mirror of https://github.com/opencv/opencv.git
commit
4b0132ed7a
51 changed files with 3276 additions and 496 deletions
@ -0,0 +1,679 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#include "precomp.hpp" |
||||
#include "ie_ngraph.hpp" |
||||
|
||||
#include <opencv2/dnn/shape_utils.hpp> |
||||
|
||||
#ifdef HAVE_DNN_NGRAPH |
||||
#include <ie_extension.h> |
||||
#include <ie_plugin_dispatcher.hpp> |
||||
#endif // HAVE_DNN_NGRAPH
|
||||
|
||||
#include <opencv2/core/utils/configuration.private.hpp> |
||||
#include <opencv2/core/utils/logger.hpp> |
||||
|
||||
namespace cv { namespace dnn { |
||||
|
||||
#ifdef HAVE_DNN_NGRAPH |
||||
|
||||
// For networks with input layer which has an empty name, IE generates a name id[some_number].
|
||||
// OpenCV lets users use an empty input name and to prevent unexpected naming,
|
||||
// we can use some predefined name.
|
||||
static std::string kDefaultInpLayerName = "empty_inp_layer_name"; |
||||
|
||||
static std::vector<Ptr<NgraphBackendWrapper> > |
||||
ngraphWrappers(const std::vector<Ptr<BackendWrapper> >& ptrs) |
||||
{ |
||||
std::vector<Ptr<NgraphBackendWrapper> > wrappers(ptrs.size()); |
||||
for (int i = 0; i < ptrs.size(); ++i) |
||||
{ |
||||
CV_Assert(!ptrs[i].empty()); |
||||
wrappers[i] = ptrs[i].dynamicCast<NgraphBackendWrapper>(); |
||||
CV_Assert(!wrappers[i].empty()); |
||||
} |
||||
return wrappers; |
||||
} |
||||
|
||||
InfEngineNgraphNode::InfEngineNgraphNode(std::shared_ptr<ngraph::Node>&& _node) |
||||
: BackendNode(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH), node(std::move(_node)) {} |
||||
|
||||
InfEngineNgraphNode::InfEngineNgraphNode(std::shared_ptr<ngraph::Node>& _node) |
||||
: BackendNode(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH), node(_node) {} |
||||
|
||||
void InfEngineNgraphNode::setName(const std::string& name) { |
||||
node->set_friendly_name(name); |
||||
} |
||||
|
||||
InfEngineNgraphNet::InfEngineNgraphNet() |
||||
{ |
||||
hasNetOwner = false; |
||||
device_name = "CPU"; |
||||
} |
||||
|
||||
InfEngineNgraphNet::InfEngineNgraphNet(InferenceEngine::CNNNetwork& net) : cnn(net) |
||||
{ |
||||
hasNetOwner = true; |
||||
device_name = "CPU"; |
||||
} |
||||
|
||||
void InfEngineNgraphNet::addOutput(const std::string& name) |
||||
{ |
||||
requestedOutputs.push_back(name); |
||||
} |
||||
|
||||
void InfEngineNgraphNet::setNodePtr(std::shared_ptr<ngraph::Node>* ptr) { |
||||
all_nodes.emplace((*ptr)->get_friendly_name(), ptr); |
||||
} |
||||
|
||||
void InfEngineNgraphNet::release() { |
||||
for (auto& node : components.back()) { |
||||
if (!(node->is_parameter() || node->is_output() || node->is_constant()) ) { |
||||
auto it = all_nodes.find(node->get_friendly_name()); |
||||
if (it != all_nodes.end()) { |
||||
unconnectedNodes.erase(*(it->second)); |
||||
it->second->reset(); |
||||
all_nodes.erase(it); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
void InfEngineNgraphNet::dfs(std::shared_ptr<ngraph::Node>& node, |
||||
std::vector<std::shared_ptr<ngraph::Node>>& comp, |
||||
std::unordered_map<std::string, bool>& used) { |
||||
used[node->get_friendly_name()] = true; |
||||
comp.push_back(node); |
||||
auto inputs = node->get_users(); |
||||
for (size_t i = 0; i < node->get_input_size(); ++i) { |
||||
inputs.push_back(node->input_value(i).get_node()->shared_from_this()); |
||||
} |
||||
|
||||
for (auto& to : inputs) { |
||||
if (!used[to->get_friendly_name()]) { |
||||
dfs(to, comp, used); |
||||
} |
||||
} |
||||
} |
||||
|
||||
int InfEngineNgraphNet::getNumComponents() { |
||||
if (!components.empty()) { |
||||
return components.size(); |
||||
} |
||||
std::unordered_map<std::string, bool> used; |
||||
auto inputs = ngraph_function->get_ordered_ops(); |
||||
for (auto& node : inputs) { |
||||
used.emplace(node->get_friendly_name(), false); |
||||
} |
||||
|
||||
for (auto& node : inputs) { |
||||
if (!used[node->get_friendly_name()]) { |
||||
std::vector<std::shared_ptr<ngraph::Node>> current_comp; |
||||
dfs(node, current_comp, used); |
||||
components.push_back(current_comp); |
||||
} |
||||
} |
||||
return components.size(); |
||||
} |
||||
|
||||
void InfEngineNgraphNet::createNet(Target targetId) { |
||||
if (!hasNetOwner) |
||||
{ |
||||
CV_Assert(!unconnectedNodes.empty()); |
||||
ngraph::ResultVector outs; |
||||
for (auto& node : unconnectedNodes) |
||||
{ |
||||
auto out = std::make_shared<ngraph::op::Result>(node); |
||||
outs.push_back(out); |
||||
} |
||||
CV_Assert_N(!inputs_vec.empty(), !outs.empty()); |
||||
ngraph_function = std::make_shared<ngraph::Function>(outs, inputs_vec); |
||||
|
||||
int num_comp = getNumComponents(); |
||||
if (num_comp > 1) { |
||||
for (int i = num_comp - 1; i >= 0; --i) { |
||||
ngraph::ResultVector outputs; |
||||
ngraph::ParameterVector inps; |
||||
for (auto& node : components.back()) { |
||||
if (node->is_parameter()) { |
||||
auto parameter = std::dynamic_pointer_cast<ngraph::op::Parameter>(node); |
||||
inps.push_back(parameter); |
||||
} |
||||
else if (node->is_output()) { |
||||
auto result = std::dynamic_pointer_cast<ngraph::op::Result>(node); |
||||
outputs.push_back(result); |
||||
} |
||||
} |
||||
isInit = false; |
||||
CV_Assert_N(!inps.empty(), !outputs.empty()); |
||||
ngraph_function = std::make_shared<ngraph::Function>(outputs, inps); |
||||
release(); |
||||
components.pop_back(); |
||||
init(targetId); |
||||
} |
||||
} else { |
||||
release(); |
||||
components.clear(); |
||||
init(targetId); |
||||
} |
||||
} |
||||
} |
||||
|
||||
void InfEngineNgraphNet::init(Target targetId) |
||||
{ |
||||
if (!hasNetOwner) |
||||
{ |
||||
if (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) { |
||||
auto nodes = ngraph_function->get_ordered_ops(); |
||||
for (auto& node : nodes) { |
||||
auto parameter = std::dynamic_pointer_cast<ngraph::op::Parameter>(node); |
||||
if (parameter && parameter->get_element_type() == ngraph::element::f32) { |
||||
parameter->set_element_type(ngraph::element::f16); |
||||
} |
||||
auto constant = std::dynamic_pointer_cast<ngraph::op::Constant>(node); |
||||
if (constant && constant->get_element_type() == ngraph::element::f32) { |
||||
auto data = constant->get_vector<float>(); |
||||
std::vector<ngraph::float16> new_data(data.size()); |
||||
for (size_t i = 0; i < data.size(); ++i) { |
||||
new_data[i] = ngraph::float16(data[i]); |
||||
} |
||||
auto new_const = std::make_shared<ngraph::op::Constant>(ngraph::element::f16, constant->get_shape(), new_data); |
||||
new_const->set_friendly_name(constant->get_friendly_name()); |
||||
ngraph::replace_node(constant, new_const); |
||||
} |
||||
} |
||||
ngraph_function->validate_nodes_and_infer_types(); |
||||
} |
||||
cnn = InferenceEngine::CNNNetwork(ngraph_function); |
||||
#ifdef _DEBUG // TODO
|
||||
//cnn.serialize("/tmp/cnn.xml", "/tmp/cnn.bin");
|
||||
#endif |
||||
} |
||||
|
||||
switch (targetId) |
||||
{ |
||||
case DNN_TARGET_CPU: |
||||
device_name = "CPU"; |
||||
break; |
||||
case DNN_TARGET_OPENCL: |
||||
case DNN_TARGET_OPENCL_FP16: |
||||
device_name = "GPU"; |
||||
break; |
||||
case DNN_TARGET_MYRIAD: |
||||
device_name = "MYRIAD"; |
||||
break; |
||||
case DNN_TARGET_FPGA: |
||||
device_name = "FPGA"; |
||||
break; |
||||
default: |
||||
CV_Error(Error::StsNotImplemented, "Unknown target"); |
||||
}; |
||||
|
||||
if (!hasNetOwner) { |
||||
for (size_t i = 0; i < ngraph_function->get_output_size(); ++i) { |
||||
auto node = ngraph_function->output(i).get_node(); |
||||
for (size_t j = 0; j < node->get_input_size(); ++j) { |
||||
std::string name = node->input_value(j).get_node()->get_friendly_name(); |
||||
auto iter = std::find(requestedOutputs.begin(), requestedOutputs.end(), name); |
||||
if (iter != requestedOutputs.end()) { |
||||
requestedOutputs.erase(iter); |
||||
cnn.addOutput(name); |
||||
} |
||||
} |
||||
} |
||||
} else { |
||||
for (const auto& name : requestedOutputs) |
||||
{ |
||||
cnn.addOutput(name); |
||||
} |
||||
} |
||||
|
||||
for (const auto& it : cnn.getInputsInfo()) |
||||
{ |
||||
const std::string& name = it.first; |
||||
auto blobIt = allBlobs.find(name); |
||||
CV_Assert(blobIt != allBlobs.end()); |
||||
it.second->setPrecision(blobIt->second->getTensorDesc().getPrecision()); |
||||
} |
||||
|
||||
for (const auto& it : cnn.getOutputsInfo()) |
||||
{ |
||||
const std::string& name = it.first; |
||||
auto blobIt = allBlobs.find(name); |
||||
CV_Assert(blobIt != allBlobs.end()); |
||||
it.second->setPrecision(blobIt->second->getTensorDesc().getPrecision()); // Should be always FP32
|
||||
} |
||||
|
||||
initPlugin(cnn); |
||||
} |
||||
|
||||
ngraph::ParameterVector InfEngineNgraphNet::setInputs(const std::vector<cv::Mat>& inputs, |
||||
const std::vector<std::string>& names) { |
||||
CV_Assert_N(inputs.size() == names.size()); |
||||
ngraph::ParameterVector current_inp; |
||||
for (size_t i = 0; i < inputs.size(); i++) |
||||
{ |
||||
std::vector<size_t> shape = getShape<size_t>(inputs[i]); |
||||
auto inp = std::make_shared<ngraph::op::Parameter>(ngraph::element::f32, ngraph::Shape(shape)); |
||||
inp->set_friendly_name(names[i]); |
||||
|
||||
auto it = std::find_if(inputs_vec.begin(), inputs_vec.end(), |
||||
[&inp](const std::shared_ptr<ngraph::op::Parameter>& a) { |
||||
return a->get_friendly_name() == inp->get_friendly_name(); |
||||
}); |
||||
if (it == inputs_vec.end()) { |
||||
inputs_vec.push_back(inp); |
||||
current_inp.push_back(inp); |
||||
} else { |
||||
current_inp.push_back(*it); |
||||
} |
||||
} |
||||
return current_inp; |
||||
} |
||||
|
||||
void InfEngineNgraphNet::setUnconnectedNodes(Ptr<InfEngineNgraphNode>& node) { |
||||
unconnectedNodes.insert(node->node); |
||||
} |
||||
|
||||
void InfEngineNgraphNet::initPlugin(InferenceEngine::CNNNetwork& net) |
||||
{ |
||||
CV_Assert(!isInitialized()); |
||||
|
||||
try |
||||
{ |
||||
AutoLock lock(getInitializationMutex()); |
||||
InferenceEngine::Core& ie = getCore(); |
||||
{ |
||||
isInit = true; |
||||
std::vector<std::string> candidates; |
||||
std::string param_pluginPath = utils::getConfigurationParameterString("OPENCV_DNN_IE_EXTRA_PLUGIN_PATH", ""); |
||||
if (!param_pluginPath.empty()) |
||||
{ |
||||
candidates.push_back(param_pluginPath); |
||||
} |
||||
bool found = false; |
||||
for (size_t i = 0; i != candidates.size(); ++i) |
||||
{ |
||||
const std::string& libName = candidates[i]; |
||||
try |
||||
{ |
||||
InferenceEngine::IExtensionPtr extension = |
||||
InferenceEngine::make_so_pointer<InferenceEngine::IExtension>(libName); |
||||
|
||||
ie.AddExtension(extension, "CPU"); |
||||
CV_LOG_INFO(NULL, "DNN-IE: Loaded extension plugin: " << libName); |
||||
found = true; |
||||
break; |
||||
} |
||||
catch(...) {} |
||||
} |
||||
if (!found && !candidates.empty()) |
||||
{ |
||||
CV_LOG_WARNING(NULL, "DNN-IE: Can't load extension plugin (extra layers for some networks). Specify path via OPENCV_DNN_IE_EXTRA_PLUGIN_PATH parameter"); |
||||
} |
||||
// Some of networks can work without a library of extra layers.
|
||||
// OpenCV fallbacks as extensions.
|
||||
ie.AddExtension(std::make_shared<InfEngineExtension>(), "CPU"); |
||||
#ifndef _WIN32 |
||||
// Limit the number of CPU threads.
|
||||
if (device_name == "CPU") |
||||
ie.SetConfig({{ |
||||
InferenceEngine::PluginConfigParams::KEY_CPU_THREADS_NUM, format("%d", getNumThreads()), |
||||
}}, device_name); |
||||
#endif |
||||
} |
||||
std::map<std::string, std::string> config; |
||||
if (device_name == "MYRIAD") { |
||||
config.emplace("VPU_DETECT_NETWORK_BATCH", CONFIG_VALUE(NO)); |
||||
} |
||||
netExec = ie.LoadNetwork(net, device_name, config); |
||||
} |
||||
catch (const std::exception& ex) |
||||
{ |
||||
CV_Error(Error::StsError, format("Failed to initialize Inference Engine backend (device = %s): %s", device_name.c_str(), ex.what())); |
||||
} |
||||
} |
||||
|
||||
bool InfEngineNgraphNet::isInitialized() |
||||
{ |
||||
return isInit; |
||||
} |
||||
|
||||
bool NgraphBackendLayer::getMemoryShapes(const std::vector<MatShape> &inputs, |
||||
const int requiredOutputs, |
||||
std::vector<MatShape> &outputs, |
||||
std::vector<MatShape> &internals) const |
||||
{ |
||||
InferenceEngine::ICNNNetwork::InputShapes inShapes = t_net.getInputShapes(); |
||||
InferenceEngine::ICNNNetwork::InputShapes::iterator itr; |
||||
bool equal_flag = true; |
||||
size_t i = 0; |
||||
for (itr = inShapes.begin(); itr != inShapes.end(); ++itr) |
||||
{ |
||||
InferenceEngine::SizeVector currentInShape(inputs[i].begin(), inputs[i].end()); |
||||
if (itr->second != currentInShape) |
||||
{ |
||||
itr->second = currentInShape; |
||||
equal_flag = false; |
||||
} |
||||
i++; |
||||
} |
||||
|
||||
if (!equal_flag) |
||||
{ |
||||
InferenceEngine::CNNNetwork curr_t_net(t_net); |
||||
curr_t_net.reshape(inShapes); |
||||
} |
||||
std::vector<size_t> dims = t_net.getOutputsInfo()[name]->getDims(); |
||||
outputs.push_back(MatShape(dims.begin(), dims.end())); |
||||
return false; |
||||
} |
||||
|
||||
bool NgraphBackendLayer::supportBackend(int backendId) |
||||
{ |
||||
CV_LOG_DEBUG(NULL, "NgraphBackendLayer::supportBackend(" << backendId << ")"); |
||||
return backendId == DNN_BACKEND_DEFAULT || |
||||
(backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH); |
||||
} |
||||
|
||||
void NgraphBackendLayer::forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, |
||||
OutputArrayOfArrays internals) |
||||
{ |
||||
CV_Error(Error::StsInternal, "Choose Inference Engine as a preferable backend."); |
||||
} |
||||
|
||||
|
||||
static InferenceEngine::Layout estimateLayout(const Mat& m) |
||||
{ |
||||
if (m.dims == 4) |
||||
return InferenceEngine::Layout::NCHW; |
||||
else if (m.dims == 2) |
||||
return InferenceEngine::Layout::NC; |
||||
else |
||||
return InferenceEngine::Layout::ANY; |
||||
} |
||||
|
||||
static InferenceEngine::DataPtr wrapToInfEngineDataNode(const Mat& m, const std::string& name = "") |
||||
{ |
||||
std::vector<size_t> shape = getShape<size_t>(m); |
||||
if (m.type() == CV_32F) |
||||
return InferenceEngine::DataPtr(new InferenceEngine::Data(name, |
||||
{InferenceEngine::Precision::FP32, shape, estimateLayout(m)})); |
||||
else if (m.type() == CV_8U) |
||||
return InferenceEngine::DataPtr(new InferenceEngine::Data(name, |
||||
{InferenceEngine::Precision::U8, shape, estimateLayout(m)})); |
||||
else |
||||
CV_Error(Error::StsNotImplemented, format("Unsupported data type %s", typeToString(m.type()).c_str())); |
||||
} |
||||
|
||||
InferenceEngine::Blob::Ptr wrapToNgraphBlob(const Mat& m, const std::vector<size_t>& shape, |
||||
InferenceEngine::Layout layout) |
||||
{ |
||||
if (m.type() == CV_32F) |
||||
return InferenceEngine::make_shared_blob<float>( |
||||
{InferenceEngine::Precision::FP32, shape, layout}, (float*)m.data); |
||||
else if (m.type() == CV_8U) |
||||
return InferenceEngine::make_shared_blob<uint8_t>( |
||||
{InferenceEngine::Precision::U8, shape, layout}, (uint8_t*)m.data); |
||||
else |
||||
CV_Error(Error::StsNotImplemented, format("Unsupported data type %s", typeToString(m.type()).c_str())); |
||||
} |
||||
|
||||
InferenceEngine::Blob::Ptr wrapToNgraphBlob(const Mat& m, InferenceEngine::Layout layout) |
||||
{ |
||||
std::vector<size_t> shape = getShape<size_t>(m); |
||||
return wrapToNgraphBlob(m, shape, layout); |
||||
} |
||||
|
||||
NgraphBackendWrapper::NgraphBackendWrapper(int targetId, const cv::Mat& m) |
||||
: BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, targetId) |
||||
{ |
||||
dataPtr = wrapToInfEngineDataNode(m); |
||||
blob = wrapToNgraphBlob(m, estimateLayout(m)); |
||||
} |
||||
|
||||
NgraphBackendWrapper::NgraphBackendWrapper(Ptr<BackendWrapper> wrapper) |
||||
: BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, wrapper->targetId) |
||||
{ |
||||
Ptr<NgraphBackendWrapper> ieWrapper = wrapper.dynamicCast<NgraphBackendWrapper>(); |
||||
CV_Assert(!ieWrapper.empty()); |
||||
InferenceEngine::DataPtr srcData = ieWrapper->dataPtr; |
||||
dataPtr = InferenceEngine::DataPtr(new InferenceEngine::Data(srcData->getName(), srcData->getTensorDesc())); |
||||
blob = ieWrapper->blob; |
||||
} |
||||
|
||||
Ptr<BackendWrapper> NgraphBackendWrapper::create(Ptr<BackendWrapper> wrapper) |
||||
{ |
||||
return Ptr<BackendWrapper>(new NgraphBackendWrapper(wrapper)); |
||||
} |
||||
|
||||
NgraphBackendWrapper::~NgraphBackendWrapper() |
||||
{ |
||||
// nothing
|
||||
} |
||||
|
||||
void NgraphBackendWrapper::copyToHost() |
||||
{ |
||||
CV_LOG_DEBUG(NULL, "NgraphBackendWrapper::copyToHost()"); |
||||
//CV_Error(Error::StsNotImplemented, "");
|
||||
} |
||||
|
||||
void NgraphBackendWrapper::setHostDirty() |
||||
{ |
||||
CV_LOG_DEBUG(NULL, "NgraphBackendWrapper::setHostDirty()"); |
||||
//CV_Error(Error::StsNotImplemented, "");
|
||||
} |
||||
|
||||
InferenceEngine::Blob::Ptr copyBlob(const InferenceEngine::Blob::Ptr& blob) |
||||
{ |
||||
InferenceEngine::Blob::Ptr copy; |
||||
auto description = blob->getTensorDesc(); |
||||
InferenceEngine::Precision precision = description.getPrecision(); |
||||
if (precision == InferenceEngine::Precision::FP32) |
||||
{ |
||||
copy = InferenceEngine::make_shared_blob<float>(description); |
||||
} |
||||
else if (precision == InferenceEngine::Precision::U8) |
||||
{ |
||||
copy = InferenceEngine::make_shared_blob<uint8_t>(description); |
||||
} |
||||
else |
||||
CV_Error(Error::StsNotImplemented, "Unsupported blob precision"); |
||||
copy->allocate(); |
||||
return copy; |
||||
} |
||||
|
||||
InferenceEngine::DataPtr ngraphDataNode(const Ptr<BackendWrapper>& ptr) |
||||
{ |
||||
CV_Assert(!ptr.empty()); |
||||
Ptr<NgraphBackendWrapper> p = ptr.dynamicCast<NgraphBackendWrapper>(); |
||||
CV_Assert(!p.empty()); |
||||
return p->dataPtr; |
||||
} |
||||
|
||||
|
||||
void forwardNgraph(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers, |
||||
Ptr<BackendNode>& node, bool isAsync) |
||||
{ |
||||
CV_Assert(!node.empty()); |
||||
Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>(); |
||||
CV_Assert(!ieNode.empty()); |
||||
ieNode->net->forward(outBlobsWrappers, isAsync); |
||||
} |
||||
|
||||
void InfEngineNgraphNet::addBlobs(const std::vector<cv::Ptr<BackendWrapper> >& ptrs) |
||||
{ |
||||
auto wrappers = ngraphWrappers(ptrs); |
||||
for (const auto& wrapper : wrappers) |
||||
{ |
||||
std::string name = wrapper->dataPtr->getName(); |
||||
name = name.empty() ? kDefaultInpLayerName : name; |
||||
allBlobs.insert({name, wrapper->blob}); |
||||
} |
||||
} |
||||
|
||||
void InfEngineNgraphNet::NgraphReqWrapper::makePromises(const std::vector<Ptr<BackendWrapper> >& outsWrappers) |
||||
{ |
||||
auto outs = ngraphWrappers(outsWrappers); |
||||
outProms.clear(); |
||||
outProms.resize(outs.size()); |
||||
outsNames.resize(outs.size()); |
||||
for (int i = 0; i < outs.size(); ++i) |
||||
{ |
||||
outs[i]->futureMat = outProms[i].getArrayResult(); |
||||
outsNames[i] = outs[i]->dataPtr->getName(); |
||||
} |
||||
} |
||||
|
||||
Mat ngraphBlobToMat(const InferenceEngine::Blob::Ptr& blob) |
||||
{ |
||||
std::vector<size_t> dims = blob->getTensorDesc().getDims(); |
||||
std::vector<int> size(dims.begin(), dims.end()); |
||||
auto precision = blob->getTensorDesc().getPrecision(); |
||||
|
||||
int type = -1; |
||||
switch (precision) |
||||
{ |
||||
case InferenceEngine::Precision::FP32: type = CV_32F; break; |
||||
case InferenceEngine::Precision::U8: type = CV_8U; break; |
||||
default: |
||||
CV_Error(Error::StsNotImplemented, "Unsupported blob precision"); |
||||
} |
||||
return Mat(size, type, (void*)blob->buffer()); |
||||
} |
||||
|
||||
void InfEngineNgraphNet::forward(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers, bool isAsync) |
||||
{ |
||||
CV_LOG_DEBUG(NULL, "InfEngineNgraphNet::forward(" << (isAsync ? "async" : "sync") << ")"); |
||||
|
||||
// Look for finished requests.
|
||||
Ptr<NgraphReqWrapper> reqWrapper; |
||||
for (auto& wrapper : infRequests) |
||||
{ |
||||
if (wrapper->isReady) |
||||
{ |
||||
reqWrapper = wrapper; |
||||
break; |
||||
} |
||||
} |
||||
if (reqWrapper.empty()) |
||||
{ |
||||
reqWrapper = Ptr<NgraphReqWrapper>(new NgraphReqWrapper()); |
||||
try |
||||
{ |
||||
reqWrapper->req = netExec.CreateInferRequest(); |
||||
} |
||||
catch (const std::exception& ex) |
||||
{ |
||||
CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what())); |
||||
} |
||||
infRequests.push_back(reqWrapper); |
||||
|
||||
InferenceEngine::BlobMap inpBlobs, outBlobs; |
||||
for (const auto& it : cnn.getInputsInfo()) |
||||
{ |
||||
const std::string& name = it.first; |
||||
auto blobIt = allBlobs.find(name); |
||||
CV_Assert(blobIt != allBlobs.end()); |
||||
inpBlobs[name] = isAsync ? copyBlob(blobIt->second) : blobIt->second; |
||||
} |
||||
for (const auto& it : cnn.getOutputsInfo()) |
||||
{ |
||||
const std::string& name = it.first; |
||||
auto blobIt = allBlobs.find(name); |
||||
CV_Assert(blobIt != allBlobs.end()); |
||||
outBlobs[name] = isAsync ? copyBlob(blobIt->second) : blobIt->second; |
||||
} |
||||
reqWrapper->req.SetInput(inpBlobs); |
||||
reqWrapper->req.SetOutput(outBlobs); |
||||
|
||||
InferenceEngine::IInferRequest::Ptr infRequestPtr = reqWrapper->req; |
||||
infRequestPtr->SetUserData(reqWrapper.get(), 0); |
||||
|
||||
infRequestPtr->SetCompletionCallback( |
||||
[](InferenceEngine::IInferRequest::Ptr request, InferenceEngine::StatusCode status) |
||||
{ |
||||
CV_LOG_DEBUG(NULL, "DNN(nGraph): completionCallback(" << (int)status << ")"); |
||||
|
||||
NgraphReqWrapper* wrapper; |
||||
request->GetUserData((void**)&wrapper, 0); |
||||
CV_Assert(wrapper && "Internal error"); |
||||
|
||||
size_t processedOutputs = 0; |
||||
try |
||||
{ |
||||
for (; processedOutputs < wrapper->outProms.size(); ++processedOutputs) |
||||
{ |
||||
const std::string& name = wrapper->outsNames[processedOutputs]; |
||||
Mat m = ngraphBlobToMat(wrapper->req.GetBlob(name)); |
||||
|
||||
try |
||||
{ |
||||
CV_Assert(status == InferenceEngine::StatusCode::OK); |
||||
wrapper->outProms[processedOutputs].setValue(m.clone()); |
||||
} |
||||
catch (...) |
||||
{ |
||||
try { |
||||
wrapper->outProms[processedOutputs].setException(std::current_exception()); |
||||
} catch(...) { |
||||
CV_LOG_ERROR(NULL, "DNN: Exception occured during async inference exception propagation"); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
catch (...) |
||||
{ |
||||
std::exception_ptr e = std::current_exception(); |
||||
for (; processedOutputs < wrapper->outProms.size(); ++processedOutputs) |
||||
{ |
||||
try { |
||||
wrapper->outProms[processedOutputs].setException(e); |
||||
} catch(...) { |
||||
CV_LOG_ERROR(NULL, "DNN: Exception occured during async inference exception propagation"); |
||||
} |
||||
} |
||||
} |
||||
wrapper->isReady = true; |
||||
} |
||||
); |
||||
} |
||||
|
||||
if (isAsync) |
||||
{ |
||||
// Copy actual data to infer request's input blobs.
|
||||
for (const auto& it : cnn.getInputsInfo()) |
||||
{ |
||||
const std::string& name = it.first; |
||||
auto blobIt = allBlobs.find(name); |
||||
Mat srcMat = ngraphBlobToMat(blobIt->second); |
||||
Mat dstMat = ngraphBlobToMat(reqWrapper->req.GetBlob(name)); |
||||
srcMat.copyTo(dstMat); |
||||
} |
||||
|
||||
// Set promises to output blobs wrappers.
|
||||
reqWrapper->makePromises(outBlobsWrappers); |
||||
|
||||
reqWrapper->isReady = false; |
||||
reqWrapper->req.StartAsync(); |
||||
} |
||||
else |
||||
{ |
||||
reqWrapper->req.Infer(); |
||||
} |
||||
} |
||||
|
||||
#else |
||||
void forwardNgraph(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers, |
||||
Ptr<BackendNode>& node, bool isAsync) |
||||
{ |
||||
CV_Assert(false && "nGraph is not enabled in this OpenCV build"); |
||||
} |
||||
#endif |
||||
|
||||
}} |
@ -0,0 +1,144 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#ifndef __OPENCV_DNN_IE_NGRAPH_HPP__ |
||||
#define __OPENCV_DNN_IE_NGRAPH_HPP__ |
||||
|
||||
#include "op_inf_engine.hpp" |
||||
|
||||
#ifdef HAVE_DNN_NGRAPH |
||||
|
||||
#include <ngraph/ngraph.hpp> |
||||
|
||||
#endif // HAVE_DNN_NGRAPH
|
||||
|
||||
namespace cv { namespace dnn { |
||||
|
||||
#ifdef HAVE_DNN_NGRAPH |
||||
|
||||
class InfEngineNgraphNode; |
||||
|
||||
|
||||
class InfEngineNgraphNet |
||||
{ |
||||
public: |
||||
InfEngineNgraphNet(); |
||||
InfEngineNgraphNet(InferenceEngine::CNNNetwork& net); |
||||
|
||||
void addOutput(const std::string& name); |
||||
|
||||
bool isInitialized(); |
||||
void init(Target targetId); |
||||
|
||||
void forward(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers, bool isAsync); |
||||
|
||||
void initPlugin(InferenceEngine::CNNNetwork& net); |
||||
ngraph::ParameterVector setInputs(const std::vector<cv::Mat>& inputs, const std::vector<std::string>& names); |
||||
|
||||
void setUnconnectedNodes(Ptr<InfEngineNgraphNode>& node); |
||||
void addBlobs(const std::vector<cv::Ptr<BackendWrapper> >& ptrs); |
||||
|
||||
void createNet(Target targetId); |
||||
void setNodePtr(std::shared_ptr<ngraph::Node>* ptr); |
||||
private: |
||||
void release(); |
||||
int getNumComponents(); |
||||
void dfs(std::shared_ptr<ngraph::Node>& node, std::vector<std::shared_ptr<ngraph::Node>>& comp, |
||||
std::unordered_map<std::string, bool>& used); |
||||
|
||||
ngraph::ParameterVector inputs_vec; |
||||
std::shared_ptr<ngraph::Function> ngraph_function; |
||||
std::vector<std::vector<std::shared_ptr<ngraph::Node>>> components; |
||||
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>* > all_nodes; |
||||
|
||||
InferenceEngine::ExecutableNetwork netExec; |
||||
InferenceEngine::BlobMap allBlobs; |
||||
std::string device_name; |
||||
bool isInit = false; |
||||
|
||||
struct NgraphReqWrapper |
||||
{ |
||||
NgraphReqWrapper() : isReady(true) {} |
||||
|
||||
void makePromises(const std::vector<Ptr<BackendWrapper> >& outs); |
||||
|
||||
InferenceEngine::InferRequest req; |
||||
std::vector<cv::AsyncPromise> outProms; |
||||
std::vector<std::string> outsNames; |
||||
bool isReady; |
||||
}; |
||||
std::vector<Ptr<NgraphReqWrapper> > infRequests; |
||||
|
||||
InferenceEngine::CNNNetwork cnn; |
||||
bool hasNetOwner; |
||||
std::vector<std::string> requestedOutputs; |
||||
std::unordered_set<std::shared_ptr<ngraph::Node>> unconnectedNodes; |
||||
}; |
||||
|
||||
class InfEngineNgraphNode : public BackendNode |
||||
{ |
||||
public: |
||||
InfEngineNgraphNode(std::shared_ptr<ngraph::Node>&& _node); |
||||
InfEngineNgraphNode(std::shared_ptr<ngraph::Node>& _node); |
||||
|
||||
void setName(const std::string& name); |
||||
|
||||
// Inference Engine network object that allows to obtain the outputs of this layer.
|
||||
std::shared_ptr<ngraph::Node> node; |
||||
Ptr<InfEngineNgraphNet> net; |
||||
}; |
||||
|
||||
class NgraphBackendWrapper : public BackendWrapper |
||||
{ |
||||
public: |
||||
NgraphBackendWrapper(int targetId, const Mat& m); |
||||
NgraphBackendWrapper(Ptr<BackendWrapper> wrapper); |
||||
~NgraphBackendWrapper(); |
||||
|
||||
static Ptr<BackendWrapper> create(Ptr<BackendWrapper> wrapper); |
||||
|
||||
virtual void copyToHost() CV_OVERRIDE; |
||||
virtual void setHostDirty() CV_OVERRIDE; |
||||
|
||||
InferenceEngine::DataPtr dataPtr; |
||||
InferenceEngine::Blob::Ptr blob; |
||||
AsyncArray futureMat; |
||||
}; |
||||
|
||||
InferenceEngine::DataPtr ngraphDataNode(const Ptr<BackendWrapper>& ptr); |
||||
|
||||
// This is a fake class to run networks from Model Optimizer. Objects of that
|
||||
// class simulate responses of layers are imported by OpenCV and supported by
|
||||
// Inference Engine. The main difference is that they do not perform forward pass.
|
||||
class NgraphBackendLayer : public Layer |
||||
{ |
||||
public: |
||||
NgraphBackendLayer(const InferenceEngine::CNNNetwork &t_net_) : t_net(t_net_) {}; |
||||
|
||||
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs, |
||||
const int requiredOutputs, |
||||
std::vector<MatShape> &outputs, |
||||
std::vector<MatShape> &internals) const CV_OVERRIDE; |
||||
|
||||
virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, |
||||
OutputArrayOfArrays internals) CV_OVERRIDE; |
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE; |
||||
|
||||
private: |
||||
InferenceEngine::CNNNetwork t_net; |
||||
}; |
||||
|
||||
#endif // HAVE_DNN_NGRAPH
|
||||
|
||||
void forwardNgraph(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers, |
||||
Ptr<BackendNode>& node, bool isAsync); |
||||
|
||||
}} // namespace cv::dnn
|
||||
|
||||
|
||||
#endif // __OPENCV_DNN_IE_NGRAPH_HPP__
|
Loading…
Reference in new issue