parent
b33224f0b6
commit
4ae5de7f1e
1 changed files with 90 additions and 0 deletions
@ -0,0 +1,90 @@ |
||||
/**
|
||||
* @file MatchTemplate_Demo.cpp |
||||
* @brief Sample code to use the function MatchTemplate |
||||
* @author OpenCV team |
||||
*/ |
||||
|
||||
#include "opencv2/highgui/highgui.hpp" |
||||
#include "opencv2/imgproc/imgproc.hpp" |
||||
#include <iostream> |
||||
#include <stdio.h> |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
|
||||
/// Global Variables
|
||||
Mat img; Mat templ; Mat result; |
||||
char* image_window = "Source Image"; |
||||
char* result_window = "Result window"; |
||||
|
||||
int match_method; |
||||
int max_Trackbar = 5; |
||||
|
||||
/// Function Headers
|
||||
void MatchingMethod( int, void* ); |
||||
|
||||
/**
|
||||
* @function main |
||||
*/ |
||||
int main( int argc, char** argv ) |
||||
{ |
||||
/// Load image and template
|
||||
img = imread( argv[1], 1 ); |
||||
templ = imread( argv[2], 1 ); |
||||
|
||||
/// Create windows
|
||||
namedWindow( image_window, CV_WINDOW_AUTOSIZE ); |
||||
namedWindow( result_window, CV_WINDOW_AUTOSIZE ); |
||||
|
||||
/// Create Trackbar
|
||||
char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED"; |
||||
createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod ); |
||||
|
||||
MatchingMethod( 0, 0 ); |
||||
|
||||
waitKey(0); |
||||
return 0; |
||||
} |
||||
|
||||
/**
|
||||
* @function MatchingMethod |
||||
* @brief Trackbar callback |
||||
*/ |
||||
void MatchingMethod( int, void* ) |
||||
{ |
||||
/// Source image to display
|
||||
Mat img_display; |
||||
img.copyTo( img_display ); |
||||
|
||||
/// Create the result matrix
|
||||
int result_cols = img.cols - templ.cols + 1; |
||||
int result_rows = img.rows - templ.rows + 1;
|
||||
|
||||
result.create( result_cols, result_rows, CV_32FC1 ); |
||||
|
||||
/// Do the Matching and Normalize
|
||||
matchTemplate( img, templ, result, match_method ); |
||||
normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() ); |
||||
|
||||
/// Localizing the best match with minMaxLoc
|
||||
double minVal; double maxVal; Point minLoc; Point maxLoc; |
||||
Point matchLoc; |
||||
|
||||
minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() ); |
||||
|
||||
|
||||
/// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
|
||||
if( match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED ) |
||||
{ matchLoc = minLoc; } |
||||
else
|
||||
{ matchLoc = maxLoc; } |
||||
|
||||
/// Show me what you got
|
||||
rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
|
||||
rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
|
||||
|
||||
imshow( image_window, img_display ); |
||||
imshow( result_window, result ); |
||||
|
||||
return; |
||||
} |
Loading…
Reference in new issue