
||||
// Compute the offsets for the Harris corners once and for all
|
||||
dX_offsets_.resize(7 * 9); |
||||
dY_offsets_.resize(7 * 9); |
||||
std::vector<int>::iterator dX_offsets = dX_offsets_.begin(), dY_offsets = dY_offsets_.begin(); |
||||
unsigned int image_step = image.step1(); |
||||
for (size_t y = 0; y <= 6 * image_step; y += image_step) |
||||
{ |
||||
int dX_offset = y + 2, dY_offset = y + 2 * image_step; |
||||
for (size_t x = 0; x <= 6; ++x) |
||||
{ |
||||
*(dX_offsets++) = dX_offset++; |
||||
*(dY_offsets++) = dY_offset++; |
||||
} |
||||
for (size_t x = 7; x <= 8; ++x) |
||||
*(dY_offsets++) = dY_offset++; |
||||
} |
||||
|
||||
for (size_t y = 7 * image_step; y <= 8 * image_step; y += image_step) |
||||
{ |
||||
int dX_offset = y + 2; |
||||
for (size_t x = 0; x <= 6; ++x) |
||||
*(dX_offsets++) = dX_offset++; |
||||
} |
||||
} |
||||
|
||||
/** Compute the cornerness for given keypoints
|
||||
* @param kpts points at which the cornerness is computed and stored |
||||
*/ |
||||
void HarrisResponse::operator()(std::vector<cv::KeyPoint>& kpts) const |
||||
{ |
||||
// Those parameters are used to match the OpenCV computation of Harris corners
|
||||
float scale = (1 << 2) * 7.0 * 255.0; |
||||
scale = 1.0 / scale; |
||||
float scale_sq_sq = scale * scale * scale * scale; |
||||
|
||||
// define it to 1 if you want to compare to what OpenCV computes
|
||||
#define HARRIS_TEST 0 |
||||
#if HARRIS_TEST |
||||
cv::Mat_<float> dst; |
||||
cv::cornerHarris(image_, dst, 7, 3, k_); |
||||
#endif |
||||
for (std::vector<cv::KeyPoint>::iterator kpt = kpts.begin(), kpt_end = kpts.end(); kpt != kpt_end; ++kpt) |
||||
{ |
||||
cv::Mat patch = image_(cv::Rect(kpt->pt.x - 4, kpt->pt.y - 4, 9, 9)); |
||||
|
||||
// Compute the response
|
||||
kpt->response = harris<uchar, int> (patch, k_, dX_offsets_, dY_offsets_) * scale_sq_sq; |
||||
|
||||
#if HARRIS_TEST |
||||
cv::Mat_<float> Ix(9, 9), Iy(9, 9); |
||||
|
||||
cv::Sobel(patch, Ix, CV_32F, 1, 0, 3, scale); |
||||
cv::Sobel(patch, Iy, CV_32F, 0, 1, 3, scale); |
||||
float a = 0, b = 0, c = 0; |
||||
for (unsigned int y = 1; y <= 7; ++y) |
||||
{ |
||||
for (unsigned int x = 1; x <= 7; ++x) |
||||
{ |
||||
a += Ix(y, x) * Ix(y, x); |
||||
b += Iy(y, x) * Iy(y, x); |
||||
c += Ix(y, x) * Iy(y, x); |
||||
} |
||||
} |
||||
//[ a c ]
|
||||
//[ c b ]
|
||||
float response = (float)((a * b - c * c) - k_ * ((a + b) * (a + b))); |
||||
|
||||
std::cout << kpt->response << " " << response << " " << dst(kpt->pt.y,kpt->pt.x) << std::endl; |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
namespace |
||||
{ |
||||
struct RoiPredicate |
||||
{ |
||||
RoiPredicate(const cv::Rect& r) : |
||||
r(r) |
||||
{ |
||||
} |
||||
|
||||
bool operator()(const cv::KeyPoint& keyPt) const |
||||
{ |
||||
return !r.contains(keyPt.pt); |
||||
} |
||||
|
||||
cv::Rect r; |
||||
}; |
||||
|
||||
void runByImageBorder(std::vector<cv::KeyPoint>& keypoints, cv::Size imageSize, int borderSize) |
||||
{ |
||||
if (borderSize > 0) |
||||
{ |
||||
keypoints.erase( |
||||
std::remove_if( |
||||
keypoints.begin(), |
||||
keypoints.end(), |
||||
RoiPredicate( |
||||
cv::Rect( |
||||
cv::Point(borderSize, borderSize), |
||||
cv::Point(imageSize.width - borderSize, |
||||
imageSize.height - borderSize)))), keypoints.end()); |
||||
} |
||||
} |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
inline bool keypointResponseGreater(const cv::KeyPoint& lhs, const cv::KeyPoint& rhs) |
||||
{ |
||||
return lhs.response > rhs.response; |
||||
} |
||||
|
||||
/** Simple function that returns the area in the rectangle x1<=x<=x2, y1<=y<=y2 given an integral image
|
||||
* @param integral_image |
||||
* @param x1 |
||||
* @param y1 |
||||
* @param x2 |
||||
* @param y2 |
||||
* @return |
||||
*/ |
||||
template<typename SumType> |
||||
inline SumType integral_rectangle(const SumType * val_ptr, std::vector<int>::const_iterator offset) |
||||
{ |
||||
return *(val_ptr + *offset) - *(val_ptr + *(offset + 1)) - *(val_ptr + *(offset + 2)) + *(val_ptr + *(offset + 3)); |
||||
} |
||||
|
||||
template<typename SumType> |
||||
void IC_Angle_Integral(const cv::Mat& integral_image, const int half_k, cv::KeyPoint& kpt, |
||||
const std::vector<int> &horizontal_offsets, const std::vector<int> &vertical_offsets) |
||||
{ |
||||
SumType m_01 = 0, m_10 = 0; |
||||
|
||||
// Go line by line in the circular patch
|
||||
std::vector<int>::const_iterator horizontal_iterator = horizontal_offsets.begin(), vertical_iterator = |
||||
vertical_offsets.begin(); |
||||
const SumType* val_ptr = &(integral_image.at<SumType> (kpt.pt.y, kpt.pt.x)); |
||||
for (int uv = 1; uv <= half_k; ++uv) |
||||
{ |
||||
// Do the horizontal lines
|
||||
m_01 += uv * (-integral_rectangle(val_ptr, horizontal_iterator) + integral_rectangle(val_ptr, |
||||
horizontal_iterator + 4)); |
||||
horizontal_iterator += 8; |
||||
|
||||
// Do the vertical lines
|
||||
m_10 += uv * (-integral_rectangle(val_ptr, vertical_iterator) |
||||
+ integral_rectangle(val_ptr, vertical_iterator + 4)); |
||||
vertical_iterator += 8; |
||||
} |
||||
|
||||
float x = m_10; |
||||
float y = m_01; |
||||
kpt.angle = cv::fastAtan2(y, x); |
||||
} |
||||
|
||||
template<typename PatchType, typename SumType> |
||||
void IC_Angle(const cv::Mat& image, const int half_k, cv::KeyPoint& kpt, const std::vector<int> & u_max) |
||||
{ |
||||
SumType m_01 = 0, m_10 = 0/*, m_00 = 0*/; |
||||
|
||||
const PatchType* val_center_ptr_plus = &(image.at<PatchType> (kpt.pt.y, kpt.pt.x)), *val_center_ptr_minus; |
||||
|
||||
// Treat the center line differently, v=0
|
||||
|
||||
{ |
||||
const PatchType* val = val_center_ptr_plus - half_k; |
||||
for (int u = -half_k; u <= half_k; ++u, ++val) |
||||
m_10 += u * (SumType)(*val); |
||||
} |
||||
|
||||
// Go line by line in the circular patch
|
||||
val_center_ptr_minus = val_center_ptr_plus - image.step1(); |
||||
val_center_ptr_plus += image.step1(); |
||||
for (int v = 1; v <= half_k; ++v, val_center_ptr_plus += image.step1(), val_center_ptr_minus -= image.step1()) |
||||
{ |
||||
// The beginning of the two lines
|
||||
const PatchType* val_ptr_plus = val_center_ptr_plus - u_max[v]; |
||||
const PatchType* val_ptr_minus = val_center_ptr_minus - u_max[v]; |
||||
|
||||
// Proceed over the two lines
|
||||
SumType v_sum = 0; |
||||
for (int u = -u_max[v]; u <= u_max[v]; ++u, ++val_ptr_plus, ++val_ptr_minus) |
||||
{ |
||||
SumType val_plus = *val_ptr_plus, val_minus = *val_ptr_minus; |
||||
v_sum += (val_plus - val_minus); |
||||
m_10 += u * (val_plus + val_minus); |
||||
} |
||||
m_01 += v * v_sum; |
||||
} |
||||
|
||||
float x = m_10;// / float(m_00);// / m_00;
|
||||
float y = m_01;// / float(m_00);// / m_00;
|
||||
kpt.angle = cv::fastAtan2(y, x); |
||||
} |
||||
|
||||
inline int smoothedSum(const int *center, const int* int_diff) |
||||
{ |
||||
// Points in order 01
|
||||
// 32
|
||||
return *(center + int_diff[2]) - *(center + int_diff[3]) - *(center + int_diff[1]) + *(center + int_diff[0]); |
||||
} |
||||
|
||||
inline char smoothed_comparison(const int * center, const int* diff, int l, int m) |
||||
{ |
||||
static const char score[] = {1 << 0, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7}; |
||||
return (smoothedSum(center, diff + l) < smoothedSum(center, diff + l + 4)) ? score[m] : 0; |
||||
} |
||||
} |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
class ORB::OrbPatterns |
||||
{ |
||||
public: |
||||
// We divide in 30 wedges
|
||||
static const int kNumAngles = 30; |
||||
|
||||
/** Constructor
|
||||
* Add +1 to the step as this is the step of the integral image, not image |
||||
* @param sz |
||||
* @param normalized_step |
||||
* @return |
||||
*/ |
||||
OrbPatterns(int sz, unsigned int normalized_step_size) : |
||||
normalized_step_(normalized_step_size) |
||||
{ |
||||
relative_patterns_.resize(kNumAngles); |
||||
for (int i = 0; i < kNumAngles; i++) |
||||
generateRelativePattern(i, sz, relative_patterns_[i]); |
||||
} |
||||
|
||||
/** Generate the patterns and relative patterns
|
||||
* @param sz |
||||
* @param normalized_step |
||||
* @return |
||||
*/ |
||||
static std::vector<cv::Mat> generateRotatedPatterns() |
||||
{ |
||||
std::vector<cv::Mat> rotated_patterns(kNumAngles); |
||||
cv::Mat_<cv::Vec2i> pattern = cv::Mat(512, 1, CV_32SC2, bit_pattern_31_); |
||||
for (int i = 0; i < kNumAngles; i++) |
||||
{ |
||||
const cv::Mat rotation_matrix = getRotationMat(i); |
||||
transform(pattern, rotated_patterns[i], rotation_matrix); |
||||
// Make sure the pattern is now one channel, and 512*2
|
||||
rotated_patterns[i] = rotated_patterns[i].reshape(1, 512); |
||||
} |
||||
return rotated_patterns; |
||||
} |
||||
|
||||
/** Compute the brief pattern for a given keypoint
|
||||
* @param angle the orientation of the keypoint |
||||
* @param sum the integral image |
||||
* @param pt the keypoint |
||||
* @param descriptor the descriptor |
||||
*/ |
||||
void compute(const cv::KeyPoint& kpt, const cv::Mat& sum, unsigned char * desc) const |
||||
{ |
||||
float angle = kpt.angle; |
||||
|
||||
// Compute the pointer to the center of the feature
|
||||
int img_y = (int)(kpt.pt.y + 0.5); |
||||
int img_x = (int)(kpt.pt.x + 0.5); |
||||
const int * center = reinterpret_cast<const int *> (sum.ptr(img_y)) + img_x; |
||||
// Compute the pointer to the absolute pattern row
|
||||
const int * diff = relative_patterns_[angle2Wedge(angle)].ptr<int> (0); |
||||
for (int i = 0, j = 0; i < 32; ++i, j += 64) |
||||
{ |
||||
desc[i] = smoothed_comparison(center, diff, j, 7) | smoothed_comparison(center, diff, j + 8, 6) |
||||
| smoothed_comparison(center, diff, j + 16, 5) | smoothed_comparison(center, diff, j + 24, 4) |
||||
| smoothed_comparison(center, diff, j + 32, 3) | smoothed_comparison(center, diff, j + 40, 2) |
||||
| smoothed_comparison(center, diff, j + 48, 1) | smoothed_comparison(center, diff, j + 56, 0); |
||||
} |
||||
} |
||||
|
||||
/** Compare the currently used normalized step of the integral image to a new one
|
||||
* @param integral_image the integral we want to use the pattern on |
||||
* @return true if the two steps are equal |
||||
*/ |
||||
bool compareNormalizedStep(const cv::Mat & integral_image) const |
||||
{ |
||||
return (normalized_step_ == integral_image.step1()); |
||||
} |
||||
|
||||
/** Compare the currently used normalized step of the integral image to a new one
|
||||
* @param step_size the normalized step size to compare to |
||||
* @return true if the two steps are equal |
||||
*/ |
||||
bool compareNormalizedStep(unsigned int normalized_step_size) const |
||||
{ |
||||
return (normalized_step_ == normalized_step_size); |
||||
} |
||||
|
||||
private: |
||||
static inline int angle2Wedge(float angle) |
||||
{ |
||||
return (angle / 360) * kNumAngles; |
||||
} |
||||
|
||||
void generateRelativePattern(int angle_idx, int sz, cv::Mat & relative_pattern) |
||||
{ |
||||
// Create the relative pattern
|
||||
relative_pattern.create(512, 4, CV_32SC1); |
||||
int * relative_pattern_data = reinterpret_cast<int*> (relative_pattern.data); |
||||
// Get the original rotated pattern
|
||||
const int * pattern_data; |
||||
switch (sz) |
||||
{ |
||||
default: |
||||
pattern_data = reinterpret_cast<int*> (rotated_patterns_[angle_idx].data); |
||||
break; |
||||
} |
||||
|
||||
int half_kernel = ORB::kKernelWidth / 2; |
||||
for (unsigned int i = 0; i < 512; ++i) |
||||
{ |
||||
int center = *(pattern_data + 2 * i) + normalized_step_ * (*(pattern_data + 2 * i + 1)); |
||||
// Points in order 01
|
||||
// 32
|
||||
// +1 is added for certain coordinates for the integral image
|
||||
*(relative_pattern_data++) = center - half_kernel - half_kernel * normalized_step_; |
||||
*(relative_pattern_data++) = center + (half_kernel + 1) - half_kernel * normalized_step_; |
||||
*(relative_pattern_data++) = center + (half_kernel + 1) + (half_kernel + 1) * normalized_step_; |
||||
*(relative_pattern_data++) = center - half_kernel + (half_kernel + 1) * normalized_step_; |
||||
} |
||||
} |
||||
|
||||
static cv::Mat getRotationMat(int angle_idx) |
||||
{ |
||||
float a = float(angle_idx) / kNumAngles * CV_PI * 2; |
||||
return (cv::Mat_<float>(2, 2) << cos(a), -sin(a), sin(a), cos(a)); |
||||
} |
||||
|
||||
/** Contains the relative patterns (rotated ones in relative coordinates)
|
||||
*/ |
||||
std::vector<cv::Mat_<int> > relative_patterns_; |
||||
|
||||
/** The step of the integral image
|
||||
*/ |
||||
size_t normalized_step_; |
||||
|
||||
/** Pattern loaded from the include files
|
||||
*/ |
||||
static std::vector<cv::Mat> rotated_patterns_; |
||||
static int bit_pattern_31_[256 * 4]; //number of tests * 4 (x1,y1,x2,y2)
|
||||
|
||||
}; |
||||
|
||||
std::vector<cv::Mat> ORB::OrbPatterns::rotated_patterns_ = OrbPatterns::generateRotatedPatterns(); |
||||
|
||||
//this is the definition for BIT_PATTERN
|
||||
#include "orb_pattern.i" |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/** Constructor
|
||||
* @param detector_params parameters to use |
||||
*/ |
||||
ORB::ORB(size_t n_features, const CommonParams & detector_params) : |
||||
params_(detector_params), n_features_(n_features) |
||||
{ |
||||
// fill the extractors and descriptors for the corresponding scales
|
||||
int n_desired_features_per_scale = n_features / ((1.0 / std::pow(params_.scale_factor_, 2 * params_.n_levels_) - 1) |
||||
/ (1.0 / std::pow(params_.scale_factor_, 2) - 1)); |
||||
n_features_per_level_.resize(detector_params.n_levels_); |
||||
for (unsigned int level = 0; level < detector_params.n_levels_; level++) |
||||
{ |
||||
n_desired_features_per_scale /= std::pow(params_.scale_factor_, 2); |
||||
n_features_per_level_[level] = n_desired_features_per_scale; |
||||
} |
||||
|
||||
// pre-compute the end of a row in a circular patch
|
||||
half_patch_size_ = params_.patch_size_ / 2; |
||||
u_max_.resize(half_patch_size_ + 1); |
||||
for (int v = 0; v <= half_patch_size_ * sqrt(2) / 2 + 1; ++v) |
||||
u_max_[v] = std::floor(sqrt(half_patch_size_ * half_patch_size_ - v * v) + 0.5); |
||||
|
||||
// Make sure we are symmetric
|
||||
for (int v = half_patch_size_, v_0 = 0; v >= half_patch_size_ * sqrt(2) / 2; --v) |
||||
{ |
||||
while (u_max_[v_0] == u_max_[v_0 + 1]) |
||||
++v_0; |
||||
u_max_[v] = v_0; |
||||
++v_0; |
||||
} |
||||
} |
||||
|
||||
/** returns the descriptor size in bytes */ |
||||
int ORB::descriptorSize() const { |
||||
return kBytes; |
||||
} |
||||
|
||||
/** Compute the ORB features and descriptors on an image
|
||||
* @param img the image to compute the features and descriptors on |
||||
* @param mask the mask to apply |
||||
* @param keypoints the resulting keypoints |
||||
*/ |
||||
void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints) |
||||
{ |
||||
cv::Mat empty_descriptors; |
||||
this->operator ()(image, mask, keypoints, empty_descriptors, true, false); |
||||
} |
||||
|
||||
/** Compute the ORB features and descriptors on an image
|
||||
* @param img the image to compute the features and descriptors on |
||||
* @param mask the mask to apply |
||||
* @param keypoints the resulting keypoints |
||||
* @param descriptors the resulting descriptors |
||||
* @param useProvidedKeypoints if true, the keypoints are used as an input |
||||
*/ |
||||
void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints, |
||||
cv::Mat & descriptors, bool useProvidedKeypoints) |
||||
{ |
||||
this->operator ()(image, mask, keypoints, descriptors, !useProvidedKeypoints, true); |
||||
} |
||||
|
||||
/** Compute the ORB features and descriptors on an image
|
||||
* @param img the image to compute the features and descriptors on |
||||
* @param mask the mask to apply |
||||
* @param keypoints the resulting keypoints |
||||
* @param descriptors the resulting descriptors |
||||
* @param do_keypoints if true, the keypoints are computed, otherwise used as an input |
||||
* @param do_descriptors if true, also computes the descriptors |
||||
*/ |
||||
void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints_in_out, |
||||
cv::Mat & descriptors, bool do_keypoints, bool do_descriptors) |
||||
{ |
||||
if ((!do_keypoints) && (!do_descriptors)) |
||||
return; |
||||
|
||||
if (do_keypoints) |
||||
keypoints_in_out.clear(); |
||||
if (do_descriptors) |
||||
descriptors.release(); |
||||
|
||||
// Pre-compute the scale pyramids
|
||||
std::vector<cv::Mat> image_pyramid(params_.n_levels_), mask_pyramid(params_.n_levels_); |
||||
for (unsigned int level = 0; level < params_.n_levels_; ++level) |
||||
{ |
||||
// Compute the resized image
|
||||
if (level != params_.first_level_) |
||||
{ |
||||
float scale = 1 / std::pow(params_.scale_factor_, level - params_.first_level_); |
||||
cv::resize(image, image_pyramid[level], cv::Size(), scale, scale, cv::INTER_AREA); |
||||
if (!mask.empty()) |
||||
cv::resize(mask, mask_pyramid[level], cv::Size(), scale, scale, cv::INTER_AREA); |
||||
} |
||||
else |
||||
{ |
||||
image_pyramid[level] = image; |
||||
mask_pyramid[level] = mask; |
||||
} |
||||
} |
||||
|
||||
// Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand
|
||||
std::vector<std::vector<cv::KeyPoint> > all_keypoints; |
||||
if (do_keypoints) |
||||
computeKeyPoints(image_pyramid, mask_pyramid, all_keypoints); |
||||
else |
||||
{ |
||||
// Cluster the input keypoints
|
||||
all_keypoints.reserve(params_.n_levels_); |
||||
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints_in_out.begin(), keypoint_end = keypoints_in_out.end(); keypoint |
||||
!= keypoint_end; ++keypoint) |
||||
all_keypoints[keypoint->octave].push_back(*keypoint); |
||||
} |
||||
|
||||
for (unsigned int level = 0; level < params_.n_levels_; ++level) |
||||
{ |
||||
// Compute the resized image
|
||||
cv::Mat & working_mat = image_pyramid[level]; |
||||
|
||||
// Compute the integral image
|
||||
cv::Mat integral_image; |
||||
if (do_descriptors) |
||||
// if we don't do the descriptors (and therefore, we only do the keypoints, it is faster to not compute the
|
||||
// integral image
|
||||
computeIntegralImage(working_mat, level, integral_image); |
||||
|
||||
// Compute the features
|
||||
std::vector<cv::KeyPoint> & keypoints = all_keypoints[level]; |
||||
if (do_keypoints) |
||||
computeOrientation(working_mat, integral_image, level, keypoints); |
||||
|
||||
// Compute the descriptors
|
||||
cv::Mat desc; |
||||
if (do_descriptors) |
||||
computeDescriptors(working_mat, integral_image, level, keypoints, desc); |
||||
|
||||
// Copy to the output data
|
||||
if (!desc.empty()) |
||||
{ |
||||
if (do_keypoints) |
||||
{ |
||||
// Rescale the coordinates
|
||||
if (level != params_.first_level_) |
||||
{ |
||||
float scale = std::pow(params_.scale_factor_, level - params_.first_level_); |
||||
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint |
||||
!= keypoint_end; ++keypoint) |
||||
keypoint->pt *= scale; |
||||
} |
||||
// And add the keypoints to the output
|
||||
keypoints_in_out.insert(keypoints_in_out.end(), keypoints.begin(), keypoints.end()); |
||||
} |
||||
|
||||
if (do_descriptors) |
||||
{ |
||||
if (descriptors.empty()) |
||||
desc.copyTo(descriptors); |
||||
else |
||||
descriptors.push_back(desc); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
/** Compute the ORB keypoints on an image
|
||||
* @param image_pyramid the image pyramid to compute the features and descriptors on |
||||
* @param mask_pyramid the masks to apply at every level |
||||
* @param keypoints the resulting keypoints, clustered per level |
||||
*/ |
||||
void ORB::computeKeyPoints(const std::vector<cv::Mat>& image_pyramid, const std::vector<cv::Mat>& mask_pyramid, |
||||
std::vector<std::vector<cv::KeyPoint> >& all_keypoints_out) const |
||||
{ |
||||
all_keypoints_out.resize(params_.n_levels_); |
||||
|
||||
std::vector<cv::KeyPoint> all_keypoints; |
||||
all_keypoints.reserve(2 * n_features_); |
||||
|
||||
for (unsigned int level = 0; level < params_.n_levels_; ++level) |
||||
{ |
||||
all_keypoints_out[level].reserve(n_features_per_level_[level]); |
||||
|
||||
std::vector<cv::KeyPoint> keypoints; |
||||
|
||||
// Detect FAST features, 20 is a good threshold
|
||||
cv::FastFeatureDetector fd(20, true); |
||||
fd.detect(image_pyramid[level], keypoints, mask_pyramid[level]); |
||||
|
||||
// Remove keypoints very close to the border
|
||||
// half_patch_size_ for orientation, 4 for Harris
|
||||
unsigned int border_safety = std::max(half_patch_size_, 4); |
||||
#if ((CV_MAJOR_VERSION >= 2) && ((CV_MINOR_VERSION >2) || ((CV_MINOR_VERSION == 2) && (CV_SUBMINOR_VERSION>=9)))) |
||||
cv::KeyPointsFilter::runByImageBorder(keypoints, image_pyramid[level].size(), border_safety); |
||||
#else |
||||
::runByImageBorder(keypoints, image_pyramid[level].size(), border_safety); |
||||
#endif |
||||
|
||||
// Keep more points than necessary as FAST does not give amazing corners
|
||||
if (keypoints.size() > 2 * n_features_per_level_[level]) |
||||
{ |
||||
std::nth_element(keypoints.begin(), keypoints.begin() + 2 * n_features_per_level_[level], keypoints.end(), |
||||
keypointResponseGreater); |
||||
keypoints.resize(2 * n_features_per_level_[level]); |
||||
} |
||||
|
||||
// Compute the Harris cornerness (better scoring than FAST)
|
||||
HarrisResponse h(image_pyramid[level]); |
||||
h(keypoints); |
||||
|
||||
// Set the level of the coordinates
|
||||
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint |
||||
!= keypoint_end; ++keypoint) |
||||
keypoint->octave = level; |
||||
|
||||
all_keypoints.insert(all_keypoints.end(), keypoints.begin(), keypoints.end()); |
||||
} |
||||
|
||||
// Only keep what we need
|
||||
if (all_keypoints.size() > n_features_) |
||||
{ |
||||
std::nth_element(all_keypoints.begin(), all_keypoints.begin() + n_features_, all_keypoints.end(), |
||||
keypointResponseGreater); |
||||
all_keypoints.resize(n_features_); |
||||
} |
||||
|
||||
// Cluster the keypoints
|
||||
for (std::vector<cv::KeyPoint>::iterator keypoint = all_keypoints.begin(), keypoint_end = all_keypoints.end(); keypoint |
||||
!= keypoint_end; ++keypoint) |
||||
all_keypoints_out[keypoint->octave].push_back(*keypoint); |
||||
} |
||||
|
||||
/** Compute the ORB keypoint orientations
|
||||
* @param image the image to compute the features and descriptors on |
||||
* @param integral_image the integral image of the iamge (can be empty, but the computation will be slower) |
||||
* @param scale the scale at which we compute the orientation |
||||
* @param keypoints the resulting keypoints |
||||
*/ |
||||
void ORB::computeOrientation(const cv::Mat& image, const cv::Mat& integral_image, unsigned int scale, |
||||
std::vector<cv::KeyPoint>& keypoints) const |
||||
{ |
||||
// If using the integral image, some offsets will be pre-computed for speed
|
||||
std::vector<int> horizontal_offsets(8 * half_patch_size_), vertical_offsets(8 * half_patch_size_); |
||||
|
||||
// Process each keypoint
|
||||
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint |
||||
!= keypoint_end; ++keypoint) |
||||
{ |
||||
//get a patch at the keypoint
|
||||
if (integral_image.empty()) |
||||
{ |
||||
switch (image.depth()) |
||||
{ |
||||
case CV_8U: |
||||
IC_Angle<uchar, int> (image, half_patch_size_, *keypoint, u_max_); |
||||
break; |
||||
case CV_32S: |
||||
IC_Angle<int, int> (image, half_patch_size_, *keypoint, u_max_); |
||||
break; |
||||
case CV_32F: |
||||
IC_Angle<float, float> (image, half_patch_size_, *keypoint, u_max_); |
||||
break; |
||||
case CV_64F: |
||||
IC_Angle<double, double> (image, half_patch_size_, *keypoint, u_max_); |
||||
break; |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
// use the integral image if you can
|
||||
switch (integral_image.depth()) |
||||
{ |
||||
case CV_32S: |
||||
IC_Angle_Integral<int> (integral_image, half_patch_size_, *keypoint, orientation_horizontal_offsets_[scale], |
||||
orientation_vertical_offsets_[scale]); |
||||
break; |
||||
case CV_32F: |
||||
IC_Angle_Integral<float> (integral_image, half_patch_size_, *keypoint, |
||||
orientation_horizontal_offsets_[scale], orientation_vertical_offsets_[scale]); |
||||
break; |
||||
case CV_64F: |
||||
IC_Angle_Integral<double> (integral_image, half_patch_size_, *keypoint, |
||||
orientation_horizontal_offsets_[scale], orientation_vertical_offsets_[scale]); |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
/** Compute the integral image and upadte the cached values
|
||||
* @param image the image to compute the features and descriptors on |
||||
* @param level the scale at which we compute the orientation |
||||
* @param descriptors the resulting descriptors |
||||
*/ |
||||
void ORB::computeIntegralImage(const cv::Mat & image, unsigned int level, cv::Mat &integral_image) |
||||
{ |
||||
integral(image, integral_image, CV_32S); |
||||
integral_image_steps_.resize(params_.n_levels_, 0); |
||||
|
||||
if (integral_image_steps_[level] == integral_image.step1()) |
||||
return; |
||||
|
||||
// If the integral image dimensions have changed, recompute everything
|
||||
int integral_image_step = integral_image.step1(); |
||||
|
||||
// Cache the step sizes
|
||||
integral_image_steps_[level] = integral_image_step; |
||||
|
||||
// Cache the offsets for the orientation
|
||||
orientation_horizontal_offsets_.resize(params_.n_levels_); |
||||
orientation_vertical_offsets_.resize(params_.n_levels_); |
||||
orientation_horizontal_offsets_[level].resize(8 * half_patch_size_); |
||||
orientation_vertical_offsets_[level].resize(8 * half_patch_size_); |
||||
for (int v = 1, offset_index = 0; v <= half_patch_size_; ++v) |
||||
{ |
||||
// Compute the offsets to use if using the integral image
|
||||
for (int signed_v = -v; signed_v <= v; signed_v += 2 * v) |
||||
{ |
||||
// the offsets are computed so that we can compute the integral image
|
||||
// elem at 0 - eleme at 1 - elem at 2 + elem at 3
|
||||
orientation_horizontal_offsets_[level][offset_index] = (signed_v + 1) * integral_image_step + u_max_[v] + 1; |
||||
orientation_vertical_offsets_[level][offset_index] = (u_max_[v] + 1) * integral_image_step + signed_v + 1; |
||||
++offset_index; |
||||
orientation_horizontal_offsets_[level][offset_index] = signed_v * integral_image_step + u_max_[v] + 1; |
||||
orientation_vertical_offsets_[level][offset_index] = -u_max_[v] * integral_image_step + signed_v + 1; |
||||
++offset_index; |
||||
orientation_horizontal_offsets_[level][offset_index] = (signed_v + 1) * integral_image_step - u_max_[v]; |
||||
orientation_vertical_offsets_[level][offset_index] = (u_max_[v] + 1) * integral_image_step + signed_v; |
||||
++offset_index; |
||||
orientation_horizontal_offsets_[level][offset_index] = signed_v * integral_image_step - u_max_[v]; |
||||
orientation_vertical_offsets_[level][offset_index] = -u_max_[v] * integral_image_step + signed_v; |
||||
++offset_index; |
||||
} |
||||
} |
||||
|
||||
// Remove the previous version if dimensions are different
|
||||
patterns_.resize(params_.n_levels_, 0); |
||||
if ((patterns_[level]) && (patterns_[level]->compareNormalizedStep(integral_image))) |
||||
{ |
||||
delete patterns_[level]; |
||||
patterns_[level] = 0; |
||||
} |
||||
if (!patterns_[level]) |
||||
patterns_[level] = new OrbPatterns(params_.patch_size_, integral_image.step1()); |
||||
} |
||||
|
||||
/** Compute the ORB decriptors
|
||||
* @param image the image to compute the features and descriptors on |
||||
* @param integral_image the integral image of the image (can be empty, but the computation will be slower) |
||||
* @param level the scale at which we compute the orientation |
||||
* @param keypoints the keypoints to use |
||||
* @param descriptors the resulting descriptors |
||||
*/ |
||||
void ORB::computeDescriptors(const cv::Mat& image, const cv::Mat& integral_image, unsigned int level, |
||||
std::vector<cv::KeyPoint>& keypoints, cv::Mat & descriptors) const |
||||
{ |
||||
//convert to grayscale if more than one color
|
||||
cv::Mat gray_image = image; |
||||
if (image.type() != CV_8UC1) |
||||
cv::cvtColor(image, gray_image, CV_BGR2GRAY); |
||||
|
||||
int border_safety = params_.patch_size_ + kKernelWidth / 2 + 2; |
||||
//Remove keypoints very close to the border
|
||||
cv::KeyPointsFilter::runByImageBorder(keypoints, image.size(), border_safety); |
||||
|
||||
// Get the patterns to apply
|
||||
cv::Ptr<OrbPatterns> patterns = patterns_[level]; |
||||
|
||||
//create the descriptor mat, keypoints.size() rows, BYTES cols
|
||||
descriptors = cv::Mat::zeros(keypoints.size(), kBytes, CV_8UC1); |
||||
|
||||
for (size_t i = 0; i < keypoints.size(); i++) |
||||
// look up the test pattern
|
||||
patterns->compute(keypoints[i], integral_image, descriptors.ptr(i)); |
||||
} |
||||
|
||||
} |
@ -0,0 +1,259 @@ |
||||
//x1,y1,x2,y2 |
||||
int ORB::OrbPatterns::bit_pattern_31_[256*4] ={ |
||||
8,-3, 9,5/*mean (0), correlation (0)*/, |
||||
4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/, |
||||
-11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/, |
||||
7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/, |
||||
2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/, |
||||
1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/, |
||||
-2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/, |
||||
-13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/, |
||||
-13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/, |
||||
10,4, 11,9/*mean (0.122065), correlation (0.093285)*/, |
||||
-13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/, |
||||
-11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/, |
||||
7,7, 12,6/*mean (0.160583), correlation (0.130064)*/, |
||||
-4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/, |
||||
-13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/, |
||||
-9,0, -7,5/*mean (0.198234), correlation (0.143636)*/, |
||||
12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/, |
||||
-3,6, -2,12/*mean (0.166847), correlation (0.171682)*/, |
||||
-6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/, |
||||
11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/, |
||||
4,7, 5,1/*mean (0.205106), correlation (0.186848)*/, |
||||
5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/, |
||||
3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/, |
||||
-8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/, |
||||
-2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/, |
||||
-13,12, -8,10/*mean (0.14783), correlation (0.206356)*/, |
||||
-7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/, |
||||
-4,2, -3,7/*mean (0.188237), correlation (0.21384)*/, |
||||
-10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/, |
||||
5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/, |
||||
5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/, |
||||
1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/, |
||||
9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/, |
||||
4,7, 4,12/*mean (0.131005), correlation (0.257622)*/, |
||||
2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/, |
||||
-4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/, |
||||
-8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/, |
||||
4,11, 9,12/*mean (0.226226), correlation (0.258255)*/, |
||||
0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/, |
||||
-13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/, |
||||
-3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/, |
||||
-6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/, |
||||
8,12, 10,7/*mean (0.225337), correlation (0.282851)*/, |
||||
0,9, 1,3/*mean (0.226687), correlation (0.278734)*/, |
||||
7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/, |
||||
-13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/, |
||||
10,7, 12,1/*mean (0.125517), correlation (0.31089)*/, |
||||
-6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/, |
||||
10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/, |
||||
-13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/, |
||||
-13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/, |
||||
3,3, 7,8/*mean (0.177755), correlation (0.309394)*/, |
||||
5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/, |
||||
-1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/, |
||||
3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/, |
||||
2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/, |
||||
-13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/, |
||||
-13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/, |
||||
-13,3, -11,8/*mean (0.134222), correlation (0.322922)*/, |
||||
-7,12, -4,7/*mean (0.153284), correlation (0.337061)*/, |
||||
6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/, |
||||
-9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/, |
||||
-2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/, |
||||
-12,5, -7,5/*mean (0.207805), correlation (0.335631)*/, |
||||
3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/, |
||||
-7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/, |
||||
-3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/, |
||||
2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/, |
||||
-11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/, |
||||
-1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/, |
||||
5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/, |
||||
-4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/, |
||||
-9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/, |
||||
-12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/, |
||||
10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/, |
||||
7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/, |
||||
-7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/, |
||||
-4,9, -3,4/*mean (0.099865), correlation (0.372276)*/, |
||||
7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/, |
||||
-7,6, -5,1/*mean (0.126125), correlation (0.369606)*/, |
||||
-13,11, -12,5/*mean (0.130364), correlation (0.358502)*/, |
||||
-3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/, |
||||
7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/, |
||||
-13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/, |
||||
1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/, |
||||
2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/, |
||||
-4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/, |
||||
-1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/, |
||||
7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/, |
||||
1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/, |
||||
9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/, |
||||
-1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/, |
||||
-13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/, |
||||
7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/, |
||||
12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/, |
||||
6,3, 7,11/*mean (0.1074), correlation (0.413224)*/, |
||||
5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/, |
||||
2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/, |
||||
3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/, |
||||
2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/, |
||||
9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/, |
||||
-8,4, -7,9/*mean (0.183682), correlation (0.402956)*/, |
||||
-11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/, |
||||
1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/, |
||||
6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/, |
||||
2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/, |
||||
6,3, 11,0/*mean (0.204588), correlation (0.411762)*/, |
||||
3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/, |
||||
7,8, 9,3/*mean (0.213237), correlation (0.409306)*/, |
||||
-11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/, |
||||
-10,11, -5,10/*mean (0.247672), correlation (0.413392)*/, |
||||
-5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/, |
||||
-10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/, |
||||
8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/, |
||||
4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/, |
||||
-10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/, |
||||
4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/, |
||||
-2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/, |
||||
-5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/, |
||||
7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/, |
||||
-9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/, |
||||
-5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/, |
||||
8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/, |
||||
-9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/, |
||||
1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/, |
||||
7,-4, 9,1/*mean (0.132692), correlation (0.454)*/, |
||||
-2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/, |
||||
11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/, |
||||
-12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/, |
||||
3,7, 7,12/*mean (0.147627), correlation (0.456643)*/, |
||||
5,5, 10,8/*mean (0.152901), correlation (0.455036)*/, |
||||
0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/, |
||||
-9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/, |
||||
0,7, 2,12/*mean (0.18312), correlation (0.433855)*/, |
||||
-1,2, 1,7/*mean (0.185504), correlation (0.443838)*/, |
||||
5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/, |
||||
3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/, |
||||
-13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/, |
||||
-5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/, |
||||
-4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/, |
||||
6,5, 8,0/*mean (0.1972), correlation (0.450481)*/, |
||||
-7,6, -6,12/*mean (0.199438), correlation (0.458156)*/, |
||||
-13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/, |
||||
1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/, |
||||
4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/, |
||||
-2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/, |
||||
2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/, |
||||
-2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/, |
||||
4,1, 9,3/*mean (0.23962), correlation (0.444824)*/, |
||||
-6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/, |
||||
-3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/, |
||||
7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/, |
||||
4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/, |
||||
-13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/, |
||||
7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/, |
||||
7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/, |
||||
-7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/, |
||||
-8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/, |
||||
-13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/, |
||||
2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/, |
||||
10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/, |
||||
-6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/, |
||||
8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/, |
||||
2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/, |
||||
-11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/, |
||||
-12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/, |
||||
-11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/, |
||||
5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/, |
||||
-2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/, |
||||
-1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/, |
||||
-13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/, |
||||
-10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/, |
||||
-3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/, |
||||
2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/, |
||||
-9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/, |
||||
-4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/, |
||||
-4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/, |
||||
-6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/, |
||||
6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/, |
||||
-13,11, -5,5/*mean (0.162427), correlation (0.501907)*/, |
||||
11,11, 12,6/*mean (0.16652), correlation (0.497632)*/, |
||||
7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/, |
||||
-1,12, 0,7/*mean (0.169456), correlation (0.495339)*/, |
||||
-4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/, |
||||
-7,1, -6,7/*mean (0.175), correlation (0.500024)*/, |
||||
-13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/, |
||||
-7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/, |
||||
-8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/, |
||||
-5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/, |
||||
-13,7, -8,10/*mean (0.196739), correlation (0.496503)*/, |
||||
1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/, |
||||
1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/, |
||||
9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/, |
||||
5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/, |
||||
-1,11, 1,-13/*mean (0.212), correlation (0.499414)*/, |
||||
-9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/, |
||||
-1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/, |
||||
-13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/, |
||||
8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/, |
||||
2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/, |
||||
7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/, |
||||
-10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/, |
||||
-10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/, |
||||
4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/, |
||||
3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/, |
||||
-4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/, |
||||
5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/, |
||||
4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/, |
||||
-9,9, -4,3/*mean (0.236977), correlation (0.497739)*/, |
||||
0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/, |
||||
-12,1, -6,1/*mean (0.243297), correlation (0.489447)*/, |
||||
3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/, |
||||
-10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/, |
||||
8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/, |
||||
-8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/, |
||||
2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/, |
||||
10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/, |
||||
6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/, |
||||
-7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/, |
||||
-3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/, |
||||
-1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/, |
||||
-3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/, |
||||
-8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/, |
||||
4,2, 12,12/*mean (0.01778), correlation (0.546921)*/, |
||||
2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/, |
||||
6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/, |
||||
3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/, |
||||
11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/, |
||||
-3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/, |
||||
4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/, |
||||
2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/, |
||||
-10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/, |
||||
-13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/, |
||||
-13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/, |
||||
6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/, |
||||
0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/, |
||||
-13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/, |
||||
-9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/, |
||||
-13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/, |
||||
5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/, |
||||
2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/, |
||||
-1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/, |
||||
9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/, |
||||
11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/, |
||||
3,0, 3,5/*mean (0.101147), correlation (0.525576)*/, |
||||
-1,4, 0,10/*mean (0.105263), correlation (0.531498)*/, |
||||
3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/, |
||||
-13,0, -10,5/*mean (0.112798), correlation (0.536582)*/, |
||||
5,8, 12,11/*mean (0.114181), correlation (0.555793)*/, |
||||
8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/, |
||||
7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/, |
||||
-10,4, -10,9/*mean (0.12094), correlation (0.554785)*/, |
||||
7,3, 12,4/*mean (0.122582), correlation (0.555825)*/, |
||||
9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/, |
||||
7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/, |
||||
-1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/ |
||||
}; |
Loading…
Reference in new issue